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The human body generates various forms of subtle, broadband 
acousto-mechanical signals that contain information on cardiorespiratory 
and gastrointestinal health with potential application for continuous 
physiological monitoring. Existing device options, ranging from digital 
stethoscopes to inertial measurement units, offer useful capabilities but 
have disadvantages such as restricted measurement locations that prevent 
continuous, longitudinal tracking and that constrain their use to controlled 
environments. Here we present a wireless, broadband acousto-mechanical 
sensing network that circumvents these limitations and provides information 
on processes including slow movements within the body, digestive activity, 
respiratory sounds and cardiac cycles, all with clinical grade accuracy and 
independent of artifacts from ambient sounds. This system can also perform 
spatiotemporal mapping of the dynamics of gastrointestinal processes  
and airflow into and out of the lungs. To demonstrate the capabilities of  
this system we used it to monitor constrained respiratory airflow and 
intestinal motility in neonates in the neonatal intensive care unit (n = 15), 
and to assess regional lung function in patients undergoing thoracic surgery 
(n = 55). This broadband acousto-mechanical sensing system holds the 
potential to help m it ig ate c ar di or es pi ratory instability and manage disease 
progression in patients through continuous monitoring of physiological 
signals, in both the clinical and nonclinical setting.

In 2020, cardiovascular and respiratory diseases were responsible 
for over 796,000 deaths in the United States, making them the first 
and third leading causes of death, respectively, in adults, according 
to the Centers for Disease Control and Prevention1. In children and 

neonates, cardiorespiratory and gastrointestinal problems are major 
causes of death during the first 5 years of life2. The use of continuous 
monitoring systems can help guide clinical decisions and improve 
outcomes3–6. Current hospital systems continue, however, to rely on 
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care units (NICUs) to patients with chronic lung diseases in the outpa-
tient clinic or in the intensive care unit, and to patients following lung 
resection, as demonstrated in the following sections. The picture in 
Fig. 1b shows a BAMS device on a neonate model positioned for cardi-
orespiratory monitoring. A real-time graphical user interface displays 
quantitative information on body movements and a spectrogram of 
body sounds at 100-ms intervals, thereby capturing parameters such as 
body orientations and physical activities, along with sound intensities 
and frequencies associated with both the body and ambient sounds. 
Data communication exploits standard Bluetooth low-energy (BLE) 
protocols.

Figure 1c depicts an exploded-view illustration of a BAMS device 
that incorporates an inertial measurement unit (IMU; LSM6DSL, 
STMicroelectronics), a pair of microphones (ICS-40180, TDK)—one 
body-facing (toward the body) and the other ambient-facing (toward 
the surroundings)—a BLE system on a chip (SoC; ISP-1807, Insight SIP), 
a 2-GB flash memory (MT29F2G, Micron) and a wireless-charging 
antenna, all mounted on a flexible printed circuit board. The BAMS 
system achieves broadband operation by combining an IMU and a 
pair of microphones with an analog-to-digital converter with high 
sampling rate, thereby enabling detection of signals across a wide 
frequency range, from measurements of body orientation (fraction of 
a hertz, ∼0.01 Hz) to body sounds (∼500 Hz). The three-axis accelera-
tion data captured by the IMU relate to body orientation (∼0 Hz), body 
motion (∼1 Hz) and physical activity (∼20 Hz) without interference 
from ambient sounds4,18–20. The IMU lacks, however, the sensitivity 
required to measure subtle body sounds such as those associated 
with detailed features of respiratory and cardiac activity and bowel 
movements. In contrast, the microphone system exhibits high sen-
sitivity in the frequency range 20 Hz to 20 kHz, making it efficient 
for capturing even weak body sounds up to frequencies limited by 
the analog-to-digital converter in the BLE SoC (∼20 kHz samples s–1). 
An advanced capability of the technology reported here lies in the 
high-fidelity measurements of body sounds achieved through the 
integration of a pair of opposing microphones. These body- and 
ambient-facing microphones allow selective measurements of body 
and ambient sounds, using algorithms described below. The spectral 
and temporal characteristics of body sounds, without the confound-
ing effects of ambient sounds, provide insights into essential activities 
associated with respiration, digestion, subaudible vocalizations and 
cardiac cycles as the basis of diverse, clinically actionable information 
for patient care (Fig. 1d). Separate measurements of ambient sounds 
provide essential circumstantial information that can be important in 
clinical decision making. The IMU and microphone sensors exhibit sta-
ble performance with deviations of 0.1 and 0.4%, respectively, within 
the typical body temperature range of 32–40 °C. This stability enables 
reliable and consistent use in various clinical cases (Supplementary 
Fig. 1). Real-time data analytics on the time-series data related to body 
sounds enable detection of risk events ranging from tachycardia 
and bradycardia to severe wheezing/coughing, apneic events and 
digestive abnormalities. A light-emitting diode encapsulated within 
the device structure can be activated based on threshold settings to 
serve as an alarm to caregivers, in addition to providing warnings and 
phone calls that can be initiated through the user interface (Extended 
Data Fig. 1).

Figure 1e shows the results of cardiorespiratory monitoring 
using a US Food and Drug Administration (FDA)-approved electro-
cardiographic (ECG) device and a monitoring system for exhaled 
CO2, together with the output of a single BAMS device located at the 
suprasternal notch of a 19-month-old infant. High-pass (fcut-high = 150 Hz) 
and low-pass (fcut-low = 150 Hz) filtering applied to the microphone data 
isolate the sounds of respiratory and cardiac activity, respectively. Pass-
ing the acceleration data through a bandpass filter (fbandpass = 0.1–1 Hz) 
yields signals related to movements of the chest. The results exhibit 
strong correlations between chest movements, respiratory sound 

a variety of sensors, wires and cables connected to bedside monitors. 
Fortunately, advances in bioengineering are leading to the develop-
ment of broad classes of wireless, skin-interfaced sensors to address 
these limitations, with easy installation and use in the simultaneous 
acquisition of multiple classes of signal3,7–9.

Assessments of cardiac, respiratory and gastrointestinal sounds 
represent important parts of routine care, because changes in, or 
absences of, body sounds can represent signs of disease. Digital 
stethoscopes, including some recently reported in wearable designs, 
can provide complementary information on cardiac activity, airway 
obstruction, adventitious lung sounds and intestinal motility10–17. These 
technologies cannot, however, be used effectively for continuous 
monitoring of those sounds during routine activities due to limitations 
that include some or all of the following: (1) rigid and bulky engineering 
designs; (2) inability to support time-synchronized operation across 
multiple locations of the body; (3) susceptibility to confounding effects 
of ambient sounds; and (4) sensitivity to noise generated by movements 
and physical contact. As a result, the clinical use of body sounds for 
health monitoring occurs typically through episodic measurements, 
with few examples of applications outside of the hospital.

