
Chun et al., Sci. Adv. 2021; 7 : eabf9405     30 April 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 11

A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

A skin-conformable wireless sensor to objectively 
quantify symptoms of pruritus
Keum San Chun1†, Youn J. Kang2,3†, Jong Yoon Lee2,4†, Morgan Nguyen5, Brad Lee5, Rachel Lee4, 
Han Heul Jo4, Emily Allen6, Hope Chen3, Jungwoo Kim4, Lian Yu7, Xiaoyue Ni2,8, KunHyuck Lee2,3, 
Hyoyoung Jeong2,3, JooHee Lee4, Yoonseok Park2,3, Ha Uk Chung2,3,4, Alvin W. Li6, Peter A. Lio9, 
Albert F. Yang6, Anna B. Fishbein10, Amy S. Paller3,6,11, John A. Rogers2,3,12,13,14*, Shuai Xu2,3,10,11,12*

Itch is a common clinical symptom and major driver of disease-related morbidity across a wide range of medical 
conditions. A substantial unmet need is for objective, accurate measurements of itch. In this article, we present a 
noninvasive technology to objectively quantify scratching behavior via a soft, flexible, and wireless sensor that 
captures the acousto-mechanic signatures of scratching from the dorsum of the hand. A machine learning algorithm 
validated on data collected from healthy subjects (n = 10) indicates excellent performance relative to smartwatch-
based approaches. Clinical validation in a cohort of predominately pediatric patients (n = 11) with moderate to 
severe atopic dermatitis included 46 sleep-nights totaling 378.4 hours. The data indicate an accuracy of 99.0% 
(84.3% sensitivity, 99.3% specificity) against visual observation. This work suggests broad capabilities relevant 
to applications ranging from assessing the efficacy of drugs for conditions that cause itch to monitoring disease 
severity and treatment response.

INTRODUCTION
Itch and pain are the two cardinal examples of nociception in humans—
itch leads to a scratch reflex, while pain leads to a withdrawal reflex 
(1). Unfortunately, itch is often overlooked and undertreated in the 
clinical setting (2) despite the wide range of medical conditions that 
cause itch—1% of all outpatient visits yearly involve the symptom 
of itch representing a major global disease burden (3). While a wide 
range of medical conditions leads to itch (e.g., renal failure, liver 
failure, and lymphoma), atopic dermatitis (AD) is likely the most 
common. AD is also the most widespread pediatric inflammatory 
skin disease, affecting 10 million U.S. children with a yearly preva-
lence of 13% (4). The hallmark of AD is itch, the primary driver of 
morbidity that leads to chronic sleep disturbance in ~60% of affected 
children (5–8). The consequences for millions of children include 
neurocognitive impairment and decreased growth (9–12). The quality 
of life of patients with moderate-to-severe AD consistently scores 
among the lowest of all chronic diseases (13).

In AD and other conditions that cause itch, a major unmet need 
is in objective measures of itch to assess the efficacy of new medica-
tions, quantify disease severity, and monitor treatment response. The 

subjective nature of itch creates difficulties in its quantification. Com-
monly used methods such as patient reported visual analog scales 
poorly correlate to visually observed scratching behavior (14). These 
self-reported measures are also prone to both sensitivity and an-
choring bias. Furthermore, these subjective methods lack validity in 
young children and cognitively impaired adults.

Measuring behaviors associated with scratching provides one 
method to quantify itch severity and frequency. Direct visual in-
spection of scratching in video recordings represents the gold stan-
dard, but these schemes are both labor intensive and impractical in 
clinical practice. Wrist actigraphy, a method to record movements 
using accelerometers, estimates scratching by measuring wrist motion. 
This approach offers suboptimal accuracy because of an inability to 
distinguish, for example, hand waving from scratching. Additional 
aspects of the widely varying characteristics of scratching, including 
variabilities across individuals, represent additional unsolved chal-
lenges (15). Thus, current sensors and strategies do not offer suffi-
cient performance or practicality for routine use in clinical trials or 
patient care.

Here, we report a strategy that exploits a soft, flexible, wireless, 
and low-profile sensor capable of capturing both vibratory and mo-
tion signatures of physiological processes with clinical-grade data 
quality. This device, which we refer to as the ADAM (ADvanced 
Acousto-Mechanic) (16) sensor, softly couples to the skin to enable 
capture of both low-frequency (e.g., motion) and high-frequency 
(acousto-mechanic) signals from the human body. An embedded 
rechargeable battery allows 7 days of continuous operation on a 
single wireless charge. When placed on the dorsum of the hand, the 
ADAM sensor is able to capture acousto-mechanic signals associated 
with scratching via a combination of motion and acousto-mechanic 
signals in a manner that is immune to ambient noise. Specifically, 
when placed between the second and third finger meta-carpal bones, 
the ADAM sensor can quantify scratching behavior initiated not only 
from motions of the wrist and/or arm but also from the fingers and 
fingertips across a wide temporal bandwidth that includes high-
frequency vibratory motions associated with scratching itself. Using 
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the sensor data and an associated understanding of the physics of the 
processes of scratching, signal features that uniquely characterize 
scratching activities can be extracted to train and validate a machine 
learning (ML)–based algorithm for scratch detection.

