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Flexible biocompatible electronic systems that leverage key mate-
rials and manufacturing techniques associated with the consumer
electronics industry have potential for broad applications in bio-
medicine and biological research. This study reports scalable
approaches to technologies of this type, where thin microscale
device components integrate onto flexible polymer substrates in
interconnected arrays to provide multimodal, high performance
operational capabilities as intimately coupled biointerfaces. Specificially,
the material options and engineering schemes summarized here
serve as foundations for diverse, heterogeneously integrated sys-
tems. Scaled examples incorporate >32,000 silicon microdie and
inorganic microscale light-emitting diodes derived from wafer
sources distributed at variable pitch spacings and fill factors across
large areas on polymer films, at full organ-scale dimensions such
as human brain, over ∼150 cm2. In vitro studies and accelerated
testing in simulated biofluids, together with theoretical simulations
of underlying processes, yield quantitative insights into the key
materials aspects. The results suggest an ability of these systems
to operate in a biologically safe, stable fashion with projected
lifetimes of several decades without leakage currents or reduc-
tions in performance. The versatility of these combined concepts
suggests applicability to many classes of biointegrated semicon-
ductor devices.

heterogeneous integration | flexible electronics | bioelectronics |
biomedical implants | electrocorticography

Large-scale electronic/optoelectronic platforms that support
intimate, functional biointerfaces offer important capabilities

in monitoring and/or stimulation of living tissues with relevance
to both biological research and clinical therapy (1–7). Emerging
classes of flexible biointegrated systems offer many powerful
options in this context, as implants for long-term, biologically
safe operation (8–13), with examples that range from flexible
sheets of electronics for electrophysiological mapping on endo-
and epicardial surfaces (14, 15) to thin optoelectronic probes for
optical stimulation/recording of neural activity in the depths of
the brain (16, 17). An essential feature of such technologies is
that they can bend, flex, and twist while in contact with soft,
moving biological tissues to minimize damage and to support
long-term stable operation. Although approaches based on or-
ganic semiconductors, nanowires/particles, and 2D materials are
of some interest, those that exploit micro/nanoscale forms of
well-established inorganic semiconductors often provide supe-
rior levels of functionality and performance, in some cases at
levels that compare favorably to those of conventional electronic/

optoelectronic devices built on planar, rigid semiconductor wa-
fers (18–26). The most sophisticated embodiments include arrays
of transistors based on silicon nanomembranes (Si-NMs) distrib-
uted on shape-conformal sheets, with designs that provide signal
amplification and multiplexed addressing at each unit cell across
the system (27–29). Here, high quality, thin layers of SiO2 can
serve as flexible biofluid barriers and/or capacitive measurement
interfaces (30–32). The dense, defect-free nature of SiO2 formed
by thermal growth on device-grade silicon wafers (referred to here
as t-SiO2) act as remarkably effective barriers across macroscopic
areas, with lifetimes projected to extend to many decades, where a
slow hydrolysis process causes eventual failure (33, 34).
Although these concepts enable interesting classes of bio-

integrated devices, they require custom processing steps, some of
which are best suited to academic cleanrooms and manual op-
eration. Schemes that retain these essential ideas, but align with
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the highly automated manufacturing infrastructure that supports
the consumer electronics industry could facilitate broad distri-
bution of similar platforms for use by the research community
and, ultimately, for translation to human healthcare. In this
context, microscale transfer printing techniques for rapid, par-
allel delivery of micro/nanomaterials and devices from source
wafers to target surfaces are highly relevant, as previously demon-
strated with microscale inorganic light-emitted diodes (μ-ILEDs),
photodetectors, and piezoelectric microcomponents for use in
optogenetics, oximetry, and biopsy (35–37) and, separately, in
small collections of complementary metal-oxide–semiconductor
(CMOS) microdie (38, 39), with industrially proven uses in
photovoltaics, information display, and others.
The results presented here combine and extend these ap-