This paper introduces wireless, skin-interfaced broadband 
acousto-mechanical sensing (BAMS) systems capable of capturing 
a wide spectrum of signals, from high-frequency body sounds (up to 
frequencies of ∼1 kHz) to slow body movements (fraction of a hertz, 
∼0.01 Hz), with capabilities for simultaneous, time-synchronized 
measurements at several body locations. BAMS systems have several 
key features that enable practical use in both the hospital and home 
environment. First, the devices include capabilities for separate, 
simultaneous recordings of sounds from internal body processes 
and the external environment because sound is captured using an 
integrated pair of opposing microphones and interpreted with asso-
ciated signal-processing algorithms. Second, the small size, light-
weight construction, soft mechanical properties and gentle adhesive 
interfaces allow for measurements from nearly any location of the 
body and across broad ranges of patients, from premature infants 
to elderly individuals. Additionally, time-synchronized networks of 
these sensors, coupled with real-time monitoring technology, allow 
for quantitative, continuous tracking of essential body sounds ranging 
from multiple aspects of cardiorespiratory function, gastrointestinal 
activity, swallowing and respiration and spatially mapped dynamic 
properties of airflow into and out of the lungs. Here we report the 
successful deployment of these BAMS systems in monitoring and 
providing clinical data for premature infants in neonatal intensive 
care units (15 neonates) and adult patients (55 participants) in the 
thoracic surgery clinic. The following describes the detailed engineer-
ing aspects of these technology platforms, quantifies their various 
measurement capabilities and, where possible, compares the results 
to state-of-the-art, clinically approved technologies.

Results
The BAMS network system
Figure 1a illustrates three clinically relevant applications of the  
BAMS network system where recordings capture sounds and  
physical motions across a frequency range from 1 kHz to near 0 Hz. 
Gentle adherence of a single device at the suprasternal notch allows 
for simultaneous measurement of cardiac and respiratory sounds, 
providing continuous monitoring of cardiorespiratory activity (Fig. 1a,  
left). Time-synchronized devices placed on the abdomen enable 
spatio temporal monitoring of gastrointestinal sounds for tracking 
the progress of digestion (Fig. 1a, middle). An advanced implementation 
involves 13 wirelessly time-synchronized devices placed at targeted 
sites across the anterior and posterior chest for regional monitoring 
of pulmonary health, rehabilitation and disease progression (Fig. 1a, 
right). The applicability of this technology spans across nearly any 
type of patient and age, from premature babies in neonatal intensive 
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intensities and exhaled CO2 levels, signifying respirations. Also, the 
S1 and S2 features associated with cardiac sounds align with the R and 
T peaks of the ECG data, as expected. Supplementary Table 1 presents 
a comparison of data collected using the BAMS device with both a 
recently reported wearable stethoscope and a commercial stethoscope 
(3M Littmann CORE, Eko)14,21–25. The BAMS system is much smaller 
(240 times smaller in volume) and lighter (21 times lower in weight) 
than this commercial stethoscope, thereby allowing for continuous, 
hands-free monitoring. The soft and flexible mechanical properties 

of the BAMS system, the ability to record separate measurements of 
body and ambient sounds and the capacity for time-synchronized 
operation across a wireless network of devices represent additional 
distinguishing features. Additionally, the low power consumption of 
the BAMS system (in standby mode, 0.036 mA at 3.7 V; in active mode, 
2.8 mA at 3.7 V) allows for extended periods of continuous monitoring 
lasting up to 29 h. Furthermore, the system features a wireless scheme 
that enables charging of a fully depleted battery to its full state in 
approximately 4 h (Supplementary Fig. 2).
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Fig. 1 | Wireless networks of skin-interfaced miniaturized sensors of 
body sounds and motion for continuous physiological monitoring 
and diagnostics. a, Schematic illustration of our system for tracking 
cardiorespiratory activity, gastrointestinal sounds and multilocation respiratory 
sounds. b, Photograph of a BAMS device on a neonatal model. Inset, the 
associated real-time graphical user interface. c, Schematic exploded-view 
illustration of a BAMS device. d, Block diagram of the physiological monitoring 
scheme that combines an IMU with both body- and ambient-facing microphones 

(mic.). accel., acceleration. e, Comparison of clinical results obtained with a 
BAMS device (chest wall movements, gray trace; respiratory sounds, red trace; 
cardiac sounds, blue trace) with standard clinical systems for ECG monitoring 
(purple trace) and exhaled CO2 tracing (green trace), from a 19-month-old patient 
in the pediatric intensive care unit. The blue area in both cardiac sounds and ECG 
signal represents the respective positions of the S1 peak in the former and the 
R peak in the latter, while the red area represents the positions of peaks S2 and T, 
respectively. a.u., arbitrary units.
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Adaptive algorithms for sound separation
As mentioned above, the body- and ambient-facing microphones cap-
ture sound information from two directions to enable differential detec-
tion of sounds from the body and its surroundings (Fig. 2a). A two-step 
adaptive filtering algorithm applied to the data recorded by these two 
microphones minimizes the contribution of ambient sounds to body 
sounds (Extended Data Fig. 2), and vice versa26. As an example, without 
this scheme, environments with crying sounds at 90 dB render detection 
of cardiopulmonary sounds impossible (Fig. 2b, left). Sound separa-
tion resolves this difficulty, as illustrated in spectrogram representa-
tions of data in Fig. 2b (right) for cardiopulmonary sounds and in audio 
reconstructions of data in Supplementary Video 1. Without separation, 

the presence of 90-dB white noise, comparable to the sounds of a cry-
ing baby or subway noise, decreases the signal-to-noise ratio (SNR) of 
respiratory and cardiac sounds by >60% and nearly 50%, respectively 
(Extended Data Fig. 3); separation reduces this decrease to only 2 and 4%, 
respectively. This level of performance surpasses the 12 and 15% reduc-
tion, respectively, associated with the most widely used commercial 
digital stethoscope (3M Littmann CORE, Eko), which relies on a thick 
diaphragm and conventional active scheme for noise cancellation. In an 
environment with 90 dB of white noise, the sound-separated cardiac fea-
tures extracted from the dual-microphone setup and seismocardiogram 
data captured by the IMU exhibited SNR values of 20 and 12 dB, respec-
tively, in the case of a device mounted on the suprasternal notch. Both 
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Fig. 2 | Characterization of individual BAMS systems and wireless 
networks for cardiorespiratory monitoring. a, Schematic illustration of the 
system for sound separation using a two-microphone setup. b, Examples of 
cardiorespiratory sounds from a healthy participant, captured in an ambient 
environment with white noise and with crying sounds at 90 dB. Shown are 
time-series data from the body- and ambient-facing microphones (top left), 
a spectrogram representation of time-series data from the body-facing 
microphone (bottom left) and corresponding results following two-step 
adaptive filtering (top and bottom right). Freq., frequency. c, Schematic 
illustration of body locations for cardiorespiratory monitoring. d, Example of a 