The content begins with descriptions of systematic investigations 
of the mechanics of scratching in a set of controlled experiments, 
followed by validation of the combined use of sensor signals with data 
analytics approaches in two human subject studies: an algorithm 
development study (n = 10 healthy normal subjects) and a clinical 
validation study (n = 11 predominately pediatric patients with AD). 
The training study involves collection of scratching and nonscratching 
data in well-defined conditions to develop an ML algorithm to 
categorize and quantify scratching behavior. The clinical study 
validates the sensor and the algorithm in a cohort of patients with 
moderate to severe AD. The performance compares well to a gold 
standard defined by direct visual observation via manually labeled 
infrared (IR) camera recordings.

RESULTS
Sensor operation and performance
The ADAM sensor is a small, soft, stretchable wireless device that 
mounts using a thin adhesive onto the curvilinear surface of the 
dorsal hand, with an ability to be positioned across a range of possible 
anatomical locations and with various orientations (Fig. 1A). As 
described in detail elsewhere, the sensor features a Bluetooth Low 
Energy radio, electronics, and a rechargeable battery at one end of the 
device and, at the other, a millimeter-scale, three-axis accelerometer 
with a sampling rate of 1600 Hz at a resolution of 16 bits and a dynamic 
range of ±2g, where g is the gravitational acceleration, 9.8 m/s2 (16). 
Studies reported here focus on accelerations measured in a direction 
perpendicular to the surface of the skin. A thin, low modulus sili-
cone elastomer forms a skin-compatible encapsulating package, as a 
watertight enclosure for a flexible printed circuit board (fPCB) that 
supports and interconnects these various components. The fPCB 
adopts a patterned layout that includes a collection of freely deform-
able, serpentine interconnects specially designed by use of computa-
tional modeling to mechanically decouple the accelerometer from the 
other components of the device. This design optimizes the ability of 
the device to record subtle movements at the skin surface, accurately 
and without constraint. Figure 1A presents images that highlight these 
“soft” mechanical attributes and the overall “patch” form factor.

Scratching activities generate two types of signals. The first cor-
responds to gross movements of the hand, for which characteristic 
frequencies are in the range of a few hertz or less. The second, over-
lapping in time with the first, arises from subtle vibratory impulses 
generated by motions of the fingertips and fingernails against a con-
tacting surface. Here, frequencies extend into the range of a few 
hundred hertz and exhibit amplitudes that decay rapidly with posi-
tion along the fingers and into the hand, where they eventually pass 
through the wrist and to the arm. Detailed multi-accelerometer mea-
surements reported elsewhere hint at the physics of this second type 
of signal, although in the context of haptic interfaces (17). Similar 
direct measurements of accelerations at different locations from the 
fingertip to the wrist reveal the spectral characteristics of signal 
attenuation for the scratching behaviors studied here (Fig. 1B). Mea-
surements involve wireless accelerometers located at the fingertip, 
the midpoint along the finger, the dorsum of the hand, and the wrist, as 
in the right frame in Fig. 1B (fig. S1A). The tests capture signals due 

to scratching the surface of the skin by articulating the arm for 10 s 
and then scratching with only the finger for 10 s. The peak-to-peak 
amplitudes of accelerations at the surface of the skin decay with in-
creasing distance along the finger and the surface of the hand to the 
wrist. The color bars in spatial patterns in Fig. 1B represent the mean 
power of the signal per frequency in each frequency band. The left 
and right numbers indicate the maximum and minimum values for 
each of the respective plots. For scratching by articulating the arm 
(the first row of the spatial pattern), the power decays from 20 dB/Hz 
at the fingertips, the point of initiation, to −32 dB/Hz at the wrist 
in the frequency range from 10 to 100 Hz. The attenuation in-
creases sharply with frequency. Specifically, the signal decreases 
from −19 to −37 dB/Hz and −20 to −41 dB/Hz for frequency ranges 
of 100 to 200 Hz and 200 to 400 Hz, respectively. For both types of 
scratching, the approximate power dissipation from the fingertip to 
the wrist is 2 dB in the frequency range from 0.1 to 10 Hz, 12 dB in 
the range from 10 to 100 Hz, 20 dB in the range from 100 to 200 Hz 
and 200 to 400 Hz, and 16 dB in the range from 400 to 800 Hz. As 
expected, the attenuation at low frequencies is much lower than that 
at high frequencies. The power of the signal decreases exponentially 
with increasing propagation distance and with increasing frequency. 
A decay constant of , a frequency-dependent characteristic of 
viscoelastic material obtained by fitting the experimental data, char-
acterizes the behavior. In the experiment in Fig. 1B,  has a value of 
0.38 for the case of vibrations that propagate from the fingertip to 
the dorsum of the hand (fig. S1C). These results suggest that critically 
important high-frequency information associated with scratching 
can be captured most effectively by (i) locating the sensor in close 
proximity to the fingertips and (ii) operating the accelerometer in a 
high bandwidth mode.

