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ABSTRACT: Skin-interfaced wearable systems with integrated
colorimetric assays, microfluidic channels, and electrochemical
sensors offer powerful capabilities for noninvasive, real-time sweat
analysis. This Perspective details recent progress in the develop-
ment and translation of novel wearable sensors for personalized
assessment of sweat dynamics and biomarkers, with precise
sampling and real-time analysis. Sensor accuracy, system rugged-
ness, and large-scale deployment in remote environments represent
key opportunity areas, enabling broad deployment in the context of
field studies, clinical trials, and recent commercialization. On-body
measurements in these contexts show good agreement compared to conventional laboratory-based sweat analysis approaches. These
device demonstrations highlight the utility of biochemical sensing platforms for personalized assessment of performance, wellness,

and health across a broad range of applications.
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B INTRODUCTION

The shifting paradigm in clinical practice to evidence-based
care underscores the critical need for an expanded suite of
capabilities for the rapid and continuous assessment of digital
and metabolic biomarkers relevant to human health."”
Traditional eminence-based approaches to patient care,
which have relied on the informed opinions of medical
practitioners for selection of a course of therapy, have yielded
to evidence-based clinical strategies that employ quantitative
metrics to inform therapeutic interventions and treatment
efficacy.” Although recent studies demonstrate the power of
this approach in assessing therapeutic benefit (e.g, surgical
interventions,”” off-label drug use6_8), evidence-based medi-
cine remains, by nature, reactive—capable of supporting
treatments for an active, symptomatic disease state. Extending
evidence-based approaches that enable proactive interventions
during periods of healthy living and early onset of disease
requires the advent of new digital health tools and analytics
that not only track physiological health status but also alert to
subtle perturbations.

Skin-interfaced wearable systems offer multiparameter
sensing capabilities to address these limitations by monitoring
the diverse range of signals arising from natural physiological
processes.” Novel instruments that track the biochemical (i.e.,
electrolytes, metabolites, hormones), biophysical (i.e., temper-
ature, biopotentials, hemodynamics), and kinematic (e.g,
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movement, posture, gait) signals from the body provide
critically valuable information about overall health status.'’
Conventional wearable systems support the quantitative
assessment of select physiological parameters via wrist-worn
(e.g., smart watches), chest-strapped (e.g, heart-rate mon-
itors), and apparel-integrated (e.g, sun exposure monitors)
device form-factors. Continuous glucose monitors (CGMs)
have been commercialized and widely adopted, highlighting
the enormous potential for real-time biochemical sensing of
glucose levels for diabetics. For devices worn continuously, the
ubiquitous nature of such systems can yield important health
insights from a limited range of health markers.'" Nevertheless,
these conventional platforms typically lack the ability to
noninvasively characterize multiple biomarkers and the under-
pinning metabolic processes essential to overall health.
Blood-based analysis is the primary approach to monitoring
body chemistry via invasive sampling (blood draw) and
expensive, centralized laboratory equipment.'” Biofluids such
as tears, interstitial fluid, and sweat are attractive alternatives
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for noninvasive sampling and analysis."* Of these alternative
biofluids, eccrine sweat is of particular interest'>'* on account
of the rich composition of biochemical information including
micronutrients (electrolytes), metabolites, hormones, proteins,
nucleic acids, and exogenous agents'>~*° and suitability for
facile, noninvasive collection. Emerging classes of skin-
interfaced wearable platforms harness recent advances in soft
microfluidics, flexible/stretchable electronics, and electro-
chemical sensing technologies to support the continuous or
intermittent assessment of sweat composition in a variety of
conditions or settings.">*'~** The resulting time-dynamic
insight these platforms offer into metabolic activity is critical
for creating a comprehensive understanding of health,
nutrition, stress, and wellness status.

This perspective offers an overview of the current state-of-
the-art for wearable sweat biosensors, with particular emphasis
on the application use cases for these sensors. The nascent field
is of considerable interest with recent reviews'"'**%>>7*
contextualizing the progress of wearable sweat sensors within

9,15,18,23,24,55

the scope of skin-interfaced devices, sensing
13,22,24,56-63

technolo

§1 es, s applica-
L 10,17,19,91,57,61,64,65 . -
tions, %> material systems, and fabrication
methods.

