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Abstract 
Objective. Inpatient rehabilitation represents a critical setting for stroke treatment, providing intensive, targeted therapy and 
task-specific practice to minimize a patient’s functional deficits and facilitate their reintegration into the community. However, 
impairment and recovery vary greatly after stroke, making it difficult to predict a patient’s future outcomes or response to 
treatment. In this study, the authors examined the value of early-stage wearable sensor data to predict 3 functional outcomes 
(ambulation, independence, and risk of falling) at rehabilitation discharge. 
Methods. Fifty-five individuals undergoing inpatient stroke rehabilitation participated in this study. Supervised machine 
learning classifiers were retrospectively trained to predict discharge outcomes using data collected at hospital admission, 
including patient information, functional assessment scores, and inertial sensor data from the lower limbs during gait and/or 
balance tasks. Model performance was compared across different data combinations and was benchmarked against a 
traditional model trained without sensor data. 
Results. For patients who were ambulatory at admission, sensor data improved the predictions of ambulation and risk of 
falling (with weighted F1 scores increasing by 19.6% and 23.4%, respectively) and maintained similar performance for 
predictions of independence, compared to a benchmark model without sensor data. The best-performing sensor-based 
models predicted discharge ambulation (community vs household), independence (high vs low), and risk of falling (normal 
vs high) with accuracies of 84.4%, 68.8%, and 65.9%, respectively. Most misclassifications occurred with admission or 
discharge scores near the classification boundary. For patients who were nonambulatory at admission, sensor data recorded 
during simple balance tasks did not offer predictive value over the benchmark models. 
Conclusion. These findings support the continued investigation of wearable sensors as an accessible, easy-to-use tool to 
predict the functional recovery after stroke. 
Impact. Accurate, early prediction of poststroke rehabilitation outcomes from wearable sensors would improve our ability to 
deliver personalized, effective care and discharge planning in the inpatient setting and beyond. 

Keywords: Balance, Biomedical Engineering, Decision Making: Computer-Assisted, Gait, Inpatients, Outcome Assessment (Health Care), Patient Care Planning, 
Prognosis, Rehabilitation, Technology Assessment: Biomedical
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2 Wearable Sensors to Predict Stroke Outcomes

Introduction 
Stroke is a leading cause of disability worldwide.1 Following 
initial treatment, many stroke survivors are admitted to an 
inpatient rehabilitation facility (IRF) for ongoing medical 
care and targeted, intensive, multidisciplinary therapy in the 
early stages after stroke. A primary goal of IRF rehabilitation 
is to maximize the neural and functional recovery to help 
patients reintegrate into the community upon discharge.2 

However, not all individuals have the same potential for recov-
ery. Patients achieve widely varying levels of function after 
initial treatment, with some returning to premorbid function 
and others retaining severe deficits that require additional 
short- or long-term care.3 

Starting at IRF admission, clinicians must plan when the 
patient will be discharged from the hospital, where they 
can be safely discharged (ie, to their home with or without 
caregiver assistance, or to a skilled nursing facility for ongoing 
rehabilitative care), and how to structure therapy to optimize a 
patient’s overall discharge disposition. In the USA, the average 
IRF length of stay has decreased to 12.9 days for patients with 
Medicare,4 giving clinicians, patients, and families only a brief 
window to design short-term care strategies and postdischarge 
plans suited to the patient’s needs (eg, seeking and training 
caregivers, making home modifications or alternative living 
arrangements, and ordering assistive devices). Early, objective, 
and accurate predictions of a patient’s functional recovery 
would help clinicians, patients, and families plan appropriate 
treatment and reintegration strategies based on the expected 
discharge disposition. 

Numerous research models have been proposed to predict 
the stroke recovery.5,6 Many of these models use exclusively 
information available from the electronic medical records 
(EMRs), including patient demographics and clinical infor-
mation.7–9 While such models lend themselves to simple and 
relatively undemanding clinical implementation, their reso-
lution may not detect subtle differences between patients, 
leading more often to rules of thumb about recovery rather 
than predicting specific patient outcomes. Conversely, high-
resolution metrics, such as from transcranial magnetic stimu-
lation or brain imaging, could improve prediction resolution 
and accuracy,10–13 but these measures are costly and are not 
often available in rehabilitation settings, posing barriers to 
clinical uptake. 