Existing scratch sensors use relatively low bandwidth accelerom-
eters (typically 50 Hz or less) and associated electronics in rigid 
enclosures that couple to the wrist using bands (18–20). Although 
these devices can capture the first type of signal, they cannot record 
the second with adequate fidelity, consistent with the results of the 
propagation studies described above. This limitation follows from 
(i) a nonideal mounting location, at the wrist, where high-frequency 
signals have small amplitudes; (ii) measurement bandwidths that are 
insufficient to capture high-frequency information; and (iii) a loose 
mechanical coupling to the skin. The ADAM sensor, by contrast, 
quantifies both types of signals with high precision because of its 
proximity to the fingertips/fingernails, its high bandwidth operation, 
and its intimate mechanical interface to the skin. The result is a 
superior capability for identifying scratching events with high spec-
ificity and sensitivity. Figure 1C presents representative data gener-
ated by scratching the arm with the pointer finger of the opposing 
hand, as illustrated in the left frame. The motions involve (i) trans-
lating the hand, wrist, and arm with the finger in a fixed position for 
10 s and then (ii) articulating the fingers only for 10 s. The two types 
of signals discussed previously can be identified by passing the data 
through low-pass and high-pass filters with cutoffs at 2 Hz. The first 
type represents the movement of the hand and can serve as the basis 
for detecting scratch events but, when used in isolation, without the 
second, can produce false-positive results from hand waving, essential 
tremor, and other sources of motions unrelated to scratching (18). 
The critical high-frequency information originates at the fingertips 
and transmits through the soft tissue and metatarsal bones to the 
location of the sensor, as described above and illustrated by red 
arrows in Fig. 1C. These features, which are time-synchronized with 
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A

B

C

D

Fig. 1. Overview of the ADAM sensor and signal outputs. (A) Image of the ADAM sensor in various states of deformation to highlight its soft, flexible construction. 
(B) Results of measurements of spatiotemporal patterns of motions and vibratory signatures of scratching, with a focus on five different frequency ranges. The experi-
ments involve four accelerometers, one each located at the fingertip, finger, dorsum of the hand, and the wrist, during scratching by articulating the arm for 10 s and then 
scratching with only the finger for the last 10 s. The color bars represent the mean power of the signal per frequency in each frequency band. The left and right values 
indicate the minimum and maximum of the respective plot. Upper spatial patterns are from scratching by articulating the arm, and lower spatial patterns are from scratching 
with only the finger. (C) Path of scratching and resulting data (raw and filtered) data from the sensor. (D) Comparison of signals captured during scratching with five 
different mounting locations as time series and spectrogram plots. The dorsal hand is an effective mounting location for capturing scratching with only the fingers. 
Photo credit: Keum San Chun, University of Texas at Austin.
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sliding of the fingertips and, in some cases, with motions of the hand, 
include energy across a broad range of frequencies (21). Although 
transmission through the body leads to attenuation that increases 
with frequency, particularly above 100 Hz (22), the associated 
complex waveforms are well preserved at distances of several centi-
meters (17, 23).

The effects appear in characteristics of signals captured by the 
ADAM sensor placed at the dorsum of the hand and the wrist with 
horizontal and vertical orientations, and on top of a smartwatch 
(Apple Watch Series 4) tightly strapped to the wrist. Measurements 
involve first articulating the fingers with a scratching motion in the 
air for 2.5 s and then scratching the surface of the skin with the same 
motions for 2.5 s. Time series and spectrogram representations of 
the data in Fig. 1D show the high-frequency content associated with 
scratching the skin versus the air, in all cases. The spectrograms in 
Fig. 1D use a Hamming window with a frame size of 0.2 s and an 
overlapping duration of 0.19 s. These identifying features extend in 
frequency up to ~600 Hz, with some energy even up to 800 Hz, but 
with the most notable amplitudes in the range of up to 200 Hz. The 
results show only modest dependence on mounting location pro-
vided that the sensor is on the radial half of the dorsum of the hand. 
Orientation has little effect, simply because the accelerometer re-
sides at the front of the ADAM device, as described previously and 
highlighted with a red dot in Fig. 1D. On the wrist, the high-frequency 
components appear only as weak features in the data, consistent with 
the previous attenuation results in Fig. 1B (fig. S1B). As mounted on 
the back of the hand where the signal strength is high, the soft phys-
ical properties of the device and the medical-grade, hypoallergenic, 
single-use adhesive support a robust yet comfortable and nonirritat-
ing interface compatible with many daily activities involving various 
hand and wrist motions (fig. S2).

Characterizing scratching
Scratching varies with individuals in response to both internal and 
external stimuli. Scratching can occur via articulation of the elbow, 
wrist, or fingers alone, as examined in the tests summarized above 
and in Fig. 1. In the mode that engages the entire upper arm, the 
fingers press against the surface and remain stationary, where move-
ment of the forearm articulating at the elbow joint drives the scratch-
ing action. The finger scratching mode, on the other hand, involves 
mainly local movements of the fingers, without substantial forearm 
or wrist motion. Mixtures of these two modes are also possible. 
Depending on the location of scratching and the degree of itch, 
individuals interchangeably use different modes of scratching. For 
any type of scratching action, the intensity is also important. The 
force at the point of contact determines the friction between the 
fingertips and the surface, and can therefore be considered, along 
with frequency and speed, as a metric of the intensity of a scratching 
event. These factors contribute to differences in signals captured by 
the ADAM sensor. Systematic studies for various types of scratching 
activities are important precursors to the development of a general-
izable scratch detection algorithm.

