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A dynamically reprogrammable surface with 
self-evolving shape morphing

Yun Bai1,14, Heling Wang2,3,4,5,6,14 ✉, Yeguang Xue2,3,4, Yuxin Pan1, Jin-Tae Kim7, Xinchen Ni7, 
Tzu-Li Liu7, Yiyuan Yang3, Mengdi Han7,8, Yonggang Huang2,3,4,7 ✉, John A. Rogers2,3,4,7,9,10,11,12 ✉ & 
Xiaoyue Ni1,7,13 ✉

Dynamic shape-morphing soft materials systems are ubiquitous in living organisms; 
they are also of rapidly increasing relevance to emerging technologies in soft 
machines1–3, flexible electronics4,5 and smart medicines6. Soft matter equipped with 
responsive components can switch between designed shapes or structures, but 
cannot support the types of dynamic morphing capabilities needed to reproduce 
natural, continuous processes of interest for many applications7–24. Challenges lie in 
the development of schemes to reprogram target shapes after fabrication, especially 
when complexities associated with the operating physics and disturbances from the 
environment can stop the use of deterministic theoretical models to guide inverse 
design and control strategies25–30. Here we present a mechanical metasurface 
constructed from a matrix of filamentary metal traces, driven by reprogrammable, 
distributed Lorentz forces that follow from the passage of electrical currents in the 
presence of a static magnetic field. The resulting system demonstrates complex, 
dynamic morphing capabilities with response times within 0.1 second. Implementing 
an in situ stereo-imaging feedback strategy with a digitally controlled actuation 
scheme guided by an optimization algorithm yields surfaces that can follow a 
self-evolving inverse design to morph into a wide range of three-dimensional target 
shapes with high precision, including an ability to morph against extrinsic or intrinsic 
perturbations. These concepts support a data-driven approach to the design of 
dynamic soft matter, with many unique characteristics.

Soft matter that can dynamically reconfigure its shape upon interac-
tions with environment or perceptions of information is thriving31. 
Pioneering studies rely on an exploitation of responsive materials (for 
example, liquid crystal elastomers8,9, dielectric elastomers10, respon-
sive hydrogels11–13 and others14) and multimaterial structures7,15 to enable 
large deformation, but face challenges in implementing fast control 
to refined structures. The design of a shape-morphing process usually 
requires a prerequisite modelling effort to be programmed into the 
fabrication process, and this is therefore hard to reprogram on-the-fly 
(for example, 3D printing7,11,19,24,30, magnetization19,32, laser or wafer-jet 
cutting26,27,33, and mechanical buckling25). The desire to shift shapes 
among a number of configurations invites investigations of various 
architectures and programmable stimuli (for example, temperature8, 
light34,35, magnetic field20,36, electric field10 and Lorentz-force actua-
tion22,23,37). Traditional inverse design of the input–output relationships 
in the resulting non-linear and high-dimensional system can, however, 
lead to difficulties in establishing analytical solutions or problems of 

high computational costs. Also, existing computer-aided methods 
usually leave the inclusion of imperfections, damages or coupling 
between the system and the unforeseen environment. Incorporat-
ing instant feedback is necessary for the morphing process to see the 
deployment scheme to precisely account for specific, multifunctional 
or time-varying requirements38.

Programmable electromagnetic actuation
A materials architecture consisting of a mesh of optimized, planar con-
ductive features operating in a magnetic field and with programmable 
control over distributions of electrical current, as introduced here, 
presents an intriguing set of opportunities. The metasurface takes the 
form of interconnected, serpentine-shaped beams that consist of a thin 
conductive layer of gold (Au, thickness hAu = 0.3 µm, width bAu = 130 µm) 
encapsulated by polyimide (PI, thickness hPI = 7.5 μm, width bPI = 160 μm) 
(see Methods section ‘Sample fabrication’, Supplementary Fig. 1 and 
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Supplementary Note 1 for details). The intersections of the beams form 
an N × M mesh as shown in Fig. 1a (N = M = 4, sample size L = W = 18.0 mm, 
column and row serpentine beam length LN/M = 3.60 mm). A tailored 
design ensures sufficiently large, fast and reversible out-of-plane defor-
mation (u/L ≈ 30%) (in-plane deformation less than 0.01L; response time 
less than 0.07 s) of the serpentine beam, driven by a modest electric 
current (I < 27.5 mA) in an approximately uniform magnetic field B 
(magnitude B = 224 ± 16 mT) (see Extended Data Fig. 1, Supplemen-
tary Figs. 2–6 and Supplementary Notes 2–5 for details). An analytical 
model validated by experiment can be used to guide design choices 
for a tunable electromagnetic response in a broad range of magnetic 