spectrogram of sounds from a healthy participant, collected on the suprasternal 
notch (SN), upper chest (UC) and lower chest (LC). e, Normalized data for chest 
wall movements of a healthy participant, extracted from the IMU of the device 
on the suprasternal notch, and sound intensity associated with respiration 
(respiratory sounds >150 Hz) at each location. f, Normalized ECG data and sound 
intensity, for a healthy participant, associated with cardiac activity (cardiac 
sounds <150 Hz) at each location. g, Comparison of heart rate interval between 
ECG and cardiac sounds of a healthy participant, derived from the microphone 
during a 2-min rest (2-min cycle exercise then 4-min rest). h, Cardiac sound 
intensity of a healthy participant while resting and exercising.
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results indicate negligible confounding effects of ambient sound (Sup-
plementary Fig. 3). Application of the same separation algorithm to data 
from the ambient-facing microphone using data from the body-facing 
microphone yields sounds in the environment, with complementary 
value in understanding the context of patient care (Supplementary 
Fig. 4). This system can also be used in daily life scenarios where com-
prehensive monitoring of not only standard parameters such as heart 
rate and respiratory rate are possible, but also of autonomic measures 
including heart rate variability (HRV), cardiorespiratory coupling and 
swallowing, all with simultaneous measurements of body orientation 
and physical activity enabled by the IMU (Extended Data Fig. 4 and 
Supplementary Fig. 5). Moreover, the system operates well across vari-
ous activities, encompassing sleep to exercise, providing high-quality 
data on physical activity levels, respiratory rate, respiratory sounds 
(frequency and intensity), heart rate and cardiac sound intensity over 
extended periods of time (Extended Data Fig. 5). The data collected dur-
ing sleep also reveal patterns of snoring. Even during intense physical  
activity, the recordings allow for stable monitoring of respiratory  
and cardiac sounds. One shortcoming of these algorithms is in their 
inability to completely remove artifacts resulting from physical contact 
with the devices. Nevertheless the overall versatility and reliability of 
the system make it a promising tool for continuous and comprehensive 
health monitoring in diverse real-life situations (Supplementary Fig. 6).

Cardiorespiratory sounds with time-synchronized networks
Multiple devices can be operated simultaneously as the basis for spatial 
mapping of body sounds from different anatomical locations. For example,  
high-frequency tracheal and low-frequency vesicular sounds can be 
captured by recording from the suprasternal notch and chest area, 
respectively (Fig. 2d). Reduced speeds of airflow and increased move-
ments of the lower chest wall lead to decreased intensity of respiratory 
sounds, defined as cumulative power spectral density >150 Hz following 
short-time Fourier transform (STFT) (Fig. 2e). The intensities of S1 car-
diac sounds are higher than those of S2 on the lower chest, at locations 
close to the tricuspid and mitral valves of the heart. Conversely, the  
intensities of S2 sounds generated by the pulmonic and aortic valves 
are higher than those of S1 on the suprasternal notch (Fig. 2f). The S1 
sound appears clearly in data from the lower chest, even during and after 
exercise, despite short R–R intervals (363 ms, heart rate 165 beats min–1 
(bpm)). These intervals and the heart rates determined from the micro-
phone data match those extracted from ECG recordings, with an aver-
age error of 0.2 ms and 0.02 bpm, thereby establishing the capacity for 
reliable measurement of HRV (Fig. 2g and Supplementary Fig. 7). These 
results are within the regulatory guidelines set by the US FDA (errors 
<±10% or ±5 bpm for heart rate). The Bland–Altman plot quantitatively 
compares the root mean square of continuous difference between car-
diac cycles for HRV27. The average difference and standard deviation 
between root mean square of continuous difference values extracted 
from BAMS and ECG waveforms are 0.2 and 0.5 ms, respectively (Supple-
mentary Fig. 8). Furthermore, the intensity of cardiac sounds, as depicted 
in Fig. 2h, increase during exercise. These sounds have the potential  
to correlate with blood pressure because they occur when a moving 
column of blood comes to a sudden stop or decelerates significantly. 
Comparison of the results from a blood pressure monitor (Finapres 
NOVA) with cardiac sound intensity reveal a high correlation trend 
(Supplementary Fig. 9), with Pearson’s correlation coefficient = 0.83. 
The low-frequency nature of cardiac sounds (<150 Hz) provides clean 
separation from those associated with vocalization, enabling accurate 
cardiac activity monitoring in daily life scenarios such as exercising, walk-
ing and speaking, following sound separation (Supplementary Fig. 10).

Continuous monitoring of ambient and respiratory sounds in 
the NICU
Premature infants in the NICU are at risk of cardiorespiratory instability 
due to immature respiratory control centers and respiratory airflow 

obstruction, which typically manifest as central or obstructive apneas 
with fluctuations in heart rate and/or oxygen saturation28–30. Noise 
in the environment can further adversely affect these physiological 
responses, and excessive auditory stimulation can lead to additional 
risks of hearing loss and abnormal sensory responses31. As a result, 
continuous monitoring of both cardiopulmonary activity and noise 
characteristics local to the infant are important. Traditional methods 
for detection of airway obstruction, such as pneumotachography 
(pneumotach), capnography, nasal pressure or temperature meas-
urements, are nonideal for continuous use due to (1) their bulky wired 
designs, (2) their sensitivity to artifacts associated with movements 
and basic operations in clinical care and (3) their incompatibility with 
nasal interfaces commonly used to provide noninvasive respiratory 
support in these infants. Additionally, levels of noise in the NICU room 
are seldom characterized or monitored. The technology introduced 
here addresses these shortcomings in a manner that is compatible with 
standard care practices.

Figure 3a highlights an example of the results of monitoring res-
piration from premature infants in an academic NICU. Figure 3b shows 
data from a pneumotach module, with simultaneous chest movements 
and sound recordings from a BAMS device on the suprasternal notch. 
Clear cardiac and respiratory signals appear in the spectrogram below 
and above 150 Hz, respectively. The pneumotach module detects ade-
quate and reduced airflows, consistent with sound intensities observed 
in the spectrogram. Segments of absent airflow appear in both body 
sound and pneumotach measurements. Importantly, these periods 
of airflow obstruction are not consistently accompanied by absent 
movements of the chest. Several physiological reasons can explain 
these discrepancies. First, measurements of chest movements using 
accelerometry can be susceptible to noise caused by body motion. As a 
result, the amplitude of the chest movement signal does not necessar-
ily equate with an equivalent and proportional change in lung volume 
during inspiration and expiration. Second, neonates are at risk of chest 
wall distortion due to their highly compliant chest wall. As a result, a 
rise in the chest movement signal indicates the presence of a respira-
tory effort but may not correlate with the degree of flow during that 
breath. Third, during brief periods of airflow limitation due to upper 
airway obstruction, infants continue to make respiratory efforts. For 
all those reasons, the magnitude of airflow and chest movement signals 
may not always correspond.