Control experiments for this purpose involve two body locations: 
dorsum of the hand (DH) and forearm (FA) (Fig. 2A), with the 
ADAM sensor on the left dorsal hand (Fig. 1D), with two locations 
scratched with the left hand by articulating the arm only and then 
the fingers only, at a high intensity followed by a low intensity. The 
blue solid line in Fig. 2A shows the time-dependent z-axis acceleration 
from the vibrational motions at the surface of the skin in a direction 

orthogonal to the plane of the scratching motion. The peak-to-peak 
amplitudes are larger for high-intensity scratching than for low 
intensity, as expected. For instance, the amplitude of the signal for 
high-intensity FA scratching (45 to 55 s) is 1.5g, which is more than 
two times greater than that for the low-intensity case (65 to 75 s; 0.7g). 
For an otherwise similar scenario but by articulating only the fingers, 
the amplitudes of the high (125 to 135 s) and low (145 to 155 s) are 
0.4g and 0.15g, respectively. Results for articulating the arm only 
(0 to 80 s) show amplitudes larger than those for the fingers (80 to 
160 s) for each scratch location (DH, FA) and intensity level. The 
frequency domain content associated with these signals appears as 
spectrograms (Fig. 2A), plotted using the same window and frame 
size as Fig. 1C. In all cases, even at low intensity with fingers only, 
the high-frequency content, especially up to ~200 Hz, features prom-
inently in the data. The normalized spectral characteristics of high- 
and low-intensity scratching events are largely the same, as in fig. S3.

Scratching activities on five different body locations (head, arm, 
abdomen, knee, and leg) and nonscratching activities (simulating 
scratching with fingers in the air, hand waving, texting using a cell 
phone, typing on a keyboard, and clicking a mouse) highlight the key 
differences in the signals and the importance of the high-frequency 
content in a range of practical scenarios (Fig. 2, B to D). Specifically, 
the data for all scratching activities have substantial energy above 
200 Hz, independent of location (Fig. 2C). As expected based on pre-
vious discussions, the spectrograms of most nonscratching activities 
exhibit minimal energy in this frequency range (Fig. 2E). Text 
messaging, typing on a keyboard, and clicking a computer mouse 
represent exceptions, where the data show contributions between 
100 and 200 Hz because of impulse components of these motions. 
Nevertheless, the spectral content across all frequencies, the temporal 
characteristics of the signals, and the low-frequency information can 
help to distinguish these activities from scratching. In other words, 
the high-frequency components of the recorded signals are important 
indicators of scratch, but they must be used together with other 
features of the data to achieve high selectivity against a certain, rel-
atively small, set of confounding activities. Furthermore, measure-
ment of nocturnal scratching mitigates the need to differentiate 
from awake activities such as typing or text messaging. As an illus-
tration, movies S1 and S2 highlight a form of manual signal analysis 
that involves translation of the raw data into an audio file that can 
be interpreted in a manner analogous to that of sounds from a 
stethoscope. Various activities such as those described above can be 
immediately distinguished from scratching in this manner. These 
collective considerations motivate an ML approach to data analysis, 
in which various features, including but not limited to high-frequency 
content, contribute to a classification scheme for unmatched com-
bined levels of sensitivity and specificity.

Hand-mounted versus wrist-mounted scratch sensing
As mentioned previously, scratching behavior can occur via articu-
lation of the fingers, wrist, elbow, or shoulder. A key limitation of 
wrist-mounted sensors is the inability to measure motion associated 
with finger-only scratching and in difficulties in distinguishing be-
tween hand waving and scratching. Control studies reveal the per-
formance of the ADAM system compared to a wrist-bound system 
(Apple Watch Series 4) with an embedded mobile application pub-
lished previously to quantify scratch (18). The comparison focuses 
on two modes of scratching: one by articulating the arm and the 
other by only the fingers. To examine scratching by articulating the 
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arm, the set of activities includes knee scratching, hand waving, ab-
domen scratching, and head scratching in a sequence for 10 s sepa-
rated by 5 s of pause. The blue line represents the time series of the 
raw data, and the red line indicates the final binary classification 
results where 0 and 1 correspond to nonscratch and scratch, respec-
tively. The black dashed line highlights the classification results from 
Itch Tracker (18), with 0 representing nonscratch activity and 0.5 rep-
resenting scratch activity (Fig. 3A). While Itch Tracker captures knee 
scratching and abdomen scratching, it misclassifies hand waving 

and head scratching. The former likely follows from a heavy reliance 
on hand motions for scratch detection. The latter probably occurs 
because head scratching involves only short range of motions of 
the wrist. The ADAM system performs well across all of these and 
other scenarios.