Noninvasive wearable sensors show promise for capturing 
biomarkers of disease and recovery by mining patterns 
from continuous, high-resolution physiological or behavioral 
data.14,15 We previously demonstrated that data from inertial 
measurement units (IMUs), recorded during a brief walking 
bout within a week of IRF admission, improved the prediction 
of ambulation ability at discharge compared to traditional 
functional assessments (FAs) and other patient descriptors.16 

However, a patient’s discharge disposition depends on 
different abilities, such as navigating their home environ-
ment and performing activities of daily living safely and 
independently. Therefore, we propose 3 functional outcomes 
for prediction models which may be considered broadly 
representative of these attributes: the 10-Meter Walk Test 
(10MWT; ambulation), Functional Independence Measure 
score (FIM; independence, specifically related to motor tasks), 
and the Berg Balance Scale (BBS; risk of falling). To enhance 
the clinical value of model predictions, we used clinically 
significant cut-off scores to classify outcomes as signifying 

none-to-mild and moderate-to-severe impairment. Finally, 
while in our previous work we used sensor data solely from 
walking tasks, here, the recorded activities also encompassed 
simple balance tasks. Consequently, incorporating a nonam-
bulatory population into our approach expands our insights 
into the potential of sensor-based prediction models for a 
broader range of patients and IMU data. 

The objectives of the present study were to expand 
our early-stage prognostic models to predict 3 poststroke 
functional outcomes (ambulation, independence, and risk of 
falling) at IRF discharge for both patients who are ambulatory 
and patients who are nonambulatory using data recorded at 
admission and to evaluate the ability of IMU data to predict 
each of these 3 outcomes. We hypothesized that incorporating 
lower-limb IMU data would improve the prediction of 
discharge outcomes relative to models trained on clinician-
scored FAs and demographic and clinical patient information 
(PI) alone. 

Methods 
Participants 
Fifty-five patients were recruited from the inpatient reha-
bilitation unit of the Shirley Ryan AbilityLab (Chicago, IL, 
USA). Inclusion criteria were: having a primary diagnosis of 
stroke, being aged at least 18 years, and able and willing to 
give consent and follow study directions. Exclusion criteria 
were: having a known neurodegenerative pathology; preg-
nant or nursing; or utilizing a powered, implanted cardiac 
device for monitoring or supporting heart function. Medical 
clearance was obtained from the primary physician prior to 
participation. All individuals (or a proxy) provided written 
informed consent, and the study was approved by the Insti-
tutional Review Board of Northwestern University (Chicago, 
IL; STU00205532). 

Experimental Protocol 
Data were collected from patients at 2 timepoints: within 1 
week of IRF admission and within 1 week prior to discharge. 
At each timepoint, participants completed a series of standard-
ized FAs, including the 10MWT, BBS, 6-Minute Walk Test 
(6MWT), and Timed “Up & Go” test (TUG). FIM scores 
were extracted from the patient’s EMR at each timepoint. 
All assessments were administered and scored by a licensed 
physical therapist. Assessments that could not be completed 
were scored as 0. PI—including demographics, premorbid 
activity level, and stroke characteristics—were obtained from 
the EMR and a study intake form. 

Sensor data were collected from 3 flexible, wireless IMUs 
(BioStampRC; MC10 Inc, Cambridge, MA) during the FAs. 
These devices were attached to the lumbar region (L4–L5 
level) and each ankle (proximal to the lateral malleolus, along 
the mid-sagittal line) by using an adhesive film (Tegaderm; 
3M, St. Paul, MN, USA). They recorded triaxial signals from 
an accelerometer (sensitivity ±4 g) and a gyroscope (sensitiv-
ity ±2000 deg/s) sampled at 31.25 Hz. 