field strengths (for example, B reduced to 25 mT; see Extended Data 
Fig. 2 and Supplementary Note 3.1). Figure 1b shows that independ-
ent voltages (V = {Vj}) of size 2(N + M) applied to the peripheral ports 
define the distribution of current density (J) in the conductive network 
(see Methods section ‘Digital control’ and Supplementary Fig. 7 for 
details) and therefore control the Lorentz force, FEM = J × B. The spa-
tially distributed actuation FEM(J) determines the local, out-of-plane (Z 
direction) deformations (u = {ui}, where ui is the displacement of the 
ith node) of the sample in a magnetic field B aligned with its diagonal, 
enabling a large set of accessible three-dimensional (3D) shapes from 
the same precursor structure.
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Fig. 1 | Mechanical metasurfaces driven by reprogrammable 
electromagnetic actuation. a, Schematic illustration (enlarged view) of a 
representative square mesh sample constructed from the serpentine beams 
consisting of thin PI and Au layers. b, Schematic illustration of a 4 × 4 sample 
placed in a magnetic field (in-plane with the sample in a diagonal direction). 
Portal voltages define the current density distribution ( J) in the sample and 
hence control the local Lorentz-force actuation. c, FEA provides a linear-model 

approximation of the nodal displacement in response to the portal voltage 
input for the 4 × 4 sample. Experimental characterization using a side camera 
agrees with the FEA prediction. d, FEA and experimental results of a 4 × 4 and 
8 × 8 sample morphing into four target abstract shape-shifting processes with 
control of the instantaneous velocity and acceleration of the dynamics. Scale 
bars, 5 mm.
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Model-driven inverse design
The unusual structure and material design enables the system to adopt 
an approximate, linearized model, such that the nodal displacement 
response to the input voltages is as follows:

∑u C V i N M= , for = 1, …, × , (1)i
j

N M

ij j
=1

2( + )

where the coupling matrix C = {Cij} fully characterizes the 
electro-magneto-mechanical system. Figure 1c shows the finite-element 
analysis (FEA) and the experimental characterization of the coupling 
coefficients Cij for representative nodes in the actuation range of 0–4 V 
for the 4 × 4 sample in the magnetic setup. Linear regression of the FEA 
results predicts C. The analytical model and the FEA studies, together 
with experimental validation, provide a scaling law of the coefficients as 
Cij ∝ (BLH2bAuhAu)/(EPIbPIhPI

3ρAu) (where H is the serpentine beam width, 
EPI is the PI Young’s modulus and ρAu is the Au electrical conductivity; 
see Supplementary Figs. 8 and 9 and Supplementary Notes 3.2 and 
3.3 for details). Following this linear approximation, a model-driven 
approach attempts to zero the errors, ei(V)=(ui(V) − ui

*)/L (the difference 
between the output deformation, ui(V), from the target, ui

*, normal-
ized by the system size L), to optimize the voltages for the precursor 
surfaces to deform to a target shape. Given a convex problem with 

linear target functions and constraints, a gradient-descent-based 
algorithm iterates over V to minimize a loss function, f(V) = ∑iei

2(V) 
with a maximum-current constraint (see Methods section ‘Optimiza-
tion algorithm’ and Supplementary Note 6 for details). The linearized 
model-driven approach yields a prediction for V within 0.01 s. The same 
approach driven by numerical methods (for example, FEA) without 
linearization is not possible because of unaffordable computational 
costs (around 10 days using a workstation with 40-core, 2.4 GHz CPU 
and 64 GB memory). Figure 1d shows FEA and experimental results of 
an inverse-designed, continuous shape morphing of a 4 × 4 and an 8 × 8 
sample (L = W = 22.4 mm, LN/M = 2.48 mm, see Supplementary Note 7.1 
for a detailed discussion of scalability). The process consists of four 
phases: rising up, moving around, splitting and oscillating, with a pre-
scribed control of the instantaneous velocity and acceleration of the 
dynamics (Supplementary Video 1, Supplementary Figs. 10–13 and 
Supplementary Note 8).