Additional experiments explore scratching modes that involve 
only finger articulation (Fig. 3B). As with the previous comparison 
using the arm for scratching, the four activities include knee scratch-
ing, simulating scratching in the air, abdomen scratching, and head 

A

B

C

D

E

Fig. 2. Representative data collected by the ADAM sensor. (A) Sample time series data and spectrogram corresponding to scratching activities. Two modes of scratching 
are conducted on two body parts, dorsum of the hand (DH) and forearm (FA), in two intensities of high (H) and low (L). (B) Time series data of scratching activity in which 
five different body parts include head (hairy skin), arm (normal skin), abdomen (soft skin), knee (bony prominence skin), and the leg (hard skin). (C) Spectrogram of each 
time series data in (B). The signals due to the scratching activities have the energy in the 0- to 800-Hz frequency range. (D) Time series data in a wide range of nonscratching 
activities including simulated moving fingers in the air, waving hand, text messaging, typing on the keyboard, and clicking the mouse. (E) Spectrogram of each time series 
data in (D). The signals due to nonscratching activities have energy mainly in the range less than 200 Hz.
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scratching. In these activities, the Itch Tracker does not detect any 
instances of scratching because of the lack of motion at the wrist. 
On the other hand, the ADAM system detects all instances, and it 
even accurately discriminates scratching from pseudo-scratching 
(Fig. 3B). Simulated scratching motion in the air provides an addi-
tional test of the ADAM system. The major difference between 
scratching and pseudo-scratching is the presence of frequency sig-
natures above 100 Hz. While the ADAM system can capture fre-
quencies as high as 800 Hz, most wrist-bound accelerometers such 
as the Apple Watch record frequencies only as high as 50 Hz (i.e., 
sampling rate of 100 Hz).

Validation
A random forest (RF) classifier allows automated detection of 
scratching activities. The training dataset contains scratching data 
from 15 different body locations and 6 types of nonscratching activ-
ities collected from 10 healthy normal subjects (Fig. 4, A and B). 
Results from leave-one-subject-out cross validation (LOSO-CV) ap-
plied to the training dataset form the basis for optimization of the 
RF classifier. In this process, a dataset from a single participant 
serves as the testing dataset, and the remaining data allow training. 
Iterating this process across all participants allows each participant’s 
data to be used for testing once. The classification performance cor-
responds to averages from all iterations of the validation. LOSO-CV, 

unlike k-fold CV approaches, prevents the classifier from learning a 
confounding relationship within a subject’s dataset, with unrealisti-
cally high classification accuracy as reported by Saeb et al. (24). The 
RF model can be optimized by comparing the LOSO-CV outcomes. 
The parameters for this optimization include the number of trees in 
the RF classifier and the minimum required scratching (MRS) 
duration. The RF classifier is a meta estimator that fits a number of 
decision tree classifiers on various subsamples of a dataset. The 
choice of number of trees in the forest fairly balances the complexity 
of the model and its performance. Increasing the number increases 
the training time and the potential for overfitting. Thus, the optimi-
zation focuses on examining a different number of estimators, from 
10 to 200 trees, and comparing the LOSO-CV performance. The clas-
sification performance reaches a maximum value at approximately 
30 decision trees.

The MRS duration represents another optimization parameter. 
In the signal processing pipeline (Fig. 4C), the RF classifier returns 
predictions at a 1-s frame level. The outputs are subsequently clus-
tered using density-based spatial clustering of applications with noise 
(DBSCAN). The purpose of DBSCAN is to join two scratching frames 
in close proximity as a single scratching event. MRS defines the 
minimum number of frames to form a cluster of scratching events. 
MRS values from 1.5 to 8.5 s yield different classification performance 
using LOSO-CV. The performance increases with increasing MRS 

A

B

Fig. 3. Comparison of results obtained with an ADAM device on the hand and an Apple Watch with the Itch Tracker mobile application. Time series data and the 
spectrograms for various scratch (skin over the knee where there is a bony prominence, skin of the soft abdomen, and skin of complex surface head) and nonscratch activities 
(waving of hand and scratching motion in the air), with a 5-s pause between each activity. (A) Scratching by articulating the whole wrist. The Itch Tracker misclassifies 
hand waving as scratching and fails to detect scratching on the head. (B) Scratching by articulating only the fingers. The ADAM sensor reliably discriminates scratching 
the skin using only articulation of the fingers. The Itch Tracker cannot detect scratches using only fingers, given its mounting location on the wrist and its inability to 
record high-frequency information. Photo credit: Keum San Chun, University of Texas at Austin.
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up to 4.5 s and then remains constant for values up to 8.5 s (fig. S5). 
Improved performance can be achieved with further increases in 
MRS but with diminishing returns. For the analysis below, MRS is 
defined as at least 4.5 s.

The optimized RF classifier is applied to data collected from a single 
subject performing various scratching (the head, the arm, the abdomen, 

the knee, and the leg) and nonscratching activities (simulating scratch-
ing in the air, hand waving, texting on the phone, typing on a keyboard, 
and clicking a mouse). The corresponding time series z-axis acceleration 
data are in Fig. 4D, and the associated classification results are in Fig. 4E.

With the optimized RF classifier (30 trees) and MRS duration 
(4.5 s), LOSO-CV can be applied to the healthy, normal training 
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Fig. 4. Overview of datasets, signal processing pipelines, and validation methods. (A) The algorithm validation data were collected from 10 healthy normal volun-
teers. (B) Activities performed by each participant and their corresponding activity durations. (C) Preprocessing subsequently applied to the sets and segmented into 
frames by applying a sliding window of 1 s. From each frame, a set of features was extracted. With the feature set extracted from the training frames, a random forest (RF) 
classifier was trained. The trained classifier was applied to the test feature set for prediction and validation. (D) Time series data of our validation cohort with a single 
subject performing various scratching and nonscratching activities include 5-s pause periods between each activity. (E) The output probability for scratching is character-
ized as “1:scratch” if the probability exceeds 50%. The blue line is the probability of scratching for each frame, and the red line indicates the final classified result, where 0 
and 1 correspond to nonscratch and scratch, respectively.
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dataset to evaluate the performance. The results indicate an average 
precision of 94.4% and an average sensitivity of 87.8%. The overall 
accuracy is 89.1%. Table 1 summarizes the overall performance.