proaches in ways that provide access to deterministic assemblies
of large collections of silicon microdie and compound semi-
conductor μ-ILEDs, both sourced from semiconductor wafers
compatible with processing at commercial vendors, but released and
distributed in dense and/or sparse arrays on thin flexible polymer
substrates. The scales of the demonstrations significantly exceed
those of the past publications in terms of overall areas (from
∼1 to 150 cm2) (27), numbers of functional elements (from
∼2,000 to ∼64,000) (29), numbers of measurement/stimulation
channels (from ∼300 to ∼32,000), and assembly throughput (from
∼300 to >1,000 microcomponents per printing operation) for ap-
plications such as those in neural/cardiac electrophysiology, opto-
genetics, and optical monitoring (27–29, 35, 37). More generally, the
schemes offer a manufacturable route to heterogeneous integration
with high registration accuracy at spatially variable densities, lay-
outs, and geometries. Specific examples include interconnected
electronic–optoelectronic microsystems that exploit thin printable
microdie and μ-ILEDs as pixelated funtional components, illus-
trating concepts for building combined electronic/optoelectronic
systems in thin/flexible formats. Cointegration with t-SiO2 biofluid
barriers yields long-term stability, over timeframes that project to
many decades of immersion in simulated biofluid environments.
Performance evaluations, yield studies, accelerated immersion tests,
temperature-dependent in vitro measurements, and related theo-
retical simulations highlight the key features. These ideas have
potential to serve as the basis of long-lived, highly functional
semiconductor device interfaces to living organisms, of particular
relevance to neural and cardiac systems.

Results and Discussion
High Speed, Deterministic Assembly of Electronic/Optoelectronic
Microdie. As illustrated in previous publications (40–42), power-
ful classes of large-area, flexible electronic microsystems can be
realized by combining conventional electronic materials and
microfabrication processes with transfer printing techniques.
Here, the transfer process allows for rapid, deterministic ma-
nipulation and assembly of microdie released from fully pro-
cessed semiconductor wafers with advanced undercut etching
techniques. The results can yield large-scale arrays in arbitrary
layouts over large areas on substrates of interest in ambient
conditions. Fig. 1A presents a schematic illustration and optical
micrographs of advanced implementations of this scheme,
starting with 1) controlled release of silicon CMOS microdie via
a combination of reactive ion etching (RIE) and wet chemical
etching to form freely suspended arrays tethered to an un-
derlying wafer by thin, narrow bridges that serve as anchors; 2)
selective retrieval, i.e., “inking” (43), of selected collections of
these microdie onto the patterned surface of an elastomeric stamp;
and 3) aligned transfer of these components by contact printing
onto a substrate of interest. In this study, each microdie includes a
pair of n-channel metal-oxide–semiconductor transistors (channel
length L = 10 μm, width W = 33 μm, silicon thickness of 100 nm)
released after fabrication on a silicon-on-insulator (SOI) wafer (1-
μm-thick buried-oxide [BOX] layer). These microdie serve effec-

tively as pixelated electronic components that yield functional
microsystems upon electrical interconnection. Detailed informa-
tion appears in SI Appendix, Fig. S1.
Similar to previously reported methods (38, 39), the engi-

neering schemes for creating printable silicon microdie utilize
photolithography and inductively coupled plasma reactive ion
etching (ICP-RIE) through the BOX layer at the periphery of
each microdie (Fig. 1A) to establish trenches that expose the
underlying Si wafer. Undercut release follows from anisotropic
etching of the wafer by immersion in a bath of tetramethy-
lammonium hydroxide (TMAH, 8.3%). Here, a bilayer of SiO2/
SiNx (1 μm/600 nm) formed by plasma-enhanced chemical-vapor
deposition (PECVD) at 350 °C encapsulates the front side of the
microdie as protection from exposure to TMAH. The released
microdie remain tethered to their original locations in freely sus-
pended forms joined to the underlying wafer by anchor structures
of SiNx (15 × 100 μm2, 600-nm thick), while the BOX layer serves as
an etch stop and backside protection. Detailed information on
microdie architecture appears in SI Appendix, Fig. S2, where the
dimensions are 220 × 150 × 3 μm.
Retrieval of selected sets of these suspended microdie occurs