Selection of Sensor Data for Model Training 
We divided participants into 2 groups based on their walking 
status during IRF admission. Patients who were ambulatory 
(N = 43) were individuals who could complete at least 1
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O’Brien et al 3 

Figure 1. Inpatient dataset available for model training and testing. Data were collected from 55 individuals undergoing poststroke inpatient rehabilitation 
at admission and discharge. Training sets for prediction models were determined based on ambulatory status during admission and the availability of 
IMU data from gait and balance tasks. For patients who were ambulatory at admission, we utilized their IMU data recorded during the 10MWT and BBS 
(N = 32). For patients who were nonambulatory at admission, we combined IMU BBS data for both patients who were ambulatory and nonambulatory 
(N = 50) and tested only on those who were nonambulatory (N = 8). All models were tested using a leave-1-subject-out approach. 6MWT = 6-Minute 
Walk Test; 10MWT = 10-Meter Walk Test; Adm = admission; Amb = ambulatory; BBS = Berg Balance Scale; FIM = Functional Independence Measure; 
IMU = inertial measurement unit; Ind = independence; Non-Amb = nonambulatory. 

walking assessment at admission (10MWT, 6MWT, or TUG) 
with no more than moderate assistance from a physical ther-
apist. Patients who were unable to complete all the walking 
assessments at admission were considered nonambulatory 
(N = 12). 

To establish a simple yet inclusive set of physical activities 
to capture potential biomarkers of recovery across these 2 
groups, we narrowed the sensor analysis to a single walking 
task that could be completed by most participants who are 
ambulatory and a series of nonambulatory tasks that could 
be completed by most participants regardless of ambulatory 
status. 

For the walking task, we selected a single trial of the 
10MWT at self-selected velocity, which we previously found 
to be predictive of ambulation discharge outcomes among 
individuals who are ambulatory.16 In our present dataset, 

33 patients who were ambulatory had IMU data during the 
10MWT (Fig. 1). 

For the nonambulatory tasks, we selected the first 4 items 
of the BBS (standing unsupported for up to 2 minutes, sitting 
unsupported for up to 2 minutes, stand-to-sit transition, and 
sit-to-stand transition), which are among the least demanding 
and had a high completion rate among all patients (Suppl. 
Fig. 1). In our dataset, 8 patients who were nonambulatory 
and 42 patients who were ambulatory had IMU data during 
these 4 tasks (Fig. 1). 

Annotated sensor data for each task were cleaned by remov-
ing duplicate timestamps and resampling to the expected sam-
pling frequency (31.25 Hz) using spline interpolation. Data 
processing, filtering, and subsequent feature extraction were 
completed in MATLAB R2017b (Mathworks Inc, Natick, 
MA, USA).
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4 Wearable Sensors to Predict Stroke Outcomes

Figure 2. Data pipeline for prediction models. Data collected at inpatient rehabilitation facility (IRF) admission (PI, FA, and IMU signals) were combined in 
different feature sets and input into an L1-penalized logistic regression model. The model was trained to predict functional outcomes at IRF discharge, 
related to the classification of ambulation, independence, and risk of falling. 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; 
Acc = accelerometer; BBS = Berg Balance Scale; FA = functional assessments; FIM = Functional Independence Measure; Gyr = gyroscope; IMU = inertial 
measurement unit; ML = machine learning; PI = patient information; TUG = Timed “Up & Go” test; X1, X2, X3, and XN = example features extracted 
from admission data. 

Feature Extraction 
Features are measurable, independent variables used as an 
input to a machine learning algorithm to make predictions. 
Three feature categories were defined in this study: PI, FA 
scores, and wearable sensor (IMU) data. To reduce the dimen-
sionality of the feature space and increase robustness to the 
sensor placement, IMU features were computed from the 
Euclidean norm of the triaxial accelerometer and gyroscope 
signals. IMU features for the BBS were supplemented with 
measures of postural sway, which were computed from the 
mediolateral and anteroposterior axes of the lumbar sensor 
(Suppl. Tab. 1). We applied 1-hot encoding to categorical 
variables to prevent ordinality issues. Supplementary Table 2 
summarizes characteristics of the PI and FA features for our 
different training and testing datasets. 

Combinations of these feature categories were used to train 
prediction models, creating 3 different types of models for 
comparison: a benchmark model (PI + FA, no sensor data), 
including both PI and FAs, a streamlined sensor model (PI 
+ IMU), including easily obtained PI, and a comprehensive 
model (PI + FA + IMU), including all feature types. The PI 
+ FA benchmark served as a comparative point of reference 
to determine the impact of sensor data on predicting each 
discharge outcome. 