In addition to the abstract shapes, the reprogrammable metasurface 
demonstrates an ability to reproduce dynamic processes in nature that 
involve a temporal series of complex shapes, provided with the inversely 
designed current distributions. Figure 2a shows an array of eight ser-
pentine beams (L = 10.4 mm, W = 20.6 mm, LN = 5.2 mm, LM = 2.52 mm, 
Supplementary Fig. 14 and Supplementary Note 9) morphing into the 
two-dimensional profile of a droplet dripping from a nozzle (see Meth-
ods section ‘Target shapes of the droplets’ and Supplementary Fig. 15). 
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Fig. 2 | Model-driven inverse design of the metasurfaces for dynamic, 
complex shape morphing. a, FEA and experimental results of an array of eight 
serpentine beams morphing into the growth and pinch-off of a droplet 
dripping from a nozzle. Scale bars, 2.5 mm. b, FEA and experimental results of a 
4 × 4 and an 8 × 8 sample morphing into the dynamic process of a droplet 

hitting a solid surface, spreading out, bouncing back, vibrating and stabilizing. 
Scale bars, 5 mm. The target shapes in a were reconstructed with permission 
from the images in Fig. 3 in ref. 41 (The American Physical Society). The target 
shapes in b were reconstructed with permission from the frames in 
supplementary video 1 in ref. 42(Elsevier).
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Shapes I–III describe the growth of a pendant drop to its critical vol-
ume. Shapes IV–V capture the following pinch-off process. Figure 2b 
presents the 4 × 4 and 8 × 8 samples simulating the 3D surface of a 
droplet falling onto a rigid surface in five stages: hitting the surface, 
spreading out, bouncing back, vibrating and stabilizing (see Methods 
section ‘Target shapes of the droplets’, Supplementary Video 2 and 
Supplementary Figs. 16–19). Numerical analysis further illustrates that 
the mesh structure can morph into an extensive set of target shapes 
(Supplementary Figs. 20–27 and Supplementary Notes 8, 10 and 11). 
Increasing the number of control inputs and introducing a time-varying 
magnetic field or a field gradient enhance the range of target shapes 
that can be morphed with sufficient accuracy (Extended Data Fig. 3, 
Supplementary Figs. 28 and 29, and Supplementary Notes 7 and 12).

The linearized model-driven approach accomplishes an inverse 
design when a modest error from the non-linearity is tolerable. Extend-
ing the model-driven approach to include non-linearity is challenging 
owing to the large computational expense (Supplementary Note 13) 
or difficulties in establishing analytical solutions. The open-loop 
model-based inverse design has constraints on the design space and 
cannot account for non-ideal factors, such as environmental changes 
or defects in the sample. The existing limitations motivate the devel-
opment of sensing feedback for a closed-loop self-evolving inverse 
design approach.

Experiment-driven self-evolving process
Figure 3a illustrates an experiment-driven process in comparison 
with the linearized model-driven process. Whereas the model-driven 
route relies on the presumption of a linear and stationary model, the 
experimental method takes the in situ measurement of the system 
output and feeds the difference between the current state and the 
target state for actuation regulation. In this work, a custom-built 
stereo-imaging setup using two webcams enables a 3D reconstruc-
tion of the nodal displacement at a rate of 30 frames per second, with 
a displacement resolution of around 0.006 mm and a measurement 
uncertainty of ±0.055 mm (see details of 3D imaging in Methods, Sup-
plementary Fig. 30 and Supplementary Note 14). After each update 
of the actuation (V), the real-time imaging provides an in situ nodal 
displacement error analysis. An optimization algorithm (the same one 
as used in the model-driven approach but wrapping the 3D imaging 
process) performs the experimental iterations over V to minimize 
f(V). For a 4 × 4 sample morphing into a representative target shape 
(f(V = 0) = 0.05–0.35), the optimization process takes 5–15 iterations 
(Extended Data Fig. 4a–c). Each feedback control cycle in the current 
setup takes around 0.25 s due mainly to the time overhead from the 
image processing algorithm but this time is ultimately limited by the 
mechanical response time (which is less than 0.1 s) (Supplementary 
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Fig. 3 | The experiment-driven self-evolving process in comparison with the 
model-driven approach. a, A flow diagram of the model-driven inverse design 
approach (top, blue) and an experiment-driven self-evolving process enabled 
by in situ 3D imaging feedback and a gradient-descent-based optimization 
algorithm (bottom, red). b, The target abstract shape and optical image of the 