By contrast, this perspective highlights the most
advanced translational embodiments spanning the fundamental
use cases for these platforms in relationship to sensing targets.
A short introductory section summarizes key considerations in
terms of sweat collection and the sensing architectural
constructs that form the foundation of these wearable systems.
The section that follows broadly classifies the application
targets according to athletic performance and clinical
diagnostics with representative examples of the current
approaches. The perspective concludes with a discussion of
efforts to expand the overall utility of these sensors for
diagnostic applications, in which clinical validation of sensor
technologies will be critically important for commercialization.

pecific
66,67

B SWEAT ANALYSIS: SAMPLING METHODS AND
ANALYTICAL APPROACHES

Wearable, sweat-based platforms must address sweat collection
for a diverse range of applications including passive sweat in
fragile infants to intense physical exertion in athletes and
warfighters. These sensors must function in arid, hot
temperatures, under high humidity conditions, and even
during aquatic activities. Across all use cases, these platforms
must establish and maintain a conformal, intimate interface
with the epidermis to support robust sweat collection and
analysis. Soft, wearable microfluidic devices utilize biocompat-
ible, low-modulus elastomeric (e.g., poly(dimethylsiloxane),
PDMS) substrates and hypoallergenic silicone adhesives to
support a robust, watertight interface for the pristine capture
and clean storage of sweat. Activated eccrine sweat glands
excrete sweat at a natural pressure sufficient to route sweat
through networks of microfluidic channels and reservoirs.”” As
detailed in recent reviews, >3 #0270 the integration of
optical (e.g., colorimetric,”””' ™" fluorescent® ~** assays) and
electrochemical**>*3%* = sensors, either singularly or in
tandem, enable quantitative analysis of sweat biocomposition.
Constraints from operating conditions, body-interfacing
locations, and time-dynamic biochemical variations in sweat
composition necessitate sophisticated lab-on-chip design
strategies to obtain high-quality measurements. These
competing requirements define the chemical sensor perform-
ance specifications for precision, sensitivity, selectivity, opera-
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tional stability, operational lifespan, methodology of data
transfer, and power requirements.

Sunple, adequate stimulation of sweat remains a long-
standing” and significant”” ™"’ challenge for sweat-based
analytical platforms. Intense physical activity, exposure to
heat stress, and localized chemical inducement are the core
methods for generating sufficient microliter volumes of sweat
for biochemical analysis with suitability defined by target
application.'®"%°7'%* Whereas exercise-based stimulation
serves as the primary means for athletic performance
momtormg (Figure 1A), clinical diagnostics support on-
demand analysis through the transcutaneous delivery of a
cholinergic agonist via iontophoretic stimulation®’ (Figure 1B)
to activate localized sweat glands. For a given sensing
application, a key consideration in tandem with the mode of
deployment (ambulatory vs stationary individual) is the
dependence of both the rate of sweat production'®® and the
biochemical composition'*”'°*'*” on the stimulation method.
Additionally, these methods are not amenable to applications
that require frequent, repeated stimulation events (as
comparable to blood glucose measurements). Recent efforts
to support daily health assessments demonstrate the potential
for collection of sweat at a consistent flow rate'”® generated
either during showering®® (Figure 1C) or by natural
perspiration processes' ' (Figure 1D). By virtue of the
passive nature and circumvention of resource and exertion
requirements, these alternative stimulation methods may
significantly expand the breadth of potential applications for
sweat analytics.