Model Architecture and Training 
We trained separate supervised learning classifiers to predict 
3 different discharge outcomes: ambulation, independence, 

and risk of falling (Fig. 2). For each outcome, we defined 2 
classes of patient function at discharge; namely, household 
versus community ambulators (based on 10MWT score17,18), 
low versus high independence (based on FIM motor sub-
score19,20), and high versus normal risk of falling (based on 
BBS score21). 

Classifiers were developed using the Scikit-Learn (0.23.2) 
library in Python 3.8.8. We selected L1-penalized logistic 
regression, given its ability to handle the high dimensionality, 
relatively small sample size, and the varying degrees of class 
imbalance. L1-penalized logistic regression also requires few 
hyperparameters and calculates feature importance scores, 
simplifying the training and interpretation processes for more 
direct comparison between the models. Models were trained 
and tested to predict the 3 discharge outcomes for the ambu-
latory and nonambulatory populations by using nested leave-
1-subject-out crossvalidation (Suppl. Fig. 2). 

Models predicting ambulatory outcomes at discharge were 
exclusively trained and tested using the 32 patients who were 
ambulatory and had IMU data available for both the 10WMT 
and BBS (Fig. 1). To determine the most predictive sensor 
tasks for patients who were ambulatory, we compared model 
performance when training with IMU features from BBS only 
(IMUBBS), 10MWT only (IMU10MWT), and BBS and 10MWT 
combined (IMU10MWT + BBS). 

Models predicting nonambulatory outcomes at discharge 
were trained using data from the combined ambulatory and 
nonambulatory populations to maximize the availability of 
the BBS IMU data. We refer to these models as nonambulatory

D
ow

nloaded from
 https://academ

ic.oup.com
/ptj/article/104/2/pzad183/7505420 by N

orthw
estern U

niversity School of Law
 - IN

AC
TIVE user on 11 M

arch 2024

https://academic.oup.com/ptj/article-lookup/doi/10.1093/ptj/pzad183#supplementary-data
https://academic.oup.com/ptj/article-lookup/doi/10.1093/ptj/pzad183#supplementary-data
https://academic.oup.com/ptj/article-lookup/doi/10.1093/ptj/pzad183#supplementary-data


O’Brien et al 5   

models because they were tested and intended exclusively for 
the 8 patients who were nonambulatory. This combined train-
ing was adopted to increase the sample size and heterogeneity 
of discharge outcomes for model learning compared to the 
nonambulatory cohort alone. 

Model Interpretation 
The primary performance metric was the weighted F1 score 
(WF1), defined as the harmonic mean of the precision and 
recall, computed separately for each class j, and weighted by 
the number of samples nj within each class, with the highest 
possible value of 1.0 indicating perfect precision and recall.22 

WF1 =
∑L 

j=1 2· precisionj·recallj 
precisionj+recallj

· nj
∑L 

j=1 nj 
. 

Secondary performance metrics were accuracy and log-loss 
scores. Accuracy is the ratio of correct predictions to the total 
number of samples, with the highest value of 1.0: 

Accuracy = tp + tn 
tp + fp + tn + fn 

, 

where tp, tn, fp, and  fn are the numbers of true positives, 
true negatives, false positives, and false negatives, respectively. 
Positive classes were household ambulation ability, low inde-
pendence, and high risk of falling. 

Log-loss measures the variation between prediction proba-
bilities and true classes, wherein lower values indicate greater 
certainty about the predictions.23 Given a true label yi and the 
prediction probability pi = Pr

(
yi = 1

)
, log-loss is computed 

as: 

Log-loss = −  
1 
N

∑N 

i=1

(
yi· ln

(
pi

) + (
1 − yi

) · ln
(
1 − pi

))
. 

Confusion matrices were generated for the best-performing 
models to examine misclassifications for each outcome and 
patient group. These were also compared to the benchmark PI 
+ FA model. Parameter importance was determined from the 
coefficients fit in the best model, taking the median coefficient 
value and the 25th and 75th percentiles across all participants. 
Parameters with median, 25th, and 75th percentile values 
equal to 0 were discarded. 

Role of the Funding Source 
The funders played no role in the design, conduct, or reporting 
of this study. 

Results 
Classification performance for each model and feature set is 
presented in the Table and is summarized below. 