experiment-driven morphing result of the 4 × 4 sample. c, 3D reconstructed 
surfaces overlaid with contour plots of the minimized errors. d, Histogram plot 
of the minimized errors for model-driven and experiment-driven outputs. 
Scale bars, 5 mm.
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Table 1 and Supplementary Note 6). A hybrid method, taking a 
model-driven prediction as the initial input, reduces the number of 
iterations to around three. The experiment-driven process opens 
opportunities for the metasurface to self-evolve to target shapes with-
out any previous knowledge of the system (Supplementary Video 3). 
Figure 3b–d and Extended Data Fig. 5 provide a quantitative com-
parison between the model-driven and experiment-driven morphing 
results from the same 4 × 4 precursor, targeting representative shapes 
(Supplementary Video 4, Supplementary Figs. 31–33 and Supplemen-
tary Note 8). The resulting errors from the model-driven approach 

follow a wide (over ±5%), mostly skewed distribution (Fig. 3d, consid-
ering 441 points from the interpolated 3D surface; Supplementary 
Note 14). The experiment-driven approach, accounting for the subtle 
non-linear deviation, yields a relatively narrow (±2%), symmetric error 
distribution. The dominant sources of errors are the discreteness 
in the input voltages and the uncertainties associated with the 3D 
imaging (Extended Data Fig. 6 and Supplementary Note 14). Experi-
mental noise also adds complexity to the error function and, when 
pronounced, requires global optimization solvers (Extended Data 
Fig. 4d–f and Supplementary Note 6).
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Fig. 4 | Self-evolving shape morphing against extrinsic or intrinsic 
perturbations. a–d, Experimental results of a 2 × 2 sample (a) and a 4 × 4 
sample (b–d) morphing into the same target shape (Fig. 3b) via model-driven 
and experiment-driven processes. A modified serpentine design that amplifies 
the non-linearity of the voltage-driven deformation (a), and the introduction of 
an extrinsic magnetic perturbation by displacing the sample from the original, 
centred position (Δx = 8 mm, Δy = 12 mm, Δθ = 15°) (b), an extrinsic mechanical 

perturbation by applying an external mechanical load (around 0.1 g) on a 
serpentine beam (c) and intrinsic damage by cutting one beam open, causing 
substantial changes in both mechanical and electrical conductivity of the 
sample (d). Left: schematic illustration of the experimental configuration. 
Middle: optical images and 3D reconstructed surfaces superimposed with an 
error map. Right: histogram plots of errors. Scale bars, 5 mm.
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The experiment-driven process works as a physical simulation 
to accommodate appreciable non-linearity without a substantial 
increase in the computational cost. Figure 4a introduces a 2 × 2 sample 
(L = W = 25.0 mm, LN/M = 10.25 mm) morphing into the same target shape 
in Fig. 3b. Centred in the same magnetic setup, the sample shows an 
amplified non-linear mechanical behaviour in response to input volt-
ages due to the reduced arc length of each serpentine beam (Extended 
Data Fig. 7 and Supplementary Note 15). The model-driven approach 
based on the assumption of a linear system results in an absolute maxi-
mum error of around 8%. The experiment-driven approach achieves a 

more accurate morphing result in around 20 iterations with absolute 
errors below 1%.

Guided by the experiment-driven process, the metasurface can also 
self-adjust to morph against unknown perturbations. Figure 4b–d 
shows three representative cases in which a 4 × 4 sample morphs with 
perturbed magnetic field, external mechanical load and intrinsic dam-
age, respectively. In all cases, the model-driven approach following the 
original inverse design results in absolute maximum errors of around 
8–10%. In comparison, the experiment-driven approach adapts the 
shape to reach the target with absolute errors below around 3%, which is 
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Fig. 5 | Self-evolving shape morphing towards semi-real-time shape 
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frames from a recording of a hand making eight gestures with different fingers 
moving. b, Schematic illustration of a 3 × 3 sample with gold patches 
(2 mm × 2 mm in size, 0.3 µm in thickness) mounted on the nodes reflecting a 
laser beam from an incident angle. A top-positioned camera monitors the laser 
spot projected on a paper screen. c, An optical image of a 3 × 3 sample with nine 
reflective patches morphing via a hybrid experiment-driven and model-driven 
process to perform two functions: (1) reflecting and overlapping two laser 

beams (red, green) with different incident angles ([θXr, θZr], [θXg, θZg]) and (2) 
achieving the target displacement (−0.5 mm) of the central node (u5) of the 
sample. d, Imaging of the screen from the camera provides experimental 
feedback of the distance between the two laser spots. e, Model predictions of 
the displacement profile of the sample (cross-sectional view) when 
overlapping the laser spots with the highest-possible (blue), lowest-possible 
(green) and optimized (red) central positions. Ex situ stereo imaging provides 
3D reconstructed measurement of the optimized deformation (orange) that 
validates the in situ model predictions. Scale bars, 5 mm.
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comparable with that of an intact sample (around 2%) (Supplementary 
Video 5). The boosted accuracy level demonstrates the ‘self-sustained’ 
morphing ability enabled by the experiment-driven process.