Emerging from early device designs’" of simple networks of
microfluidic channels and reservoirs, current wearable micro-
fluidic platforms employ a suite of sophisticated design
strategies to collect and route sweat. Valves are a key
component to many fluidic platforms and thus permit the
direct capture and routing of sweat from the epidermis to
target regions of a device in a programmatic manner. Most
demonstrations™ (Figure 2A) are passive in nature (ie.,
battery-free) relying upon fluidic resistance changes,”” one-
time chemical reactions (e.g, sodium polyacrylate, a super-
absorbent polymer),”* or surface functionalization (hydro-
phobic/hydrophilic surfaces)''” to control fluid flow via a
series of irreversible stop-points. A recent device embodi-
ment”’ employs an active valve concept comprising the
combination of thermoresponsive poly(N-isopropylacryla-
mide)-based hydrogel and wireless heating elements to enable
dynamic control of sweat transport in response to physical
actuation of hydrogel size (Figure 2B). These valve concepts
offer nuanced control over fluid routing,** which is key both
for accurate sensor performance and for correlating the time-
dynamic response of sweat constituents to physiological
parameters (e.g, mental state, physical activity). Valves are
of particular interest for optical sensing approaches. Colori-
metric and fluorescence-based sensors operate by reacting a
defined sweat volume with a chemical or molecular assay to
generate an optical signal proportional to target analyte
concentration. Integration of networks of valves enable fully
passive optical sensors to “chronosample” sweat''® as
described in Figure 2A, either in time or in fixed volumes, to
provide quantitative measurements at defined intervals. By
contrast, electrochemical sensors, typically employed for
continuous sweat monitoring, require constant flux of sweat
over the sensor surface to maintain analytical perform-
ance.* #9011 Tntegration of such sensors with networks
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Figure 1. Methods for sweat stimulation. Typical methods for sweat
stimulation include (A) physical activit:y86 or (B) pharmacological
stimulation.”” Adapted with permission from ref 86, Copyright 2019
American Association for the Advancement of Science, and ref 87,
Copyright 2018 John Wiley and Sons, respectively. Alternative
approaches seek to collect sweat passively using (C) thermal
stimulation via showering88 or (D) wicking materials.”” Adapted
with permission from ref 88, Copyright 2019 The Royal Society of
Chemistry, and ref 89, Copyright 2021 American Chemical Society,
respectively.
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of active or passive valves enables discrete activation of sensors,
deconvolution of flow-rate effects, and programmed sensing at
selected time intervals.

The expanding library of valving approaches, in combination
with other emerging design concepts such as integrated mixing
systems,' " facilitates the development of devices capable of
high-precision sensing of sweat biomarkers. Research efforts
seek expanded sensing capabilities to support the long-term,
real-time monitoring of sweat biomarkers in a battery-free
manner. Use of smartphone-based image analysis offers a
simple, direct mode for biomarker analysis; >%*%%!%!”
however, this analytical pathway is ill-suited for assessing
time-dynamic information in demanding applications (i.e.,
during active physical exercise). One recent embodiment’
employs sweat-activated galvanic cells to serve as a series of
“stopwatches” to establish time stamps for passive colorimetric
measurements during an activity period (Figure 2C). Other
approaches harness sweat-based biofuel cells” to generate
sufficient power to record and store measurements from
electrochemical sensors during an activity to be retrieved via a
wireless data transfer at the conclusion of the testin(g period
(Figure 2D). Implementation of such strategies''*~'** enables
epidermal microfluidic devices to support multiple sensing
modes (optical/electrochemical) in a battery-free form factor.

As described elsewhere, ' >19162455: 1217123 o ine sweat
contains a wide range of metabolites, electrolytes, and
xenobiotics that offer detailed clinical insight into disease
states and valuable information regarding overall health. Many
target sweat biomarkers are present only in extremely low
concentrations.”’ Transduction of meaningful signals from
these low-concentration species requires careful consideration
of strategies to mitigate sample loss, biofouling of sensor
surfaces, sample contamination, and deconvolution of
interfering factors.** Optimizing device and sensor geometries
yields powerful advantages in this context. Figure 2E highlights
a recent strategy’’ to reduce sample loss from device
deformation with a device construct that directly integrates
impermeable, rigid channels within a soft, compliant polymer
matrix. Resistant to deformation from physical impact, the
optimized device geometry maintains a robust, conformal
interface with the epidermis to support sweat collection and
analysis. A similar approach'** offers improvements to the
robustness of integrated sensors such as in the utilization of
novel material designs to circumvent biofouling on the surface
of electrochemical sensors. Both examples reduce or eliminate
interference effects for devices during operation; however,
certain biomarkers (sweat chloride for cystic fibrosis) may
require ex situ analysis necessitating consideration of external
contamination factors. Eliminating operator interaction
through utilization of custom extraction hardware” represents
one such strategy for obtaining a “clean” sweat sample free of
interfering contaminants (Figure 2F). In all cases, obtaining
meaningful insight from wearable sweat sensors requires
operational performance to remain invariant to external
environmental factors."> To this end, recent efforts'* seek to
decouple target signals from interfering species, codependent
biomarkers (e.g., pH, temperature), and other sources of noise
(e.g., motion, biophysical signals). Further technical progress
necessitates sophisticated sensing strategies and complex
device designs to address these expanding challenges of
sweat stimulation, fluid handling, and contamination. Such
developments are critical for obtaining meaningful physio-
logical insight from sweat in a variety of potential use cases.