Figure 3c summarizes representative BAMS data from an 
in-NICU neonate, including ambient noise, body orientation, heart 
rate and respiratory rate, in comparison with readings obtained 
from FDA-approved clinical monitors (Supplementary Fig. 11). Both 
breathing interval and sound intensity, as determined by the BAMS 
device, correlate with pauses in breathing and breathing airflow rate. 
Supplementary Fig. 12 compares respiratory rates determined using 
pneumotach and body sounds for ten in-NICU neonates. The average 
difference and standard deviation of the respiratory rates were 0.44 and 
2.13 bpm, respectively, a result lying within the range of FDA-cleared 
bedside monitoring systems (±3 bpm). The data for normalized airflow 
rates and respiratory sound intensities of ten in-NICU newborns show a 
Pearson’s correlation value of 0.87 (Fig. 3d). Our findings reveal a high 
level of correlation values compared with those reported in previous 
studies (Supplementary Table 2). Additionally, Fig. 3e,f shows the 
distribution of breathing intervals and respiratory sound intensities 
of ten neonates over 500 s, showcasing the expected inter- and intra-
variability in respiratory rates and airflow. Furthermore, the BAMS 
device reliably monitors respiratory sounds, heart rates and other 
physiological parameters over a prolonged period (3 h) in a cohort of 
five in-NICU neonates. The difference in heart rate determined using 
cardiac sounds and ECG waveforms is 0.015 bpm, with a standard 
deviation of 0.85 bpm (Extended Data Fig. 6). Respiratory sounds align 
well with chest movements, and also with data from respiratory induct-
ance plethysmography and nasal temperature (Extended Data Fig. 7). 
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physiological parameters from neonates in a NICU. a, Photograph of BAMS 
device used on a neonate (born at 30-weeks gestation, 33-weeks postmenstrual 
age and weighing 1.56 kg). b, Representative respiration waveforms during 
different respiratory airflow conditions (adequate, restricted and no airflow) 
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and acoustic spectrograms) from a neonate. c, Ambient noise level, body 
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a BAMS system and FDA-approved clinical monitors from a neonate. d, Plot 
showing the correlation between normalized intensity of pneumotach data 
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and 100 data points for neonate nos. 1–10, respectively). e,f, Box plots showing 
breathing intervals (e) and respiratory sound intensity (f) recorded from ten 
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and midline indicates the median of each dataset.
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The difference in respiratory rate determined by respiratory sounds 
and nasal temperature data is 0.06 bpm, with a standard deviation 
of 1.92 bpm (Extended Data Fig. 8). Moreover, the capabilities of the 
system can be extended by mounting two devices with time synchroni-
zation—one at the suprasternal notch and the other at the right upper 
chest—to investigate the movement of air through the trachea and the 
percentage of air transmitted to the lungs (Supplementary Fig. 13).

Spatiotemporal tracking of bowel sounds in the NICU
Sounds that result from the movement of food, gas and fluids during 
intestinal peristalsis provide valuable information on gastrointesti-
nal health, of particular importance in the care of newborns in the 
NICU32,33. Tracking these bowel sounds can aid in diagnosis of intestinal 
motility disorders34–36. Our studies indicate a correlation between 
bowel sounds recorded by BAMS devices and electromyography 
signals from an adult’s abdomen (Supplementary Fig. 14). Intestinal 
motility and its associated muscular contractions in the intestines lead 
to simultaneous bowel sounds and corresponding electromyography 
signals. Furthermore, the unique capabilities of time-synchronized 
networks of BAMS devices allow for long-term continuous monitor-
ing of gastrointestinal sounds, which holds significant promise for 
studying and understanding the dynamics of intestinal peristalsis 
over extended periods.

Figure 4a displays such a system, attached to the right upper and 
left lower abdomen of an infant. Figure 4b,c shows spectrograms and 
sound intensities recorded from the right upper abdomen before and 
after feeding, respectively. The data-processing flow presented in Sup-
plementary Fig. 15 identifies peaks in sound intensity that exceeded 
a certain threshold when accelerations associated with motion are 
<0.1g, to eliminate artifacts that can arise from physical contact with 
the device. The trends in normalized intensity and bowel sound peak 
counts captured from the right and left abdomen are shown in Fig. 4d. 
The difference in normalized intensities yields spatiotemporal infor-
mation related to intestinal motility. The number of peaks in bowel 
sounds from three infants increases, from an average of five to 21 min–1, 
before and after feeding, respectively (Fig. 4e). The average intensity 
in the right upper abdomen is 27.5 dB before feeding and 36.9 dB after 
(Fig. 4f). Post feeding, peaks are distributed mainly in the right upper 
quadrant of the abdomen for the first 15 min and then largely migrate 
to the left lower quadrant of the abdomen for the next 15 min (Fig. 4g). 
These results align with expectations based on measurements of adult 
bowel sounds using standard wire-based systems34.

High-resolution, spatiotemporal mapping of lung
Strategies for wireless, time-synchronized operation of BAMS devices 
enable measurements with an average timing difference of 0.2 ms and 
standard deviation of 6 ms (Supplementary Fig. 16). This feature can be 
exploited to capture the distribution of lung sounds and body motions 
at many anatomical locations simultaneously so that the same breath 
may be analyzed across a range of lung regions. The results can enhance 
diagnosis and monitoring of various lung pathologies. The follow-
ing pilot study utilizes 13 BAMS devices mounted on the anterior and 
posterior chest of 20 healthy participants and 35 patients with chronic 
lung disease, as depicted in Supplementary Fig. 17. Figure 5a and Sup-
plementary Fig. 18 display computed tomography (CT) images of the 
lungs of a healthy participant (patient A) alongside spectrograms of 
sounds >150 Hz captured by the BAMS devices during inhalation and 
exhalation. Figure 5b and Supplementary Fig. 19 display corresponding 
results for a patient with chronic lung disease (radiation pneumonitis 
and fibrosis) and who, additionally, had undergone resection of their 
right upper lung lobe, part of their left upper lung lobe and right lower 
lung lobe (patient B). Data from patient A exhibit similar distributions 
of chest wall movement, maximum sound intensities and sound fre-
quencies for the left and right sides of the body (Fig. 5c). The decrease 
in frequencies and intensities of sounds from the lower chest result 

from physiologically reduced rates of airflow and increased thickness 
of the chest wall.