Shape learning and multifunctionality
The adaptive, self-evolving metasurface platform delivers a 
semi-real-time morphing scheme to learn the continuously evolving 
surface of a real object. In this experiment, a duplicated stereo-imaging 
setup measures the displacement of a 4 × 4 array of markers (with inter-
spacing a0 = 15 mm) on the palm (Extended Data Fig. 8a). The optimiza-
tion acts directly to minimize the displacement difference between the 
16 markers and their corresponding nodes in the 4 × 4 sample. Given 
continuity, the gradient-descent process takes the last morphing result 
as the initial state for the next morphing task. This differential method 
(with the target descent Δf(V) ≈ 0.0032) requires only at most three 
iterations (approximately 20 s) to reach the optimum. Figure 5a shows 
the representative frames from a video recording a hand making eight 
gestures with different fingers moving (see Supplementary Video 6 
and Extended Data Fig. 8b,c for complete results of all gestures). All 
morphing results agree with the target with absolute errors below 2%.

In addition to self-evolving to optimize shapes, the metasurface can 
self-evolve to optimize functions. Setting multiple target functions 
drives the optimization towards emergent multifunctionality, with the 
ability to decouple naturally coupled functions. Figure 5b,c illustrates 
a scheme in which a 3 × 3 sample (L = W = 14.8 mm, LN/M = 4.06 mm) with 
nine reflective gold patches at the nodes attempts to perform an opti-
cal and a structural function: (1) reflecting and overlapping two laser 
beams (red, green) with different incident angles ([θXr, θZr], [θXg, θZg]) on 
a receiving screen (Extended Data Fig. 9a) and (2) achieving the target 
displacement of the central node of the sample. The optimization takes 
a hybrid strategy combining the model-driven and experiment-driven 
processes (Supplementary Note 16). While the voltages control the 
reflected beam paths, a top camera provides imaging feedback of the 
distances between the beam spots on the screen. The model-driven 
process predicts the difference between the central nodal displacement 
and the target. The total loss takes a linear combination of the two errors 
(Extended Data Fig. 9b and Supplementary Note 16). Figure 5d shows 
the self-evolving results of three optical configurations with distinc-
tive incident beam angles. Figure 5e shows that the metasurface can 
morph to overlap the laser spots on the receiving screen with a range of 
possible shapes (Extended Data Fig. 10a). By enforcing both functions, 
the sample overlaps the spots and settles its central node to a target 
displacement. A post analysis through ex situ 3D imaging validates 
that the final experimental central nodal displacement reaches the 
target within an error of ±2% (Supplementary Video 7 and Extended 
Data Fig. 10b).

Discussion
The work presents a reprogrammable metasurface that can precisely 
and rapidly morph into a wide range of target shapes and dynamic 
shape processes. The Lorentz-force-driven serpentine mesh construc-
tion supports an approximately linear input–output response with 
easily accessible solutions to the inverse problem. The highly integra-
ble digital–physical interfaces incorporating actuation, sensing and 
feedback enable an in-loop optimization process to attain model-free 
solutions when the system deviates from the linear, time-invariant 
response. The experiment-driven shape-shifting capability addresses 
theoretical and computational challenges in complex, non-linear 
systems, bringing new opportunities for physical simulations for a 
real-time, data-driven inverse design process. Such a scheme ena-
bles an autonomous materials platform to promptly change struc-
tures, actively explore the design space and responsively reconfigure 
functionalities. The platform is compatible with the typical materials, 