https://doi.org/10.1021/acssensors.1c01133
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Figure 2. Technology foundations for wearable sweat sensing. Fluid Handling: networks of (A) passive’® or (B) active valves”' enable sophisticated
routing of harvested sweat in a programmatic manner. Adapted with permission from ref 90, Copyright 2017 John Wiley and Sons, and ref 91,
Copyright 2020 Springer Nature, respectively. Timing: nuanced designs integrate sensing features such as sweat-activated galvanic cells shown in
(C) to enable temporal analysis of sweat constituents.”> Adapted with permission from ref 92. Copyright 2019 John Wiley and Sons. In large arrays
(D), such biofuel cells support battery-free electrochemical sensing of sweat.”> Adapted with permission from ref 93. Copyright 2020 American
Association for the Advancement of Science. Advanced designs. Optimization of mechanical properties (E) address sensing challenges in high-
impact environments.”* Adapted with permission from ref 94. Copyright 2020 John Wiley and Sons. Utilization of customized extraction hardware

(F) assists in reducing sample contamination.” Adapted with permission from ref 95. Copyright 2021 Elsevier B.V.

Such considerations must occur in tandem to the demands B PERFORMANCE HEALTH MANAGEMENT

imposed by application-specific requirements. Many commercial demonstrations of performance driven

wearable devices have focused on monitoring physiological
H TRANSLATIONAL APPLICATIONS and biomechanical signals during physical activity."”" Initially
developed for professional athletes, wide adoption of fitness
trackers over the previous decade illustrates the growing
consumer interest in understanding the activity-dependent
response of the human body to physical stress.”> Such insight
is essential for reducing the risk of injury, monitoring recovery
times, and improving overall well-being. Although capable of
assessing the core biophysical and kinematic signals for this

Wearable platforms for real-time sweat analysis represent a
significant advancement for providing personalized and
actionable insights across a variety of applications spanning
athletic performance to daily health monitoring. Integration of
advanced sensors and fluid-sampling designs coupled with soft,
flexible substrates establishes a powerful foundation for

expanding the suite of biochemical markers and physiological purpose, these existing wearable platforms lack the sensing
signals accessible to the wearer. The sections that follow capabilities necessary to monitor metabolic health.'*® This
highlight emerging epidermal microfluidic devices broadly section describes the latest representative skin-interfaced
categorized by use for performance health management and microfluidic devices deployed for ambulatory metabolic health
clinical diagnostics. assessment.
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Springer Nature, respectively. (E) Emerging device architectures integrate chemesthetic sensors and user-activated valves to alert wearers to
anomalous physiological conditions during exercise."* Adapted with permission from ref 130, Copyright 2019 Springer Nature.