Similar measurements performed on patients with chronic lung 
diseases and on patients who had undergone surgical lung resections 
reflect their condition. Patient B, with a history of resection surgery of 
the right upper and lower lobes and left upper lobe, shows decreased 
pulmonary function in the removed lobes, resulting in reduced airflow 
rates and lower sound intensity in the corresponding mapping (Fig. 5d, 
middle). Additionally, patient B’s condition, with right peripheral pleu-
roparenchymal fibrosis, exhibits high-frequency and crackle sounds 
in the right lung, as seen in Fig. 5d (right) and Supplementary Fig. 20.

Figure 6 presents a comparative analysis of data obtained from 
healthy participants and patients with chronic lung diseases. This 
analysis highlights the significance of airflow rate, airflow volume 
and sound frequency in the diagnosis of obstructive and restrictive 
lung diseases. The results rely on data from BAMS devices mounted 
on the suprasternal notch and upper and lower posterior regions of 
the chest, along with separate measurements of nasal airflow rate and 
flow volume using a peak flow meter. During exhalation the airflow rate 
corresponds to the maximum sound intensity of cumulative power 
spectral density at 150 Hz and above. An additional parameter, sound 
energy, can be calculated by integration of sound intensity over time 
for comparison with nasal airflow volume (Supplementary Fig. 21). 
Figure 6a shows a correlation between sound intensity measured at 
different locations (suprasternal notch, upper posterior and lower 
posterior thorax) and nasal airflow rate for ten healthy participants. 
Pearson’s correlation values between sound intensity and nasal airflow 
rate are 0.73, 0.79 and 0.75 at the suprasternal notch and upper and  
lower posterior positions, respectively. Similarly, correlation values 
between sound energy and nasal airflow volume are 0.71, 0.76 and 0.75 
at these corresponding locations (Fig. 6b). Figure 6c illustrates the 
dominant frequency distribution of lung sounds in healthy participants 
at each location. This information is relevant in monitoring obstruction 
and airway conditions in patients with heterogeneous lung disease 
states. Specifically, as a marker of both airflow and volume, these 
parameters can assist with tracking of disease progression or response 
to treatment in patients with chronic lung diseases. Estimation of 
airflow rate and air volume can, additionally, facilitate monitoring  
of the Tiffeneau–Pinelli index, with the potential for daily monitoring 
of restrictive pulmonary diseases.

Figure 6d,f shows sound intensity measured at the supraster-
nal notch and the ratio of intensities from the left and right upper 
anterior chest for healthy participants, for patients with chronic lung 
diseases and no lung resections and for patients with right upper lobe 
or left upper lobe resection. Healthy participants exhibit higher sound 
intensity at the suprasternal notch than patients with chronic lung 
diseases, with an average intensity of 54 dB. In contrast, patients with 
chronic lung disease and no lung resections, those with left upper lung 
resections and those with right upper lung resections have average 
intensities of 38, 30 and 36 dB, respectively. Moreover, average sound 
intensity ratios (left upper lung sound intensity/right upper lung sound 
intensity) were 0.98, 1.01, 0.78 and 1.5, respectively, consistent with a 
reduction in sound intensities at the locations of resected lung tissues. 
Variations in this ratio exceed those attributable to uncertainties in 
attachment position, as depicted in Supplementary Fig. 22. Figure 6e,f  
compares the dominant expiratory frequency of the right upper pos-
terior lung between healthy participants and those with chronic lung 
disease; the latter group exhibits an average frequency of 256 Hz. 
Healthy participants show frequencies of 219 Hz, distinguishing them 
from patients (P < 0.05). The onset of lung disease increases airway 
restrictions, thereby increasing the dominant sound frequency. Fur-
thermore, sound intensity and frequency analyses conducted at diverse 
locations of the upper, middle and lower lobes of the lungs reveal 
marked differences between healthy participants and patients with 
chronic lung diseases, as presented in Supplementary Figs. 23 and 24.
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Discussion
The present study introduces a technology designed for simultaneous 
measurement of body movements and sounds as a reliable source of 
physiological signals, with applicability both in the hospital and at 
home. Demonstration examples span from neonates with respiratory 

and digestive disorders in the NICU, to adult patients with lung disease 
in pulmonology clinics and to patients in the thoracic surgery clinic. 
Various characterization studies and performance-benchmarking 
measurements confirm the accuracy of the system and the uniqueness 
of its operational capabilities. The combination of two-microphone 
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design, sound-separation algorithms, broadband capabilities, 
time-synchronized operation of networks of devices and small, 
skin-compatible form create a broad range of unique possibilities in 
patient monitoring that deserve evaluation.

In the NICU, assessment of respiratory, cardiac and gastrointes-
tinal sounds is an integral part of every aspect of nursing and medi-
cal care provided to all patients. The incorporation of BAMS devices  
into clinical practice offers the potential for continuous monitoring  
of these body sounds, facilitating decreased patient handling,  
reduced exposure to external vectors of infection and timely feed-
back in cases of physiological alterations37–40. When placed at the 
suprasternal notch, the BAMS device can detect both airflow and chest 
movements which, in combination, allow for the identification and 
classification of all apnea subtypes. Indeed, apneas are ubiquitous in 

preterm infants and are a leading cause of in-hospital morbidities and 
prolonged NICU hospitalization yet cannot be accurately distinguished 
in terms of subtype using current monitoring standards. As such, 
enhanced apnea detection and classification in this population may 
lead to more targeted and personalized management approaches, 
improved patient outcomes and reduction in both length of hospitali-
zation and costs. In addition, the BAMS system may aid in quantifying 
the degree of airflow obstruction in at-risk term neonates, such as 
infants with severe hypotonia (for example, trisomy 18, Prader–Willi 
Syndrome) and congenital upper airway obstruction (for example, 
Pierre Robin sequence). When placed simultaneously at the right and 
left anterior chest in mechanically ventilated neonates, resulting data 
can provide real-time feedback whenever air entry is diminished on 
one side relative to the other; this may promptly alert the clinician of a 
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potential pathology such as atelectasis, consolidation or pneumotho-
rax, thereby leading to early diagnosis and treatment. When placed at 
different quadrants of the abdomen, reduced bowel sounds may act 
as an early warning sign for impending gastrointestinal complication 
such as bowel dysmotility, obstruction or necrotizing enterocolitis. 
In contrast, increasing bowel sounds may serve as objective markers 
of improved peristalsis and bowel health following gastrointestinal 
surgery, thereby aiding in the decision to resume or progress feeds.

The advanced assessment of lung health presents a significant 
opportunity in this study. Traditional auscultation using a stethoscope 
demands considerable expertise and time, often leading to rushed 
examinations that may result in inaccuracies and delays in provid-
ing appropriate diagnostic workups and treatments41–43. Moreover, 
standard pulmonary function tests offer a single numeric value, assum-
ing equal contribution from all lung regions, a premise disproven in 
chronic lung disease. In contrast, the technology introduced here 
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can be employed either independently or in tandem with pulmonary 
function tests, offering real-time insights into regional lung function 
and disease status. This capability will prove invaluable in postop-
erative management of lung resection, enabling daily monitoring to 
track regional lung recovery and promptly address any complications, 
ultimately elevating the standard of medical care. Additionally, BAMS 
devices serve as a crucial tool in the intensive care unit, assisting provid-
ers in optimization of ventilator settings by providing real-time feed-
back on regional lung ventilation. Given the current lack of portable 
diagnostic tools, the ability to conduct real-time regional lung func-
tion assessments at the bedside is of paramount importance because 
transfer of patients for additional tests can pose risks.