structures and thin-film fabrication techniques used in existing flex-
ible electronics frameworks. It supports optimized choices of mate-
rials, geometries, layouts, control systems and magnetic setups for 
design flexibility and potential scalability, which promises a wide, 
versatile application scenario in wearable techniques, soft robot-
ics and advanced materials. Many possibilities exist to improve this 
system, such as incorporating a mechanical locking mechanism (for 
example, applying phase transition materials21,39 or a jamming configu-
ration40 could hold the morphed shapes without actuation). Explor-
ing constructions with low in-plane stiffness will enable additional 
deformation modes of the metasurface (Supplementary Fig. 34). The 
demonstration of the current modular platform invites higher levels 
of integration to embed functional materials and components into the 
morphing matter, to support on-board power sources (supercapaci-
tors), sensors (strain gauges), feedback control mechanisms (analogue 
devices), computational resources (microcontrollers) and wireless 
communication capabilities (radios). Using advanced data-driven 
techniques in the loop (for example, Bayesian optimization, deep 
learning and reinforcement learning) will enhance the capabilities 
of self-evolving designs for artificial matter in pursuit of functions or 
performance inspired by those in their natural counterparts, paving 
the way for new classes of intelligent materials that adopt spatiotem-
porally controlled shapes and structures for advanced on-demand 
functionalities.
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Methods

Sample fabrication
The fabrication process (Supplementary Fig. 1) began with the spin 
coating of a thin layer of PI (HD Microsystems PI2545, 3.75 μm in thick-
ness) on a silicon wafer with poly(methyl methacrylate) (Microresist 
495 A5, 0.08 µm in thickness) as the sacrificial layer. Subsequent lift-off 
processes patterned the metal electrodes and serpentine connections 
(Ti/Au, 10 nm/300 nm in thickness). Spin coating another layer of PI 
(HD Microsystems PI2545, 3.75 μm in thickness) covered the metal 
pattern. Photolithography and oxygen plasma etching of PI defined the 
outline of the sample. Undercutting the bottom layer of poly(methyl 
methacrylate) allowed the transfer of the sample to a water-soluble 
polyvinyl alcohol tape (3M) from the silicon wafer.

Digital control
The digital control system used (1) pulse-width modulation (PWM) 
drivers (PCA9685, 16-channel, 12-bit), (2) voltage amplifier circuits 
(MOSFET, IRF510N, Infineon Tech) and (3) a single-board computer 
(Raspberry Pi 4) remotely connected to an external computer (Intel 
NUC, Intel Core i7-8559U CPU@2.70 GHz). The external computer ran 
the optimization algorithm and sent the updated values of the volt-
ages wirelessly to the single-board computer through Python Socket 
network programming. The PWM driver received the actuation signals 
from the single-board computer. Each PWM channel, operated at a 
frequency of 1,000 Hz, generated an independent voltage in the range 
of 0–6 V with 12-bit (around 0.0015 V) resolution. The single stage 
MOSFET provided a reversely linear amplification to the PWM output 
with a gate voltage, Vgs(th) = 4 V, and an external power supply, Vex = 6 V 
(Supplementary Fig. 7).

Optimization algorithm
Sequential least squares programming with a three-point method 
(SciPy-Python optimize.minimize function) computed the Jaco-
bian matrix in the loop to minimize the loss function f(V). The 
model-driven approach adopted the same optimization algorithm, 
with f(V) evaluated by equation (1) and a maximum of around 10,000 
iterations. For the experiment-driven approach, a maximum final loss 
value of 0.005f(V = 0) and a maximum of 15 iterations set the stop-
ping criteria for the optimization process. Each iteration required 
4(N + M) + 2 function evaluations for an N × M sample (Supplemen-
tary Note 6).

Target shapes of the droplets
The target shapes in Fig. 2a were reconstructed from the images in  
Fig. 3 in ref. 41. The target shapes in Fig. 2b were reconstructed from 
frames of the supplementary video in ref. 42. 3D models of the target 
shapes were built and rendered using Solidworks (Dassault Systèmes). 
The target shapes and slow-motion video in Supplementary Video 2 
were reconstructed (00:00:15–00:04:23, 0.6× playback) and repro-
duced from ref. 42.

3D imaging
The multiview stereo-imaging platform consisted of two cameras 
(Webcams, ELP, MI5100, 3,840 × 2,160-pixel resolution, 30 frames 
per second) connected to the external computer taking top-view 
images of the sample from symmetric angles (Supplementary Fig. 30a). 
A calibration algorithm (OpenCV-Python calibrateCamera function) 
applied to a collection of images of a chequerboard (custom-made, 
7 × 8 squares, 2 mm × 2 mm per square) returned the camera matrix, 
distortion coefficients, rotation and translation vectors to correct for 
the lens distortion of the images (OpenCV-Python undistort function). 
The nodes of the mesh samples provided a distinguishable geometry for 
image registration. A template matching algorithm (OpenCV-Python 
matchTemplate function) returned the locations of the nodes in the 
images from the two cameras. A perspective projection algorithm 
(OpenCV-Python reprojectImageTo3D function) transformed the dis-
parity map into the nodal heights in units of pixels. An additional side 
camera provided ground-truth measurements of the displacement of 
the discernible nodes and provided a linear-model prediction of the 
3D-recontructed nodal displacement (Supplementary Fig. 30b,c and 
Supplementary Note 14).