Ambulation 
For patients who were ambulatory, the benchmark PI + FA 
ambulation model had a WF1 of 0.709. Gait-based IMU 
features, either alone or combined with balance features, 
improved performance in both the streamlined and compre-
hensive sensor model configurations by 19.6%. Balance-based 
IMU features alone did not affect the ambulation predictions. Ta
b
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6 Wearable Sensors to Predict Stroke Outcomes 

Figure 3. Prediction models for ambulation at discharge (ambulatory at admission). (A) WF1, accuracy, and log-loss for the benchmark model (PI + FA), 
streamlined sensor model (PI + IMU10MWT), and comprehensive model (PI + FA + IMU10MWT). (B) Confusion matrices. (C) 10MWT score at admission 
(circles) and discharge timepoints. Values at discharge are marked with ticks if correctly predicted by the best-performing model (simplest model with 
the highest WF1), or with crosses if incorrectly predicted. (D) Median and interquartile ranges of the coefficients fit to the most important features for 
the best-performing model. 10MWT = 10-Meter Walk Test; ȧ = derivative of acceleration; ω̇ = derivative of gyroscope; Acc = accelerometer; 
Adm = admission; Amb = ambulatory; AoM = amount of motion; AS = affected side; Dis = discharge; FA = functional assessments; Gyr = gyroscope; 
IMU = inertial measurement unit; PI = patient information; PSD = power spectral density; SampEn = sample entropy; US = unaffected side; 
WF1 = weighted F1 score. 

The gait-based streamlined sensor model, PI + IMU10MWT, 
was selected as the best model for patients who were ambula-
tory, given its simple configuration and highest WF1 ( Fig. 3A). 
The streamlined sensor model outperformed the benchmark, 
correctly identifying more patients who were household (4 
vs 1 patient[s]) and community (23 vs 21 patients) ambula-
tors at discharge (Fig. 3B). The PI + IMU10MWT model also 
correctly identified 27 of 29 patients who did not change the 
ambulation category from IRF admission to discharge, though 
it misclassified 3 patients who improved from household 
to community ambulators (Fig. 3C). Eleven features were 
selected for the PI + IMU10MWT model, including lesion 
location, activity lifestyle, and IMU features from all sensor 
locations (Fig. 3D). 

For patients who were nonambulatory, the comprehen-
sive model trained on the combined dataset was the best 
ambulation model, achieving a WF1 of 0.859 (Suppl. Fig. 
3A). The PI + FA + IMUBBS model correctly classified 1 of 
2 individuals who were nonambulatory and progressed to 
community ambulators as well as all 6 individuals who were 
nonambulatory and were discharged as household ambulators 
(Suppl. Fig. 3B and C). Notably, 2 individuals remained non-
ambulatory at discharge, with 1 completing the 6MWT but 
was unable to complete the 10MWT. Among the 28 features 
selected for the comprehensive model, the admission 10MWT 
score and IMU balance features were the most important pre-
dictors of community and household ambulation, respectively 
(Suppl. Fig. 3D). 

Independence 
For patients who were ambulatory, the benchmark PI + FA 
independence model had a WF1 of 0.685. Gait-based IMU 
features yielded a similar WF1, while balance features per-
formed slightly worse in both the streamlined (−14.2%) and 
comprehensive (−9.2%) sensor models. Combining gait and 
balance IMU features further decreased WF1 (up to −17.8%) 
for both sensor models. 

The gait-based comprehensive model, PI + FA + IMU10MWT, 
was the best-performing model according to WF1 (Fig. 4A). 
Compared to benchmark, the comprehensive model correctly 
classified more individuals who were ambulatory and were 
discharged with low independence (11 vs 9 patients), though 
with fewer correct predictions for individuals with high 
independence (11 vs 13 patients) (Fig. 4B). Misclassifications 
were higher among participants with discharge FIM motor 
scores close to the class threshold. The PI + FA + IMU10MWT 
model correctly identified 10 out of the 16 patients who 
transitioned from low independence to high independence 
(Fig. 4C). Fourteen features were selected for this model, 
including gyroscope features from the lumbar and unaffected-
side ankle. Participant age was the most discriminative feature 
for low independence at discharge, while the 10MWT and 
BBS admission scores indicated high independence (Fig. 4D). 