Additional possibilities, examined but not systematically 
explored in the results presented here, include monitoring of swallow-
ing events and respiratory cycles for patients with dysphagia, tracking 
of patterns of speech for patients with dementia and measuring a 
collection of parameters, including HRV, related to cardiorespira-
tory function for patients with diabetes, high blood pressure, cardiac 
arrhythmias, asthma, anxiety and depression. Such measurements 
have the potential not only to enhance clinical decision making but 
also to improve patient comfort and reduce the burden on healthcare 
facilities. The results serve as a foundation for development in the 
field of physiological monitoring, opening up possibilities for the 
future of healthcare.
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Methods
Fabrication of BAMS devices
Each device included five components: a pair of microphones, an IMU, 
flash memory, Bluetooth SoC and hardware for power and wireless 
charging. Locating the first two components on separate islands with 
serpentine traces as interconnects enhanced the mechanical deform-
ability of the system. The ambient- and body-facing microphones (ICS-
40180, TDK) were each connected to an amplifier circuit with 64-fold 
gain and a bandpass filter ranging from 10 Hz to 2 kHz. The amplified 
signal was converted to a 14-bit analog-to-digital converter value at 
a sampling rate of 1 kHz. The IMU (LSM6DSL, STMicroelectronics) 
delivered three-axis acceleration data at a sampling rate of 104 Hz to 
the Bluetooth SoC (ISP-1807, Insight SIP) via serial peripheral interface 
communication protocols. The microphone data at 1 kHz and IMU data 
at 104 Hz were passed into 2-GB flash memory (MT29F2G, Micron) with 
time stamps defined using an internal clock at 16 MHz. By utilization of 
2-GB flash memory we are able to store data in the local memory for up 
to 16 h. For continuous monitoring over periods >16 h we can transfer 
data in real time to an iPad/iPhone placed nearby; local memory can 
then be used for data storage during other times (Supplementary 
Fig. 25). The wireless-charging and power components included a 
charging coil with a resonance frequency of 13.56 MHz, a voltage rec-
tifier, a voltage regulator, a battery charger integrated circuit and a 
3.7-V lithium-polymer battery (110 mAh). Customized firmware was 
uploaded to the Bluetooth SoC using Segger Embedded Studio. A 
silicone elastomer (Silbione-4420) defined an encapsulating structure 
with overall dimensions of 40 × 20 mm², thickness 8 mm and weight 6 g.

Wireless-charging system
Our BAMS system incorporates a wireless-charging scheme that 
operates at a standard radio frequency band of 13.56 MHz and that is 
approved by the Federal Communications Commission for use in indus-
trial, scientific and medical devices. This frequency band was chosen 
for its minimal absorption in living tissues, ensuring the safety and 
wellbeing of the user during charging44. During routine use the BAMS 
device is removed from the body for charging, ensuring a convenient 
and hassle-free charging experience. However, in certain demanding 
situations where continuous monitoring is crucial, such as with infants, 
the device can be considered for charging while still being worn by the 
baby. To assess the safety and efficacy of in situ charging, we conducted 
tests using an infant model and monitored the temperature during an 
8-h charging period using an infrared camera (FLIR ONE pro, FLIR, Inc.). 
The results showed that the temperature difference between the device 
and the ambient environment was consistently maintained within 
0.5 °C throughout the charging process (Supplementary Fig. 26). This 
temperature stability demonstrates the safe and controlled charging 
performance of the BAMS device, ensuring that it remains well within 
the acceptable temperature range for use with infants.

Characterization of body- and ambient-facing microphones
Experiments with white noise (frequencies ranging 20–400 Hz) 
and a commercial sound meter in a soundproof radiofrequency 
room served as the basis for characterization of the performance of  
the microphones. A linear fitting process calibrated the decibels 
of white noise to sound intensity, measured as the integration of  
power spectral density from 20 to 400 Hz associated with STFT of the 
microphone data (Supplementary Fig. 4).

Tests of sound-separation algorithms using two-step adaptive 
filtering involved a BAMS device and a commercial digital stethoscope 
(3M Littmann CORE, Eko) with active noise cancellation mounted on 
a lung sound trainer to produce constant breath and lung sounds. 
Measurements examined the effects of the decibel level of various 
types of noise source. In the presence of 90-dB white noise (frequen-
cies 20–400 Hz), the SNR of respiratory and cardiac sounds captured 
using the commercial digital stethoscope decreased by 12 and 15%, 

respectively; without sound separation in the BAMS device, SNR 
decreased by 62 and 48%, respectively (Extended Data Fig. 3) although, 
with separation, the reduction in SNR was only 2 and 4%, respectively, 
for the BAMS device.

Time-synchronized network system
The scheme for time synchronization between multiple devices 
exploited a master device to broadcast its 16-MHz local clock informa-
tion through radiofrequency signals at 100-ms intervals to slave devices 
with different radiofrequency addresses. Updates to the local clock 
information of the slave devices used the clock information received 
from the master. This clock information was also passed to the mobile 
device for storage in memory with the coordinated universal time.

Characterization of the accuracy of this scheme involved moni-
toring peak delay among 13 devices exposed to sound swept from 
500 Hz to 1 kHz sourced from a vibration generator at a speed of 
5 Hz s–1. Cross-correlation of time-series sound data defined time 
delays between each device. The results showed an average timing 
difference of 0.2 ms and a standard deviation of 6 ms (Supplementary 
Fig. 16). During on-body testing, a master device was placed next to the 
monitoring iPad to transmit accurate time information. We attached 
13 BAMS devices to the chest and back of the body, with these receiving 
time information from the master through radiofrequency communi-
cation. To assess time synchronization errors, sound from an external 
metronome was used to calculate the time differences of sound peaks  
recorded by each sensor. The results, as shown in Supplementary Fig. 27,  
revealed an average time difference of 0.4 ms and maximum time  
difference of 6 ms over a duration of 150 min. With Bluetooth 5 stand-
ards used in recent iPhone and iPad models, it is possible to connect 
and control more than 30 Bluetooth devices simultaneously. This 
capability allowed us to control time-synchronized devices simultane-
ously through a graphical user interface. To minimize communication 
load on the control iPad, which connects all 13 sensors, we stored the 
data in local flash memory rather than streaming them in real time.