with stamps of poly(dimethylsiloxane) (PDMS) with relief fea-
tures and spacings matched to the sizes and layouts of the
microdie. Specifically, an automated system provides precise
alignment and control over contact for the selective inking pro-
cess. The anchors fracture mainly as a result of pressure asso-
ciated with contact to stamp, such that retraction of the stamp
leaves collections of microdie weakly bonded by van der Waals
forces to the surface of the PDMS. Printing of the microdie
“inks” onto a target substrate yields heterogeneously integrated
systems. In examples reported here, a coating of a low-modulus
polymer (Intervia photodielectric 8023; ∼2 μm) serves as an
adhesive to ensure nearly 100% yields in transfer, reproducibly.
Multiple cycles of this printing process, conducted in a step and
repeat fashion, can yield distributed arrays of microdie over
areas that are much larger than those of the original SOI wafer.
For plastic substrates, the resulting systems offer excellent de-
grees of bendability, particularly for thin microdie configured to
lie near the neutral mechanical plane by use of overcoats with
suitable thicknesses, without adverse effect on the performance
characteristics. The electrical properties of representative tran-
sistors (on/off ratio ∼107, mobility ∼600 cm2 V·s −1, and
threshold voltage [VT] ∼1 V) are in SI Appendix, Fig. S3.
Fig. 1 B–D present a series of optical micrographs of a PDMS

stamp after retrieval of a collection of microdie, captured at
various levels of magnification (from left to right). This example
involves ∼1,000 microdie distributed over an area of 1.5 ×
1.5 cm2 on the surface of a stamp (100-μm relief and 4-mm-thick
substrate; Fig. 1B). As in Fig. 1C, an automated tool allows for
alignment and registration with positioning accuracy of ∼1 μm.
Fig. 1D shows magnified side (scanning electron microscope
[SEM] image), bottom, and top views (optical micrographs) of a
representative microdie (∼3-μm thick) on the raised features of
relief on the stamp. Careful control of the release and transfer
mechanics enables manipulation of large-scale arrays with high
throughput, as in Fig. 1E. Here, 2 SEM images (Fig. 1E, Left and
Right) highlight different areas across a processed SOI wafer
(Fig. 1E, Middle, optical image) before and after selective re-
trieval, showing freely suspended microdie arrays tethered by
SiNx anchors and their removal, respectively.
Fig. 1 F and G feature the architecture of a microdie released

from the source wafer and after transfer printing. The schematic
illustration of the cross-sectional undercut profile (Fig. 1F) in-
cludes the structures and thicknesses of the different layers. The
SEM and profilometry images (Fig. 1G) in sequence show the
released/printed structure (∼3 μm) and undercut profile, where
the sidewall angle of 54.7° results from the anisotropic etching
process. Here, the SiO2/SiNx (1 μm/600 nm) bilayer on top has
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internal stresses that balance those of the released microdie,
thereby eliminating any significant bowing.

Transfer Printing of Microdie Arrays at Variable Densities. Fig. 2
demonstrates other key features that follow from a transfer-
printing approach to heterogeneous integration. Engineering
the distribution of patterned relief structures on the stamps

creates efficient routes to assemblies of microdie at variable
densities and layouts, with increasing versatility as the number of
relief features decreases and the number of step and repeat cy-
cles of printing increases. The schematic illustrations in Fig. 2A
highlight examples, where dense arrays of relief structures com-
pose the letter “N” with sparse distributions in the background
regions. Fig. 2, Insets, are optical images of corresponding relief
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structures; W and L stand for the lateral and longitudinal pitch
between each pixel, with 350 × 440 μm (W × L) and 100 × 110 μm
(W × L) for sparse and dense distributions, respectively. Aligned
printing of these 2 disparate collections of microdie onto a single
substrate yields a system with different densities at different
regions.