For patients who were nonambulatory, independence pre-
dictions achieved the same WF1 of 0.933 across models, with 
the least uncertainty in the comprehensive model (Suppl. Fig. 
4A–C). We selected the benchmark as the best model, which
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Figure 4. Prediction models for independence at discharge (ambulatory at admission). (A) WF1, accuracy, and log-loss for the benchmark model (PI + 
FA), streamlined sensor model (PI + IMU10MWT), and comprehensive model (PI + FA + IMU10MWT). (B) Confusion matrices. (C) 10MWT score at 
admission (circles) and discharge timepoints. Values at discharge are marked with ticks if correctly predicted by the best-performing model (simplest 
model with the highest WF1), or with crosses if incorrectly predicted. (D) Median and interquartile ranges of the coefficients fit to the most important 
features for the best-performing model. 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; ω̇ = derivative of rotational velocity (from 
gyroscope); Acc = accelerometer; Adm = admission; Amb = ambulatory; AS = affected side; BBS = Berg Balance Scale; Dis = discharge; FA = functional 
assessments; FIM = Functional Independence Measure; Gyr = gyroscope; IMU = inertial measurement unit; Ind = independence; PI = patient 
information; PSD = power spectral density; US = unaffected side; WF1 = weighted F1 score. 

used simple features, such as age, admission 6MWT, and 
admission BBS scores, to differentiate between the 2 levels of 
discharge independence ( Suppl. Fig. 4D). 

Risk of Falling 
For patients who were ambulatory, the benchmark risk-of-
falling model had a WF1 of 0.534 (Fig. 5A). Balance-based 
IMU features decreased performance in the streamlined sensor 
model to 0.347, but they slightly increased performance 
in the comprehensive model to 0.566. Gait-based IMU 
features improved performance relative to the benchmark 
model in both the streamlined (23.4%) and comprehensive 
(17.6%) sensor models. Combined gait and balance IMU 
features did not increase performance further in either model 
configuration. 

The gait-based streamlined sensor model, PI + IMU10MWT, 
was selected as the best risk-of-falling model. Compared to the 
benchmark, the streamlined sensor model correctly classified 
more individuals who were ambulatory and were discharged 
with both high risk (12 vs 9 patients) and normal risk (9 vs 
8 patients)  (Fig. 5B). Incorrect predictions were more likely 
when the BBS discharge score was near the cut-off value. The 
PI + IMU10MWT model correctly predicted 5 patients who 
transitioned from high to normal risk (out of 8 total) (Fig. 5C). 
Of the 23 features selected for this model, various IMU 
and demographic features had similar average importance to 

distinguish individuals with high and normal risk of falling 
(Fig. 5D). 

For patients who were nonambulatory, risks of falling 
predictions were perfectly accurate for the benchmark and 
comprehensive models, whereas the streamlined sensor model 
exhibited marginally lower performance (Suppl. Fig. 5A). 
Both the benchmark and the comprehensive models identified 
all individuals who were nonambulatory with high risk of 
falling (Suppl. Fig. 5B and C). The benchmark was selected as 
the best model by utilizing the simplest set of 4 features with 
relatively low uncertainty. Lifestyle and left-side hemiparesis 
were markers for high fall risk, whereas the BBS admission 
score had the highest importance to identify individuals with 
normal risk (Suppl. Fig. 5D). 

Discussion 
For patients who were ambulatory at admission, we found 
that the IMU sensor data recorded from the lumbar and 
ankles during walking tasks improved early predictions of 
poststroke inpatient rehabilitation outcomes (ambulation, 
independence, and risk of falling) compared to benchmark 
predictions derived from EMR-based PI and standardized 
FA scores. For ambulation and risk of falling, IMU features 
extracted during a 10-m walking bout increased the WF1 
in a streamlined sensor model (PI+ IMU10MWT), while FA
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Figure 5. Prediction models for risk of falling at discharge (ambulatory at admission). (A) WF1, accuracy, and log-loss for the benchmark model (PI + FA), 
streamlined sensor model (PI + IMU10MWT), and comprehensive model (PI + FA + IMU10MWT). (B) Confusion matrices. (C) 10MWT score at admission 
(circles) and discharge timepoints. Values at discharge are marked with ticks if correctly predicted by the best-performing model (simplest model with 
the highest WF1), or with crosses if incorrectly predicted. (D) Median and interquartile ranges of the coefficient fit to the most important features for the  
best-performing model. 10MWT = 10-Meter Walk Test; ȧ = derivative of acceleration; ω̇ = derivative of rotational velocity (from gyroscope); 
a(fmax) = amplitude at maximum frequency; Acc = accelerometer; Adm = admission; Amb = ambulatory; AS = affected side; BBS = Berg Balance Scale; 
Dis = discharge; FA = functional assessments; Gyr = gyroscope; IMU = inertial measurement unit; PI = patient information; RMS = root mean square; 
SampEn = sample entropy; US = unaffected side; WF1 = weighted F1 score. 