Thermoregulatory sweat response is essential for maintain- fluid replenishment.'”""** Practitioners and athletes typically
ing homeostasis and gives rise to the loss of water, electrolytes, estimate whole-body sweat loss by recording changes in body
and other sweat constituents during physical activity.'” mass after physical activity.'”® This approach requires high-
Excessive total sweat fluid and electrolyte losses could impair fidelity measurements through careful adherence to testing
cognitive and athletic performance or result in severe protocols and precise accounting of fluid intake and urine loss
conditions such as heat stroke or death.'”’ These effects during the exercise period to obtain meaningful, albeit
manifest as changes in sweat parameters (rate, composition) retrospective, insight. By contrast, regional sweat sampling
and tend to vary widely across individuals.'” Differences in estimates whole-body sweat loss by collecting sweat from a
physiology, training, activity type, physical intensity, and the localized anatomical site via absorbent pads, filter paper, or
surrounding environment necessitate personalized hydration plastic coils and specialized, wired equipment.'*” Although
strategies based on individual sweat profiles to ensure adequate more practical, the absence of a standardized assessment
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diagnosis of cystic fibrosis (CF). Recent reports demonstrate (A) the first large-scale study of a soft, flexible epidermal platform (“sweat sticker”)'*°
for clinical diagnosis and (B) the use of wearable sweat sensors for monitoring sweat chloride levels outside of clinical settings."*' Adapted with
permission from ref 140, Copyright 2021 American Association for the Advancement of Science, and ref 141, Copyright 2020 Springer Nature,
respectively. Emerging sweat biomarkers: Use of sweat glucose as a noninvasive replacement for blood glucose monitoring in diabetes management
is of academlc and commercial interest with recent efforts demonstrating sensors for monitoring sweat glucose levels (C) at rest® and (D) during
exercise.''" Adapted with permission from ref 83, Copyright 2020 American Chemical Society, and ref 111, Copyright 2020 Amerlcan Chemical
Society, respectively. (E) One embodiment demonstrates glucose monitoring during exercise in a wireless, battery-free form factor.''® Adapted with
permission from ref 116. Cozpyright 2019 American Association for the Advancement of Science. Other tar§ets of interest include the concentration
of (F) uric acid in sweat'** (for gout), (G) various cytokines'*’ (inflammation, fever), (H) vitamins'** (nutrition monitoring), and (I) illicit
drugs."*® Adapted with permission from ref 142, Copyright 2020 Springer Nature; ref 143, Copyright 2021 John Wiley and Sons; ref 144,
Copyright 2020 American Association for the Advancement of Science; ref 145, Copyright 2021 American Association for the Advancement of
Science, respectively. (J) Device designs exploiting wicking materials enable passive (i.e., absence of active sweating) multiparameter monitoring of
disease biomarkers or the concentration of drug therapeutics."** Adapted with permission from ref 146. Copyright 2021 Springer Nature.
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method has historically restricted the utility of regional
sampling resulting in the generation of only limited
physiological insight.

Epidermal microfluidic devices offer powerful capabilities for
accurately monitoring sweat dynamics by virtue of the
conformal, fluid-tight interface. These devices harvest sweat
directly from sweat glands in a manner that isolates the sample
from environmental contaminants thereby enabling precise,
real-time characterization of sweat biomarkers. Although the
performance of these sensing platforms has been extensively
validated for a variety of biomolecular targets and sensor
architectures,”>*> there is an absence of studies correlating
regional measurements from such wearable sensors and the
whole-body sweat response. A recent report' > (Figure 3A)
represents the first large-scale systematic study (N = 312)
correlating regional and whole-body sweat rate and sweat
chloride measurements using a soft, flexible microfluidic patch.
The device comprises two discrete networks of microfluidic
channels which contain either an integrated colorimetric assay
for quantifying sweat chloride concentration or a highly visible
dye to facilitate the assessment of sweat volume. Use of a
smartphone and companion app enables digital image capture
and automated measurement of instantaneous sweat rate,
sweat chloride, and total sweat loss. Contralateral comparisons
of these epidermal microfluidic devices to absorbent patches in
combination with whole-body sweat measurements in a
controlled laboratory environment demonstrate good agree-
ment between the predicted (from regional measurements)
and measured whole-body sweat rate and sweat chloride
concentrations (mean absolute error of 14% and 13%,
respectively), which serves as the basis for actionable hydration
feedback.

Establishing a strong correlation between regional and
whole-body sweat-based measurements represents a key step
for developing new insights into the physiological relevance of
sweat biochemical signals. In addition to fluid and chloride
loss, the concentration of glucose,lzs’”’4 lactate,'3/13¢
ammonia,">” and cortisol'*® in sweat has value for monitoring
athletic training and conditioning. Varying dynamically with
physiological status (diet, stress, overall health) and activity,”
biomarker concentrations also correspond to dynamic
variations in instantaneous sweat rate.'”>'*” Recent efforts
(Figure 3B—D) offer the requisite temporal resolution of
instantaneous sweat rate to deconvolve this variability with
real-time continuous sensing strategies. Representative devices
integrate electrical conductivity'”” (Figure 3B), capacitive'**
(Figure 3C), or temperature129 (Figure 3D) sensors with
wireless data transfer and ultrathin batteries to support
continuous monitoring of physiologically relevant sweat rates
(0 to 5 L min~"). Conductive'*” or capacitive methods utilize
electrode pairs embedded in microfluidic channels to measure
the change in conductivity or capacitance across the channel as
sweat fills. The conductive method comprises direct contact to
sweat and electrodes, whereas the capacitive method relies on
noncontact measurement of sweat fill into the device. An
alternative noncontact approach measures real-time sweat flow
rate using a localized heater embedded between two
thermistors. This design architecture can quantify flow rates
with high sensitivity and without direct contact within the
microfluidic device. Sensing platforms that leverage real-time
sweat rate measurements with highly sensitive and selective
multiparameter sensors for monitoring low-concentration
sweat constituents (e.g., cytokines) may yield further insights
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for assessing the health status of athletes during activity,
recovery, and rest.