Sound separation
Data collected from the body- and ambient-facing microphones 
included contributions from both body and ambient sounds. Sound 
separation used a two-step adaptive filtering method, as depicted in 
Extended Data Fig. 2. In the first adaptive filtering, the ambient sound 
noise signal is extracted by subtracting the body-facing microphone’s 
sound signal from that of the ambient-facing microphone. In the sec-
ond adaptive filtering, the body sound signal is obtained by subtracting 
the ambient sound noise signal, extracted by the first adaptive filtering, 
from that of the body-facing microphone. These processes use the 
recursive least-squares adaptive filter provided in MATLAB at each 
adaptive filtering step. Recursive least-squares filtering parameters 
involve a filter length of ten taps and a forgetting factor of 0.98.

To verify the effectiveness of sound separation, a validation experi-
ment was conducted using respiratory sound measurements. Initially, 
respiratory sounds were recorded on the lung sound trainer (Simulaids, 
Nasco Education) for 24 s without any ambient noise, as illustrated in 
Extended Data Fig. 9a. Subsequently respiratory sound measurements 
were continued, this time with the addition of 70-dB white noise. When 
examining the frequency distribution of respiratory sounds without 
ambient noise, a relatively even distribution was observed >150 Hz, 
as shown in Extended Data Fig. 9b. However, when ambient sound 
noise >150 Hz was present, it significantly distorted respiratory sound 
signals. Even following the application of bandpass filtering within the 
range 150–300 Hz, where respiratory sounds are relatively strong, res-
piratory sound signals remained unclear due to the presence of ambi-
ent noise (Extended Data Fig. 9c). Respiratory sound intensity between 
150 and 300 Hz exhibited a SNR of 27 dB without ambient noise, but 
this decreased to 17 dB in the presence of 70-dB ambient noise. How-
ever, the sound-separation techniques employed in the BAMS device 
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effectively separated respiratory sound signals from ambient noise, as 
demonstrated in Extended Data Fig. 9d. Clear respiratory sound signals 
were observed on the spectrogram even in the presence of ambient 
noise following application of the sound-separation process. The SNR 
of sound intensity was maintained at 26 dB.

Cardiorespiratory sound analysis
Data were processed using a two-step adaptive filtering method and 
subjected to both low- and high-pass filtering (third order, with an 
attenuation rate of −58 dB per decade) and cutoff frequency of 150 Hz. 
This filtering process effectively distinguished between respiratory 
and cardiac sounds based on their frequency characteristics. The 
analysis revealed that 76% of the total signal for respiratory sounds 
exists >150 Hz while 81% of the total signal for cardiac sounds exists 
<150 Hz (Supplementary Fig. 28). STFT yielded power spectral den-
sity information for each frequency of the filtered signal, with a win-
dow size of 0.03 s and overlap length of 0.027 s. Respiratory sound 
intensity values followed from integration of power spectral density 
across frequencies >150 Hz. Similar data for cardiac sounds followed 
from integration of power spectral density associated across frequen-
cies ranging 20–150 Hz. Respiratory and cardiac sound intensity data 
were then used to identify peaks in respiratory and cardiac cycles. 
For calculation of respiratory rate, intensity peaks corresponding to 
inhalation and exhalation events were identified on the respiratory 
sound intensity graph. Chest movement data were used to distinguish 
between inhalation and exhalation during the detection of each sound 
intensity peak. Respiratory rate was then calculated by selecting the 
maximum value between the count of inhalation and exhalation sound 
peaks over a 60-s period. This approach prevents the underestimation 
of respiratory rate caused by the overlap of inhalation and exhalation 
sounds at high respiratory rates (Supplementary Fig. 29).

For body orientation analysis, the thre-axis acceleration signal 
obtained from the IMU was filtered using a Butterworth low-pass filter 
(third order) with a cutoff frequency of 0.1 Hz. Body orientation was cal-
culated from the filtered signals by simple trigonometry. Additionally, 
the chest movement signal was obtained by applying a bandpass filter 
(third order) with frequency range 0.1–1 Hz. The chest movement signal 
correlated well with respiratory sounds detected from the microphone, 
even under low-frequency movements such as resting (near 0-Hz move-
ment), walking (0.8-Hz movement) and squatting (0.2-Hz movement) 
(Supplementary Fig. 30). Physical activity levels were monitored using 
the root mean square of acceleration values along the x, y and z axes, 
processed with a Butterworth bandpass filter (third order) at 1–10 Hz.

Bowel sound analysis
Data were processed using a two-step adaptive filtering method with 
a bandpass filtered between 150 and 400 Hz to eliminate heart sound. 
A STFT of the filtered signal, with a window size of 0.03 s and overlap 
length of 0.027 s, yielded power spectral density. Integration of these 
data for frequencies >150 Hz yielded bowel sound intensity data. Sound 
peaks of width <100 ms and intensity >20 dB were then identified. To 
eliminate signals that can result from movements or physical con-
tacts with the device, only features during periods of physical activity 
(accelerations from the IMU) of magnitude <0.1g were included in the 
identification of bowel sound peaks.

Device mounting
A medical-grade adhesive (2477P, 3M Medical Materials & Technologies)  
was used as the interface between BAMS and the skin; this product 
is widely recognized and approved for use in the context of band-
ages (ISO 10993-5), and for the fragile skin of preterm infants. This 
adhesive allowed for reliable and secure fixation of the device to the 
infants in this study (median gestational age 28 weeks (minimum 25 
to maximum 31 weeks)) and a median postmenstrual age of 35 weeks 
(minimum 33 to maximum 36 weeks), with no adverse skin reactions 

during placement or following removal of the sensors. Furthermore, 
we previously reported on a slightly larger wireless wearable device 
using the same adhesive in a cohort of 50 neonates of gestational age 
23–40 weeks and postnatal age 1 week to 4 years, with no instances 
of skin breakdown or dermatitis (as graded by a certified derma-
tologist)8. Furthermore, these silicone-based adhesives also conform 
rapidly and readily to uneven surfaces, which makes them practical 
for use in infants with limited space options for placement of the 
sensor (Supplementary Fig. 31). The microphone collects data from 
the skin through the bottom layer, polyimide film and adhesive. We 
used a thickness of 0.3 mm for the bottom layer, 50 µm for the poly-
imide film and 0.5 mm for the adhesive, to achieve high sensitivity 
in capture of acoustic signals in placing the sensor close to the body 
(Supplementary Fig. 32).