The RF classifier trained on the algorithm validation dataset can 
be used directly on the patient dataset from the clinical validation 
study. This evaluation reveals an average precision of 82.5% and an 
average sensitivity of 84.3% (Table 1). This is a notable improve-
ment from most of the previous work on automated scratch detection 
(table S2). Movie S1 illustrates a pediatric patient with AD wearing 
our sensor while scratching. The IR camera demonstrates scratch-
ing behavior that is subsequently coded. Note that scratching inten-
sity varied from the beginning to the end of the scratching event, as 
reflected in the IR video as a rigorous scratching motion and in the 
ADAM sensor data as a large amplitude signal.

DISCUSSION
Itch is one of the most common clinical symptoms of disease affecting 
both children and adults across dermatological and non-dermatological 
conditions. Despite the prevalence of itch and its profound impact 
on quality of life, accurate and convenient methods to fully charac-
terize itch and itch-associated scratching behavior do not exist for 
use either in clinical practice or in the home. Technologies that are 
able to precisely and reliably assess itch will serve as critically im-
portant tools for drug development, quantification of itch severity, 
and monitoring of treatment response.

Video surveillance with manual labeling is considered the gold 
standard as it allows accurate identification and quantification of 
scratching behavior. This technique is, however, both labor intensive 
and difficult to automate. These drawbacks, together with a range of 
associated privacy concerns, render this approach impractical for 
routine use (25). Wrist-bound accelerometers represent popular tools 
for collecting objective data in a wide range of clinical studies with 
adequate sensitivity but poor specificity (26). Some studies cast doubt 
on the clinical applicability of actigraphy data, due partly to poor 
correlations with AD disease severity and quality of life. Emerging 
approaches that exploit smartwatches in combination with ML 
algorithms outperform simple actigraphy-based methods (15). 

However, these systems cannot detect finger-only scratching, and hand 
waving and related gestures are misclassified as scratching (Fig. 3). 
As an example of an unusual approach, Noro et al. developed a 
wristwatch-shaped sound detection system to measure scratching 
sounds through bone conduction (27). Although the accuracy can 
approach that of video analysis, microphone-based systems involve 
substantial privacy concerns, and their performance degrades with 
ambient noise.

The ADAM sensor and scratch algorithm reported here offer key 
advantages. First, the soft flexible nature of the devices allows them 
to conform to the hands of a wide range of patients, as validated on 
children as young as four to full-grown adults, where they remain 
softly but robustly adhered during a range of natural activities. This 
aspect of the ADAM sensor is particularly suitable for investigating 
long-term changes of pathological symptoms such as nocturnal pruritus. 
For instance, with ADAM sensor, we observed notable nightly varia-
tion in scratching in a subset of patients with AD who wore the sensor 
for an extended period of time (10 days or more). This implies that 
averaging scratch duration over a more sustained period of wear 
time is likely necessary rather than a single night (fig. S6). Second, 
the system captures both low- and high-frequency acousto-mechanic 
signatures associated with scratching. The ability to effectively capture 
“acoustic” signals generated by scratching, without the need for a 
microphone, ensures both patient privacy and performance in noisy 
environments with no deterioration in signal quality. Last, the system 
is waterproof, wireless, and rechargeable with 7 days of continuous 
operating efficiency. These features enhance the ease of use and re-
duce user burden in both clinical practice and research trials.

Several limitations must, however, be noted. First, the clinical 
validation studies reported here involve only n = 11 subjects, due 
partly to the high degree of manual labor required to evaluate IR 
camera footage. However, this represents one of the largest cohorts 
studied to date for scratching (table S2) given the time intensity of 
data labeling—and the first, to our knowledge, in a pediatric cohort 
where AD is most prevalent. Future efforts will include additional 
patient testing across a wide range of clinical conditions beyond AD, 
with patients even younger than those studied here. Nevertheless, 
the findings in this paper show that training on healthy normal sub-
jects performing voluntary scratching activities can apply success-
fully to clinical data in a predominately pediatric population affected 
by AD. The outcomes, which follow from the unique distinguishing 
features in the data from the ADAM device, suggest remarkable lev-
els of generalizability and opportunities to develop algorithms tai-
lored to patient populations. Second, all measurements of scratching 
described here focus only on the dominant hand of the subjects. An 
additional sensor on the contralateral hand will provide additional 
information. Previous studies indicate no difference in scratching 
tendency for dominant or nondominant hands, suggesting that a 
single sensor does not lead to major information loss (26). Third, 
the clinical validation studies focus on AD patients only. Future work 
will examine applications to other medical conditions where itch is a 
predominant symptom. As a final comment, AD affects sleep to a 
substantial degree, particularly in children (5). The ADAM sen-
sor itself can recapitulate sleep stages against polysomnography, the 
gold standard method to assess sleep (16). An immediate opportu-
nity for additional work is in using two time-synchronized ADAM 
sensors to assess both scratch and sleep concomitantly.