features from admission further improved the predictions 
for independence. Similar to our previous work, including 
sensor data improved the predictions of discharge ambulation 
compared to a benchmark model. 16 This finding was 
repeatable across the 2 studies despite using different 
modeling approaches and algorithms (random forest vs L1-
penalized logistic regression). A streamlined PI + IMU10MWT 
model improved the ambulation predictions by 19.6% over 
the benchmark performance, achieving an 84.4% accuracy 
to predict the community/household ambulators based on 
the 10MWT score. A comprehensive PI + FA + IMU10MWT 
model performed similarly to the benchmark independence 
performance, scoring an accuracy of 68.8% to classify 
high/low independence based on the FIM motor subscore. A 
streamlined PI + IMU10MWT model improved the benchmark 
risk-of-falling performance by 23.4%, achieving a 65.9% 
accuracy to classify the normal/high risk based on the BBS 
score. Most misclassifications occurred when patients had 
admission or discharge scores near the class boundary (Figs. 3 
and 5C). 

For patients who were nonambulatory at admission, incor-
porating the IMU data from simple balance tasks added less 
value to predicting discharge ambulation function. The com-
prehensive models were as accurate as the benchmark models 
for independence and risk of falling outcomes, with lower 
log-loss values indicating less uncertainty due to better con-
vergence between prediction probabilities and actual classes. 
Interpretation of the nonambulatory models is challenging, 

given the small, imbalanced sample size and similar discharge 
outcomes for these patients, which likely limited the model’s 
ability to learn from the available nonambulatory patient 
data. 

A growing body of research focuses on development and 
testing early prediction tools after stroke. Stinear et al8 

provide a detailed review of models predicting the functional 
and motor-related outcomes, enumerating the strengths and 
limitations of methods published up to 2019. Several previous 
studies have developed predictive models for IRF discharge, 
with most incorporating FAs and therapist evaluations 
obtained at admission.24–26 For example, Bland et al24 use the 
BBS and FIM walk scores at admission to predict ambulation 
at IRF discharge according to the 10MWT, with greater 
sensitivity (91%–94%, household ambulation), but lower 
specificity (60%–65%, community ambulation), compared 
to our findings. We have previously developed sensor-free 
regression models to predict discharge scores using similar PI 
+ FA features and 50 participants from this study with mean 
average errors of 0.3 m/s, 9.5 points, and 7.4 points for the 
10MWT, FIM, and BBS, respectively.9 The TWIST model27 

is another promising approach for predictions outside of the 
IRF setting, utilizing age, BBS, and knee extension grade at 1-
week poststroke to predict independent walking according to 
Functional Ambulation Categories at 4, 6, 9, 16, or 26 weeks 
after stroke, with 83% accuracy across all timepoints. Only, 
recently, has the research community begun investigating 
the predictive value of wearable sensor data for similar
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prognostic applications.14,15 However, the utility of sensor 
data in regression models or long-term outcomes remains 
uncertain. 

Accurately predicting expected posttreatment outcomes 
early in rehabilitation would improve the discharge planning 
for clinicians, patients, families, and insurance companies 
by providing a roadmap of the patient’s care needs after 
leaving the hospital. In this study, sensor features were 
important predictors for individuals discharged with limited 
ambulation ability and high risk of falling, providing 
quantitative measures of movement symmetry (eg, the 
skewness) and repeatability (eg, sample entropy) for treatment 
monitoring.9,28,29 Sensor models could replace or reduce the 
reliance on FA scores, as less time is needed to collect the data. 
Consumer-grade devices and an about 5-minute sequence 
of simple physical activities (brief walking bout, standing, 
stand-to-sit, sitting, and sit-to-stand) would enable quicker 
and more frequent evaluations than the longer and more 
complex standardized FAs. The assessments considered in this 
study (10MWT, 6MWT, BBS, TUG, and FIM) are typically 
collected during IRF admission in the USA for clinical 
evaluation and insurance reporting. However, completing 
these assessments upon admission can be challenging due 
to time limitations during intake/treatment and varied patient 
impairments, including fatigability and physical or cognitive 
deficits. 