Data availability
All data are contained within the manuscript. Raw data are available 
from the corresponding authors upon reasonable request.

Code availability
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Extended Data Fig. 1 | The analytical model of the electromagnetic 
response of a serpentine beam corroborated by FEA study and 
experimental characterizations. a, Schematic illustration (top and 
cross-sectional views) of the initial state of a serpentine beam (beam width  
H = 1.20 mm, serpentine period λ = 0.18 mm). b, Analytical model and FEA 
prediction of the maximum out-of-plane displacement u dependent on the 
combination of electric current I, magnetic field B, and material and geometry 
parameters. c, Schematic illustration of a single beam, placed in a magnetic 

field B and carrying a current density J with an out-of-plane displacement u, 
under an electromagnetic force FEM = J × B. d, Optical images of a representative 
serpentine beam (side view) driven to the maximum displacement u. If 
exceeding the elastic limit, an irreversible deformation u’ will remain after 
unloading. e–g, Experimental characterizations of mechanical (e, f) and 
thermal (g) behaviors of a single beam under current-controlled 
electromagnetic actuation (B = 224 mT) in comparison with the theoretical 
predictions. Scale bar, 1 mm.



Extended Data Fig. 2 | Experimental validation of the scaling law using a 
single serpentine beam. a, Top-view optical images of serpentine beams with 
the same beam length (L = 11 mm) but different beam widths (H = 0.84 mm, 
1.20 mm, 1.56 mm). In a magnetic field of 224 mT, current-controlled 
experiments show that the electromagnetic responses of the beams with various 
PI thicknesses (hPI = 5.0 μm, 7.5 μm, 12.0 μm) agree with the analytical solutions. 
b, Experimentally measured electromagnetic responses follow the scaling law 

predicted by the analytical model. c, Side-view optical images of a serpentine 
beam of the design presented in the main text (H = 1.20 mm, hPI = 7.5 μm) 
actuated in a magnetic field of 224 mT (left) and a tailored serpentine beam 
(H = 1.56 mm, hPI = 5.0 μm) actuated in a reduced magnetic field of 25 mT (right). 
Applying the same current (15 mA) deforms the two beams to the same height 
(around 2.25 mm). d, The two beams in (c) exhibit approximately the same 
current-controlled mechanical behavior. Scale bars, 1 mm.
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Extended Data Fig. 3 | Shape morphing in time-varying, non-uniform 
magnetic fields. a, Schematic illustration of a single serpentine beam in a 
non-uniform magnetic field generated by a small disk magnet (diameter 
D = 11.0 mm, thickness h = 5.0 mm, surface field B = 481.6 mT) moving 3-mm 
below the beam (ΔZ = −3 mm). b, c, Optical images of the beam (applied current 
I = 20 mA) changing shapes as the position of the magnet changes along X-axis 
(b, ΔY = 0) and Y-axis (c, ΔX = 0). Scale bars, 1 mm. d, Schematic illustration of a 
4 × 4 sample in a non-uniform magnetic field generated by a pair of large 
magnets (D = 76.2 mm, h = 12.7 mm, surface field B = 245.1 mT) and a small 

magnet (D = 11.0 mm, h = 5.0 mm, surface field B = 481.6 mT) in the middle, 
3.0 mm below the center of the sample. e, Magnetic flux density in X-direction 
(BX) of the approximately uniform/non-uniform field measured by a 
gaussmeter (GMHT201, Apex Magnets) with/without the presence of  
the small magnet across the center (O) along X-axis (left) and Y-axis (right).  
f, Experimental results (optical images and 3D reconstructed surfaces) of  
a 4×4 sample morphing into the same donut-like target shape via the 
experiment-driven self-evolving process in the uniform and the non-uniform 
magnetic field. Scale bars, 5 mm.