Clinical tests
The study protocol was approved by the Northwestern Medicine Insti-
tutional Review Board (no. STU00218021) and the McGill University 
Health Center Research Ethics Board (no. IRB00010120). Informed 
consent was obtained from all participants or their guardians. Trained 
research staff placed BAMS devices on participants in a location that 
did not interfere with clinical monitoring equipment. Monitoring in 
the NICU included ECG, nasal temperature, chest and abdomen move-
ments using respiratory inductance plethysmography, and a pneumo-
tachograph device. Research staff recorded additional information 
such as clinical data, infant movement and fussing during data collec-
tion. For the lung sound study in patients, the research staff attached 
13 devices to the anterior and posterior chest as follows:

•	 right upper chest (second intercostal space, midclavicular line)
•	 right lower chest (fourth intercostal space, midclavicular line)
•	 right axilla (sixth intercostal space, midaxillary line)
•	 right upper back (second intercostal space, between medial 

scapular edge and spine)
•	 right midback (fifth intercostal space, between medial scapular 

edge and spine)
•	 right lower back (eighth intercostal space, just inferior to tip of 

scapula)
•	 left upper chest (second intercostal space, midclavicular line)
•	 left lower chest (fourth intercostal space, midclavicular line)
•	 left axilla (sixth intercostal space, midaxillary line)
•	 left upper back (second intercostal space, between medial 

scapular edge and spine)
•	 left midback (fifth intercostal space, between medial scapular 

edge and spine)
•	 left lower back (eighth intercostal space, just inferior to tip of 

scapula)
•	 suprasternal notch.

Following attachment the devices, participants took five deep 
breaths, inhaling and exhaling fully. Patient information was obtained 
retrospectively from their medical records, including demographic 
data, smoking status, medical history, spirometry data, vital signs and 
results from diagnostic tests, including CT images.

The authors affirm that parents or legal guardians of the children 
included in the study provided written informed consent for publica-
tion of the images in Figs. 3 and 4 and Supplementary Figs. 11 and 13.

Data statistics
Statistical analysis was performed with one-way multivariate analy-
sis of variance in MATLAB, with an assumption that data points for 
each group are normally distributed. Analysis of neonatal heart rate 
involved the use of 136,013 body sound data points and FDA-approved 
ECG monitor data collected from five neonates (nos. B001–B005; 
Extended Data Table 1). Respiratory data analysis utilized a cumulative 
43,750 body sound data points, 43,738 nasal temperature recordings  
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and 1,012 pneumotach data points collected from 15 neonates  
(nos. A001–A010 and B001–B005; Extended Data Table 1). Bowel 
sound analysis was performed on data collected from three neonates  
(nos. C001–003), consisting of 251 bowel sound peak data (Extended 
Data Table 1). Lung sound analysis was conducted on 10,660 lung sound 
datapoints collected from 20 healthy participants and 35 patients 
with chronic lung disease (nos. D001–D055) using 13 BAMS devices 
(Extended Data Table 1).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data used in the study are not publicly available because they 
contain information that could compromise research participant pri-
vacy. Anonymized data can be made available on request for academic 
purposes. Sample data of cardiorespiratory signals from a healthy 
participant are available at https://github.com/JY9292/BAMS_System.

Code availability
The analysis code that supports the findings of this study is available 
at https://github.com/JY9292/BAMS_System.
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Extended Data Fig. 1 | Design for continuous physiological monitoring system with visual feedback. A photograph of visual feedback and block diagram 
illustrating the real-time operational scheme.
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Extended Data Fig. 2 | Flow chart of two-step adaptive acoustic filtering for separate measurements of body and ambient sounds.
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Extended Data Fig. 3 | Characterization of sound separation using the BAMS 
system. (a, b) Experimental setup using a lung sound trainer, sound meter, with 
(a) a BAMS system and (b) a commercial digital stethoscope (3 M™ Littmann® 
CORE, Eko) with active noise cancellation (c) Breath sound and heart sound 
intensity recorded in an ambient of 90 dB white noise across frequency from 20 

to 400 Hz (d, e) Signal-to-noise ratio (SNR) of breath sound and heart sound for 
the BAMS system and the commercial digital stethoscope, measured in different 
ambient conditions, including (d) levels of white noise (n = 50 datapoints) and (e) 
types of sounds with a noise level of 75 dB (n = 50 datapoints). Data are presented 
as the mean ± standard deviation of SNR.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Cardiopulmonary monitoring and cardio-respiratory 
coupling analysis during daily activities. (a) Data corresponding to skin 
temperature, physical activity, and body sounds captured during daily activities. 
(b, c) Spectrogram images and intensity of breath and heart sounds as a function 
of time for recordings collected indoors and outdoors. (d) Respiratory rate, heart 
rate, heart sound intensity, heart rate variability, and cardio-respiratory coupling 

extracted from data collected indoors and outdoors. (e) Correlation between 
heart rate and respiratory rate (n = 4291 datapoints). (f) Cardio-respiratory 
coupling values as a function of physical activity levels (n = 4291 datapoints). 
Data are presented as the mean ± standard deviation of cardio-respiratory 
coupling values.
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Extended Data Fig. 5 | Continuous long-term cardiorespiratory monitoring during sleep and vigorous activity. Spectrogram image of cardiorespiratory signal 
and time series results of activity, respiratory rate, breath sound intensity, heart rate, and cardiac sound intensity.
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Extended Data Fig. 6 | Monitoring of neonatal cardiac activity using the BAMS system. (a) ECG signal, spectrogram image, and heart sound intensity. (b) Bland-
Altman plots comparing heart rate determined using the BAMS system with ECG measurements (5 neonates, 136,013 data points).
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Extended Data Fig. 7 | Monitoring of neonatal respiratory behavior 
using the BAMS system, nasal thermistor, and respiratory inductance 
plethysmograms. Spectrogram images and time series results comparing 
respiratory behaviors obtained from breath sounds measured with the 

microphone in a BAMS system, temperature measured with a nasal thermistor, 
chest wall movement measured with the IMU in a BAMS system, and the 
summation of respiratory inductance plethysmograms measured with chest and 
abdomen RIP bands.
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Extended Data Fig. 8 | Respiratory rate data collected in the NICU and comparisons to standard measurements. Bland-Altman plots comparing respiratory rate 
determined using the BAMS system with nasal temperature flow measurements (5 neonates, 42,738 data points).
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Extended Data Fig. 9 | Effects of ambient noise on measurements of 
respiratory sounds. (a) Microphone data and spectrogram image of respiratory 
sounds with and without 70 dB white noise. (b) Frequency distribution of 
respiratory sounds determined by FFT of recorded data. (c) Spectrogram 

image and respiratory sound intensity with bandpass filtering from 150 Hz to 
300 Hz, and (d) spectrogram image and respiratory sound intensity with sound 
separation.
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Extended Data Table 1 | Participant characteristics

Participants A001-A010 underwent 10-minute respiratory monitoring in the NICU; participants B001-B005 underwent 3-hour respiratory monitoring in the NICU; participants C001-C003 
underwent bowel sound monitoring in the NICU; participants D001-D055 underwent lung sound monitoring in thoracic surgery clinic (D001-D035 were patients with chronic lung disease, 
D036-D055 were healthy participants).
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