A logical progression for performance assessment is the
development of bidirectional communication between the
device and user upon detection of an anomalous physiological
event (e.§., dehydration). Figure 3E shows a skin-interfaced
platform™” that circumvents the need for user engagement
during wear with the automated delivery of sensory warnings
via sweat-triggered chemesthetic agents. The device deploys an
effervescent pump to eject menthol (or capsaicin) onto the
epidermis when a dehydration condition is detected due to
excessive sweat loss.

The device geometry and reversible visual sweat indicators
permit the sensor to be manually reset after rehydration. In the
aggregate, these representative platforms constitute key
advances in establishing the compatibility of regional sweat
analysis at prescribed anatomical locations with development
of holistic personalized hydration strategies or for athletic
performance monitoring,

B CLINICAL DIAGNOSTICS

Prior to the advent of epidermal microfluidic sensors, few
applications have existed for clinical utilization of biochemical
sweat analysis. Chloride is a critical sweat biomarker used in
clinical diagnostics of cystic fibrosis (CF). Diagnosis of CF is
perhaps the oldest sweat-based dia%nostic based upon recorded
instances from the Middle Ages.'*’ Established clinically in
1959,"*® quantitative evaluation of sweat chloride in neonates
remains the only widely available method for confirmatory
diagnosis of cystic fibrosis. Conventional clinical diagnostic
methods are cumbersome; they utilize wrist-strapped devices
to collect sweat from infants that often produce insufficient
sweat for analysis. Recent work'*’ (Figure 4A) highlights the
immense promise of wearable sweat sensors in mitigating such
diagnostic and interfacing challenges. This demonstration
utilizes a soft elastomeric microfluidic platform and a skin-
safe adhesive to maintain conformal integration with the skin
to facilitate near-perfect efficiency in collecting sufficient sweat
volumes for analysis (N = 51, infants to adults). Integration of
colorimetric chloride sensors with advanced image processing
techniques enables smartphone-based image analysis to
quantify sweat chloride levels with an accuracy similar to the
established clinical method (coulometric titration) in a limited
study (N = 5, adults). Another device platform'*” integrates a
salt-bridge based potentiometric sensor with wireless Blue-
tooth communications to monitor sweat chloride concen-
tration from a smartphone in real-time during exercise. A small
field study highlights performance for adult patients with (N =
10) and without (N = 10) cystic fibrosis. Although these
platforms and others'*”'*" demonstrate immense potential to
improve cystic fibrosis diagnostics, substantial expansion of
clinical study populations is a requisite for establishing
operational performance equivalence to current clinical
methods."”

Resulting from recent interest in utilizing sweat as a
noninvasive target for metabolic health monitoring, consid-
erable research efforts seek to expand the utility of diagnostic
sweat testing from CF and atopic dermatitis to diabetes. Self-
testing and frequent assessments of blood glucose concen-
tration are vital components to diabetic health management
strategies.'>” Conventional sensing approaches for daily
assessment rely on invasive, painful, skin-piercing microneedle
sampling (finger prick). Although continuous glucose monitor-
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ing systems'**'*> may mitigate the need for frequent self-

testing, development of a noninvasive, pain-free glucose
monitoring device remains of intense academic and commer-
cial interest. Sweat represents an attractive biofluid in this
context, as recent studies demonstrate a linear correlation
between sweat and blood glucose levels."**~"°° One recent
demonstrator device®> (Figure 4C) employs a ratiometric
fluorescence sensing strategy to detect the onset of hyper-
glycemia during sleep. A simple wearable pad containing
coimmobilized functionalized dual-fluorescence nanohybrid
substrates (luminescent porous silicon nanoparticle/carbon
quantum dot structure with bimetallic nanoparticles) and
glucose oxidase measures sweat glucose concentration by
monitoring a proportional color shift (red to blue) under UV
illumination using a smartphone camera.