This paper reports a unique hand-mounted, soft, flexible sensor 
and a data analysis pipeline for detecting scratching activities using 

Table 1. Classification results. The algorithm validation study used 
LOSO-CV and an RF classifier. The clinical study included manually labeled 
datasets from all 46 nights with the ADAM sensor mounted on the 
dominant hand of each subject. The algorithm developed in the 
algorithm validation study was then deployed on the raw data from the 
clinical study. The overall accuracy in the clinical study was 99.0% with a 
sensitivity of 84.3% and a specificity of 99.3%. The accuracy of the 
algorithm validation was lower (89.1%) due to a higher number of 
confounding activities to train the algorithm (e.g., typing and texting) that 
are not seen in nocturnal settings. 

Algorithm 
validation study 

(n = 10)
Clinical study 

(n = 11)

Sensitivity 87.8% 84.3%

Specificity 88.1% 99.3%

Accuracy 89.1% 99.0%

Precision 94.4% 82.5%

F1 score 89.8% 82.9%

 on M
ay 3, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Chun et al., Sci. Adv. 2021; 7 : eabf9405     30 April 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 11

high-frequency three-axis accelerometer data that capture features 
associated with both motions and acousto-mechanical signals. From 
a training study conducted with 10 participants, detection of scratch-
ing activity has an overall accuracy of 89.1% with a sensitivity of 
87.8% and a specificity of 88.1%. Clinical validation studies with 
11 participants reveal an overall accuracy of 99.0% with a sensitivity of 
84.3% and a specificity of 99.3%, even in naturalistic home environ-
ments. The small, flexible characteristics of the ADAM sensor and its 
reusability are key features that allow deployment in both research and 
clinical care settings. The promising results presented herein sug-
gest utility as a powerful methodological tool with the potential to 
accurately capture scratching activities not only in patients with AD 
but also in patients suffering from any generalized pruritic disorder.

MATERIALS AND METHODS
Sensor operation and performance
The high-bandwidth three-axis accelerometer in the ADAM sensor 
captures skin-conducted vibrations and overall motions associated 
with scratching behavior. The ADAM sensor captured acceleration 
along the x and y axes at a rate of 200 Hz, and the z-axis acceleration 
was sampled at a rate of 1600 Hz. The x and y axes were oriented 
parallel to the skin surface, whereas the z axis was perpendicular to 
the skin surface. The high-frequency content attenuates as the dis-
turbance propagates from its point of origination at the fingertips, 
along the fingers and to the hand and, ultimately, the wrist. The 
location of the sensor determines, in this manner, the nature and 
quality of the signals. Experiments to examine the dependence 
on mounting location involved a set of scratching activities (10 s of 
scratching by articulating the arm and 10 s of finger scratching were 
performed, each separated by 5 s of idle state) repeated with different 
placements and orientations of the sensor. On the basis of signal 

quality and considerations in wearability, the ideal location is be-
tween the metacarpal first and second digit.

Characterizing scratching
Scratching activity refers to a collection of movements that involve 
pressing the fingertips against a surface and moving the fingertips, 
causing friction. The friction between the fingertips and the surface 
generates vibrations that propagate along the surface. Scratching sig-
nals can differ from one another as the vibrations between the 
fingertips and the surface depend on many factors including, but 
not limited to, scratching speed, scratching intensity, and mode of 
scratching (e.g., only using fingers or moving the entire arm). 
Experiments to explore the time and frequency characteristics asso-
ciated with these factors included scratching the head, arm, knee, 
and leg and various nonscratching events such as hand waving, texting 
messaging, typing on a keyboard, clicking a computer mouse, and 
moving fingers in the air. In fig. S8, we show the predicted labeling 
for these confounders. The system performs best (>0.7) in distinguish-
ing finger scratching in the air, hand waving, and clicking a mouse.

Study design
Two datasets were collected independently for model development 
(training) and validation. The training data, collected in a controlled 
environment, served as the basis for developing an ML algorithm for 
detecting scratching behavior. The validation dataset was collected 
from AD patients in their naturalistic home environments (Fig. 5A). 
These data were used to evaluate the generalizability of the ML algo-
rithm. A total of 10 participants (5 males and 5 females) participated 
in the training data collection, with ages between 22 and 27 years old 
(24 ± 1.6). The validation data collection involved 11 patients (2 males 
and 9 females) with moderate to severe AD, with ages between 4 and 
24 years old (10 ± 9.1).