Our results should be considered in context of previous 
findings for clinical machine learning models—namely that 
appropriate choices of target population,15 activities,14 sensor 
modalities,14 and prediction outcomes5 are paramount to 
design a successful model.6 For instance, in the case of patients 
were ambulatory, IMU data from the 10MWT and BBS 
were less impactful for predicting discharge independence, 
as defined by the FIM motor subscore. This is unsurprising, 
considering that FIM motor assessment evaluates a breadth 
of functional activities—including walking, stair climbing, 
transfers, dressing, bathing, grooming, toileting, and bowel or 
bladder management—and some of these activities may not 
be well characterized by gait or balance movements at IRF 
admission. Sensor features from other physical activities may 
better capture biomarkers of motor independence according 
to the FIM. Similarly, predictions for patients who were 
nonambulatory did not significantly benefit from sensor data, 
revealing the need for alternative modeling approaches for 
patients with severe gait impairment. 

Limitations 
The number of incorrect predictions is a primary limitation of 
the models presented in this study. Indeed, a naive model pre-
dicting no change in the outcome classification from admis-
sion to discharge would generally perform well for this study 
sample since only a fraction of the patients changed classes 
in our study (ie, 9%–50% of patients who were ambulatory, 
or 0%–25% of patients who were nonambulatory patients, 
depending on the outcome). However, such a model will 
always fail to identify individuals who improved functional 
classes, who are arguably the most difficult and clinically 
meaningful cases to predict. By contrast, our models could 
identify some individuals who improved in the independence 
(10 out of 16) and risk of falling (5 out of 8) functional 
classes. The small and unbalanced populations in our single-
site study may limit the sensitivity, generalizability, and utility 
of the proposed models, with a potential risk of overfitting 
in these high-dimensional feature sets. Larger sample sizes, 

particularly for patients who are nonambulatory at admis-
sion and achieve heterogenous discharge outcomes, will be 
crucial to further train and validate sensor-based prediction 
models. 

Future work should also investigate sensor regression mod-
els that predict continuous outcome scores at discharge rather 
than classification models that predict categories based on 
a cut-off score. Regression models may offer greater clini-
cal utility by removing reliance on predefined classification 
boundaries and providing higher-resolution discharge predic-
tions, though possibly with greater sensitivity to error.6,14 

Alternative clinical outcomes (eg, Fugl-Meyer Assessment), 
sensor placements (eg, upper limbs), and functional abilities 
(eg, endurance) should also be considered in these models for 
various clinical applications. 

We did not evaluate other machine learning algorithms, 
which may outperform L1-penalized logistic regression. 
Rather, we sought to understand the relative value of 
sensor data using a single, well-performing and inter-
pretable algorithm for each of these outcomes and patient 
groups. Alternative algorithms and extended hyperparameter 
tuning could improve the prediction performance shown 
here. 

A potential disadvantage of models trained to predict 
outcomes at hospital discharge is the use of hospital- and 
care-specific data. Because treatment strategies and patient 
characteristics can vary nationally and internationally, a 
model trained using data from one location may not generalize 
to others. For example, the PREP2 model13,30—which 
demonstrated 75% accuracy in New Zealand for categorizing 
3-month upper limb function after 1-week poststroke— 
had drastically lower accuracy for patients in the USA and 
Europe.28,29 This highlights the necessity for additional 
testing and external validation to determine whether site-
specific training data are essential for prediction models, or 
whether combined training data from multiple sites would 
broaden the generalization across IRFs. 

Conclusions 
This study affirms that motion-based measures from wear-
able sensors can be beneficial for predicting certain patient 
outcomes following acute poststroke rehabilitation. We have 
highlighted the potential and open challenges of moving these 
machine learning algorithms into clinical practice to inform 
tailored and effective rehabilitation therapies. While sensor-
based models may increase predictive performance, additional 
research is needed to refine and validate these models for new 
patients and IRF settings. 
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