A recent paper''' (Figure 4D) reports the utilization of a
Janus-wettability (hydrophobic/hydrophilic) textile band to
self-pump microdroplets of sweat from the epidermis to
functionalized chronoamperometric sensing electrodes to
monitoring concentrations of glucose, lactate, Na*, and K* in
sweat. Another approach116 (Figure 4E) achieves wireless,
battery-free sweat glucose monitoring during physical exercise
from biofuel cell glucose sensors, near-field communication
(NFC) technology for data retrieval, and a smartphone. The
biofuel cell-based glucose sensor generates electrical signals in
proportion to the concentration of glucose, which circumvents
the need for a potentiostat (as required for amperometric
sensors) thereby minimizing overall device size. The
integration of colorimetric sensors for sweat chloride and pH
in addition to biofuel cell lactate sensors permits simultaneous
multiparameter analysis of metabolic activity and overall
physiological state.

Other wearable sensor designs seek to harness blood-
correlated biomarkers beyond chloride and glucose (e.g.,
lactate,"*' 7' ethanol,"*® and cortisol'®*'®”) to address
diagnostic challenges related to diabetes and other diseases.
Recent examples of wearable electrochemical sensing platforms
demonstrate the promise of sweat analytics for monitoring
biomolecular changes relevant to diseases such as gout142 (uric
acid, Figure 4F) or general conditions such as fever'*
(cytokines, Figure 4G). A nitrile glove-based system, with
integrated electrode sensors' ** (Figure 4H), provides in situ
monitoring of sweat biomarkers including ethanol, Zn, pH,
chloride, and vitamin C. The glove creates a local environment
that is conducive to passive sweat induction and analysis across
multiple biomarkers. To achieve a broad target specificity, a
recent study'*> (Figure 4I) uses flexible plasmonic metasurface
designs with surface-enhanced Raman scattering (SERS),
whereby the intensities of the biomarkers are measured via
Raman spectrometer equipped microscope. Because the SERS
spectrum is different across different biomarkers, the sensor
showed robust target specificity compared with wearable
electrochemical sensors. Another recent demonstration
device'*® (Figure 4]) circumvents the need for aggregate
sweat collection or physical activity with a design that
integrates hydrophilic wicking materials, an optimized micro-
fluidic channel network, and electrochemical sensors to collect
and analyze thermoregulatory sweat at a resting state.
Supported by small pilot studies, this platform is capable of
monitoring the onset of disease conditions (hypoglycemia)
and variations in psychological factors (stress) through changes
in sweat rate as well as the time-dynamic variations in
concentration of drug therapeutics (Parkinson’s disease)
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through electrochemical analysis. These and other recent

93,138,143,145,168—173 1 : 1.1+ eee
examples highlight the powerful capabilities
that wearable sensors offer for noninvasive clinical diagnostics
and disease management.

B FUTURE OPPORTUNITIES AND
COMMERCIALIZATION

Rapid manufacturing and process development of wearable
sweat sensors has gained significant traction recently, due in
part to the convergence of key advances in flexible electronics,
biochemical sensors, and materials science. The initial cohort
of epidermal microfluidic sensors established an analytical
pathway for obtaining personalized, real-time, continuous
assessment of physiological parameters relevant tracking and
managing hydration and human health. The wearable sweat
sensing platforms highlighted here represent key technological
developments for realizing this significant potential. While
these milestones suggest rapid maturation of this class of
technology, a few key challenges remain before widespread
adoption could be achieved.

Continued progress requires technological innovations with
particular emphasis on scale-up manufacturing and robustness.
An important frontier of this research is in the integration of
multimodal sensing platforms for monitoring biochemical and
biophysical parameters in a continuous, long-term mode of
operation. This necessitates consideration of sensor perform-
ance within a broad context of power management, wireless
communication, and data acquisition of fully integrated
biochemical sensing systems. The recent emer-
gence”>' 971747177 of biofuel cell-based self-powered wearable
sensors represents a successful pathway to realizing such a fully
integrated platform.