Extended Data Fig. 4 | Typical descent of loss function over function 
evaluations. a–c, For a 4×4 sample morphing into Shape I (a), III (b), IV (c) 
(Supplementary Note 8) through the experiment-driven approach using the 
gradient-based algorithm (see Methods section ‘Optimization algorithm’), the 
experimentally-measured loss function f(V) (with an initial value f(V = 0) in the 
range of 0.05-0.35) descends by ~99.5% to a steady state in 170–510 function 
evaluations (5-15 iterations). The 3D imaging noise is δu = 0.016 mm 
(Supplementary Note 14). d–f, Comparison of a global solver (pattern search 
algorithm) with the gradient-based algorithm for a 4×4 sample morphing into 

Shape IV using model-driven simulation. Subjecting the objective function to 
typical experimental noise (δu = 0.016 mm, Supplementary Note 14) and 
targeting a final loss of 0.005f(V = 0), the gradient-based algorithm finds the 
solution faster than the global solver (d). Both algorithms settle to a minimum 
loss of 0.0006f(V = 0) within 20,000 function evaluations (e). With 
pronounced noise (δu = 0.16 mm), the gradient descent method ends up with a 
local solution (0.08f(V = 0)), while the pattern search method finds the same 
minimum (0.0006f(V = 0)) as the case with low noise (f).
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Extended Data Fig. 5 | Experiment-driven self-evolving process in 
comparison with the model-driven approach. a, Target explicit shapes and 
optical images of the experiment-driven morphing results of a 4×4 sample.  

b, 3D reconstructed surfaces overlaid with contour plots of the minimized 
errors. c, Histogram plots of the minimized errors for model-driven and 
experiment-driven outputs. Scale bars, 5 mm.



Extended Data Fig. 6 | Simulation of the impact of experimental noise on 
the optimization process. a, Comparison between the distribution of final 
loss f0 after 15 iterations from model-driven simulations (1,000 trials, given 3D 
imaging noise δu = 0.016 mm, 12-bit PWM output, and maximum current 
Imax = 27 mA) versus that from the experiments (97 trials), for a 4×4 sample 
morphing into the target shape in Fig. 3b. b, Simulation results of the final loss 

f0 (without imaging noise and iteration constraint) given n-bit PWM voltage 
control, compared with the case without actuation noise (continuous, analog 
voltage control). c–f, Histogram plots of the final loss f0 (1,000 simulation 
trials) with a decreasing 3D imaging noise δu = 0.024 mm (c), 0.016 mm (d), 
0.008 mm (e) and 0.004 mm (f).
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Extended Data Fig. 7 | The optical images of a 2 × 2 sample with modified 
serpentine design for amplified nonlinear mechanical behavior in 
response to a range of actuation voltages. a–d, Side-view images of the 

sample deforming out-of-plane given an increasing voltage to port 1 (Fig. 4a) 
given V1 = 0 V (a), 0.25 V (b), 2.75 V (c), and 3 V (d), respectively. The rate of 
change of u1 decreases as the actuation voltage increases. Scale bar, 5 mm.



Extended Data Fig. 8 | Self-evolving shape morphing toward semi-real-time 
shape learning. a, Schematic illustration of a duplicated stereo-imaging setup 
enabling a semi-real-time control of a 4×4 sample simulating the dynamic 
shape-shifting of a palm surface with 4×4 markers (with inter-spacing 

a0 = 15 mm). b, Experimental results of the continuous semi-real-time shape 
learning of the palm surface with the thumb moving up. c, Morphing results of 
representative frames from a recording of hand making eight gestures. Scale 
bars, 5 mm.
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Extended Data Fig. 9 | A 3×3 reflective sample self-evolving to achieve an 
optical and a structural function simultaneously. a, Representative optical 
images of the laser spots on the receiving screen. The target optical function is 
to overlap two laser spots on the receiving screen. A customized image analysis 
method detects the centroid coordinates of the red/green laser spots to 
monitor their current locations on the screen ([xr/g, yr/g]). b, The typical 

evolution of loss functions (Supplementary Note 16) over number of functional 
evaluations. The optimized loss function ( fmulti(V)) is a linear combination of 
two parts: I) an optical loss function fopt(V) that evaluates the distance between 
the center of the two laser spots; II) a structural loss function fstruct(V) that 
evaluates the central nodal displacement error. Scale bar, 5 mm.



Extended Data Fig. 10 | Allowed shape (structural function) configurations 
of a 3×3 sample enforcing only the optical function (Fig. 5c, d). a, Allowed 
values of the central nodal displacement (u5) when the sample overlaps the 
beams (when the distance between the centroids of the laser spots is less 

than 0.1 mm) with three distinctive incident angles. b, Model predictions,  
and the ex-situ 3D imaging results of the sample (cross-sectional view) when 
overlapping the laser spots in the configurations with the highest, lowest, and 
target central displacement.
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