A B

C

Fig. 5. Validation data summary and extracted features. (A) The clinical validation was conducted in a natural home environment with predominately pediatric AD 
patients (median age, 10.5 years). An IR camera was used to record scratching behavior of human subjects and was manually graded by two clinical research staff members. 
(B) A total of 11 AD patients were recruited, generating a total of 46 nights of data in a pooled analysis. (C) A total of nine features were used for LOSO-CV. They are listed 
in order of their feature importance obtained from the RF classifier. Photo credit: Jan-Kai Chang, Wearifi Inc.
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The training data were collected from healthy normal individuals. 
The participants performed a set of scratching and nonscratching 
activities, each lasting for approximately 35 s. The scratching activities 
were performed over clothes on the thigh, abdomen, upper arm, calf, 
knee, and shoulder. Each participant then scratched the skin on the 
inner elbow, outer elbow, forearm, dorsum of the hand, cheek, head, 
palm, and neck. Rubbing was considered as a variation of scratching 
for purposes of these studies. These scratching activities were each 
performed twice, once while sitting on a chair and another while 
lying on a bed. For nonscratching activities, the participants waved 
their hands, sent text messages to friends, tossed and turned on a 
bed, sat idly, typed on a keyboard, and tapped on a desk. These non-
scratching activities were included as potential confounders for 
actual scratching activities. Data captured from each activity were 
saved as separate files with descriptions of each activity, annotated 
as scratching or nonscratching.

The validation data were collected from AD patients in their home 
environment as part of a clinical study approved by the Institutional 
Review Board of Northwestern University and the Ann & Robert 
H. Lurie Children’s Hospital (IRB 2018-2111). The inclusion criteria 
included any patient with mild to severe AD older than 2 years of age. 
Patients with active skin or systemic infection were excluded. Eligible 
participants were screened in the Northwestern Medicine Depart-
ment of Dermatology clinics and other pediatric dermatology or 
allergy providers at Ann & Robert H. Lurie Children’s Hospital. 
A total of 11 subjects were recruited for the validation data collection 
(Fig. 5B). For subjects who agreed to participate, a written consent 
form was first obtained. Clinical research personnel then completed 
an eczema area and severity index (EASI) assessment and investigator’s 
global assessment (IGA) of each patient. After completion of EASI 
and IGA, each patient was trained on procedures for operating the 
ADAM sensor and collecting nocturnal data. During the training, 
the patients were provided with specific instructions about placing the 
ADAM sensor on the dorsum of the hand and securing it with a Coban 
self-adherent wrap. The patients then received a package containing 
the ADAM sensor, an iPhone, tripod, IR camera, charging equipment, 
instruction manual, and checklist. During the collection of validation 
data, each patient’s nocturnal activities were recorded with an IR video 
camera. The ADAM sensor data were compared with the IR video 
data for data annotation. This annotation process was performed 
using a data visualization and annotation software (fig. S7) (28).

Validation
CV has been frequently used in many ML applications as it provides 
a simple and effective way of evaluating classification models (29). 
In CV, the number of folds is a parameter that specifies how data 
are split into training and testing sets. We used LOSO-CV to assess 
the performance of the model as it is known to perform well on real 
world data (30). After the model was optimized on the training dataset, 
we evaluated the performance of the model in cross-study validation 
where the trained model is applied to the clinical validation dataset 
collected in the home environment. The cross-study validation exam-
ines the generalizability of the algorithm as the training dataset, and 
the validation datasets were independently collected.

Data analysis
In this study, we focused on the z-axis acceleration data because the 
critical information about scratching pertains mainly to out-of-plane 
skin vibrations. The raw z-axis acceleration data were processed 

through a signal processing pipeline as illustrated in Fig. 4C. In the 
first step, the raw data were passed to the preprocessing block to 
remove the baseline wander of the data caused by slow, large-scale 
motions. Thus, low-frequency baseline wandering is removed from 
the signal processing pipeline to allow greater emphasis of the more 
specific high-frequency signal components. Subsequently, the pre-
processed z-axis acceleration data were segmented into frames by 
sliding a 1-s window with an overlap. For training, 90% overlap was 
used, and for testing, 50% overlap was used. Each frame was assigned 
a label of 0, indicating nonscratching activity if less than 50% of the 
data points in a given frame were labeled as scratching activity. Other-
wise, the frame was assigned a label of 1, indicating scratching activity. 
From each frame, a set of features shown in Fig. 5C were extracted, 
and these features were used to train and validate an RF classifier.

Comparison with wrist-mounted scratch detection
An Apple Watch Series 4 was placed on the left wrist, and an ADAM 
sensor was placed on the dorsum of the left hand. This configuration 
was intended to synchronize the data collected from both devices for 
purposes of direct comparisons. Tight coupling of the Apple Watch 
Series 4 to the dorsum of the left hand was verified by ensuring that 
the smartwatch could not be rotated freely around the wrist. Similarly, 
the tight attachment of the ADAM sensor was verified by flexing and 
extending the left hand, ensuring that the ADAM sensor stayed in 
contact with the skin. After placing the sensors, a set of scratching 
and nonscratching activities was performed in sequence (Fig. 3). 
One of the scratching activities involved the movement of the 
entire arm/hand, while the other scratching method only used 
fingers. In addition, a simple hand waving activity was performed to 
determine an ability to differentiate simple hand motion from 
scratching activity.

Interrater reliability
For the clinical validation study, IR video served as the ground truth. 
Annotation was performed on the basis of visual inspection and 
human judgment. To evaluate the interrater reliability of annotation, 
annotation was performed again by a different researcher (E.A. or 
H.C.) on data from three patients within the validation dataset. 
The labels from two researchers were compared using Fleiss’ kappa 
(31). The average of kappa was 0.88. According to Landis and Koch 
(32), annotations with such a kappa value are considered to be in 
good agreement.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/18/eabf9405/DC1
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