The complex composition of sweat poses some of the most
interesting challenges for wearable sweat sensors. In contrast to
conventional laboratory-based analytical methods, these
sensing platforms must operate in a robust, stable manner
under dynamic conditions and without the oversight of skilled
technicians. Demonstrations of selective and multimodal
sensors offer routes toward rapid, repeatable on-body measure-
ments; however, certain constructs exhibit susceptibility to
measurement errors caused by biofouling, varying ambient
conditions (e.g., temperature or pH fluctuations), and motion
artifacts. Although highly multiplexed sensors and nuanced
device designs can mitigate such influences, the development
of new encapsulation materials and packaging strategies that
protect against noise factors such as moisture and corrosion
could eliminate deterioration and sources of noise from
nonspecific binding or cross-talk, particularly for ultralow
concentration species (e.g, DNA, RNA), which is of critical
importance.

Key to the widespread adoption of wearable sweat-sensors is
the comprehensive validation of the systems. Although sweat
offers enormous potential for noninvasive physiological
monitoring, it has remained relatively unexplored in compar-
ison to traditional biofluids such as blood. The emergence of
novel physiologically relevant sweat constituents, such as
cortisol, lactate, and ethanol, is the direct result of the interest
in noninvasive monitoring and rapid advances in the
development of wearable sensing platforms. Continued
progress requires extensive, large-scale, multicenter validation
studies and formalized clinical trials. Such efforts could yield
critical insights into the correlations with blood and urine
analytes (and associated time-scales) requisite for establishing
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Figure S. Integrated devices and commercially available systems. (A)
Integrated device strategy for long-term sweat analysis via on-demand

sweat stimulation.'”® Adapted with permission from ref 178.
Copyright 2020 The Royal Society of Chemistry. (B) Recent effort
details a strategy to utilize roll-to-roll manufacturing to produce
epidermal microfluidic sensors in a scalable manner suitable for mass
manufacture."*” Implementation of such fabrication strategies enables
further maturation of wearable sweat sensing platforms and offers
opportunities for broad consumer adoption. Adapted with permission
from ref 180. Copyright 2019 American Association for the
Advancement of Science. (C) Gx Sweat Patch and (D) Connected
Hydration System, both developed by Epicore Biosystems,'®'
represent the emerging commercial sensing platforms being
manufactured at scale. Reprinted with permission from ref 181.
Copyright 2021 Epicore Biosystems.

a comprehensive profile of sweat-based biochemical markers
with physiological relevance. Moreover, such testing could, in
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turn, validate device performance beyond the research
prototype stage of development.

Another important factor driving the demand for wearable
sweat-sensor technologies is the development of multi-
parameter, long-duration biochemical and biophysical sensing
capabilities. One recent demonstration'”® achieves long-term
sensing via on-demand iontophoretic stimulation at defined
intervals (Figure SA) to monitor sweat biomarkers with
integrated electrochemical sensors. Another recent example'””
integrates a suite of sensor constructs within a single wearable
platform to obtain multiparameter measurements of hemody-
namic and metabolic biomarkers simultaneously throughout
daily activities. Commercialization efforts around these multi-
modal systems tend to be costly,”’ requiring novel manufactur-
ing tooling and test strategies for large-scale production at high
yield'®® (Figure 5B). It is only within the past few years that
the first commercial consumer-wearable sweat sensors became
widely available to consumers. Developed by Epicore
Biosystems and The Gatorade Company and clinically
validated in blinded studies'®' (the G* Sweat Patch, Figure
SC), these microfluidic devices measure regional and whole-
body sweat loss, sweat rate, and electrolyte parameters, which
are relevant to athletic performance and hydration. The G*
Sweat Patch employs colorimetric dyes and assays, along with
real-time image processing via a smartphone application to
compute results and actionable feedback in real time.
Integration of this class of microfluidic technology with
electronic modules enables continuous biochemical sensing
and real-time alerts. These electronics-enabled epifluidic
solutions rely on advances in energy storage, wireless
communication, and memory storage as part of the fully
integrated system. Large-scale clinical validations studies in
sports and industrial safety are underway for the Connected
Hydration System (Figure SD) and other representative
examples of this technology.
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