As mentioned previously, repetitive cycles of transfer printing
can produce arrays of microdie with a range of desired layouts
and areal coverages. Fig. 2B shows an example of ∼32,000 microdie
printed onto a thin, flexible sheet of polyethylene terephthalate
cut into the approximate outline shape of an adult brain model,
at actual size (∼150 cm2). The layout includes pitch spacings of
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100 × 110 μm or 350 × 440 μm in a geometry suggestive of de-
mands for spatial resolution in electrical mapping or stimula-
tion of different sensory functions in the brain, as a conceptual
demonstration of the possibilities. Specifically, the regions of
dense distribution (100 × 110 μm) correspond to the locations of
primary sensory cortex for visual, auditory, somatic, gustation,
and olfactory sensory functions. The sparse distributions appear
in motor areas responsible for control of voluntary movements.
Such high-definition networks of active electronics have po-
tential relevance in monitoring of electrophysiological activity
associated with microseizures and microscale discharges of
neurons in the brain in ways that could complement traditional
microelectrocorticography (44, 45) by significantly increasing the
total number and density of addressable channels with local
amplification and active multiplexed schemes for addressing. Fig.
2B, Insets, show collections of microdie at different levels of
magnification, where the optical images highlight the hybrid
distribution at the boundaries between sparse/dense arrays (Fig.
2B, Upper) and include magnified views for local sparse (Fig. 2B,
Middle, blue frame), and dense (Fig. 2B, Lower, black frame)
regions. Fig. 2C shows such a system while bending to a radius of
curvature at ∼3 cm, indicating mechanical flexibility sufficient for
conforming to large-scale features of the brain and other soft
tissue systems. A statistical analysis of printing yield, defined as
the percentage of functional microdie, indicates values >96% for
transfer of 256 microdie, or more, in a single operation. Printing
failures correspond mainly to fractured/twisted devices (SI Ap-
pendix, Fig. S4) or associated dislocations. These sorts of defects
can be reduced by use of composite stamp designs, frequent
cleaning of the stamps, careful control of printing kinetics, and/
or operation in an environment with reduced levels of dust/
debris (42, 46–48).
Envisioned applications of this printed, large-scale electronic

network include shape-conformal bioelectronic interfaces for
neural recording or stimulation, configured for mapping on dy-
namic, curved surfaces of tissues. Fig. 2D schematically illus-
trates contact on a brain model, where the dense arrays align
with locations of primary sensory cortex (red hightlight).
Cointegration of electrode arrays (Au, 300 × 300 μm2, 300-nm
thick; Fig. 2E) and interconnection traces (Fig. 2E, Inset) yields
functional systems with multiplexing capabilities for efficient cap-
ture of spatiotemporal patterns of electrical activity with a dra-
matically reduced number of addressing wires compared with that
required for otherwise similar arrays in passive designs, without
microdie. Fig. 2F summarizes statistical results for the peak
effective mobility (μeff), VT, and the on/off ratios of 300 repre-
sentative transistors in printed microdie, derived from standard
field effect transistor models (SI Appendix) (45). The results sug-
gest excellent uniformity and consistency in the performance
across the system.

Integration of Electronic/Optoelectronic Microsystems with Biofluid
Barriers of t-SiO2. A fundamental challenge in the development
of flexible electronic systems for applications in biology is that
their operational lifetimes are often limited by biofluid ingress.
Encapsulation strategies (49) that rely on titanium (50) or ce-
ramic (51) enclosures are effective for electronic implants that
do not require mechanical bendability or intimate interfaces with
biology, but they are unsuitable for the types of systems envi-
sioned in biointegrated device research or in bioelectronic
medicines, for instance. A recently developed approach that
avoids limitations associated with coatings deposited or cast over
preformed electronics exploits thin layers (submicron thick) of
SiO2 (t-SiO2) thermally grown on the surfaces of device-grade
silicon wafers (32). Here, the t-SiO2 serves as an encapsulation
layer that forms first, followed by transfer printing of microdie
and layer-by-layer fabrication of interlayer dielectrics/intercon-
nects to yield functional, flexible electronics upon casting of a

polymer support and removal of the silicon wafer. Transfer of an
additional layer of t-SiO2 can encapsulate the backside surface of
such a system. The encapsulation process (Fig. 3A) begins with
transfer printing of microdie onto a layer of t-SiO2 (1 μm) on a
silicon wafer, followed by lamination of the printed device onto a
separately formed layer of t-SiO2 (900 nm) with a commercial
adhesive (Kwik-sil; World Precision Instruments) on a polymer
film/glass plate as a temporary support. Dry etching techniques
remove the silicon wafer and terminate at the back surface of the
t-SiO2. Peeling the multilayer stack from the glass plate yields a
piece of flexible electronics encapsulated on both sides by t-SiO2
as long-lived, flexible biofluid barriers. Details appear in SI Ap-
pendix. Fig. 3B presents a photogragh of a system that consists of
2 × 2 interconnected array of printed microdie, wrapped around a
cylindrical tube to illustrate the high level of mechanical flexibility.
Immersion in phosphate-buffered solution (PBS) at 96 °C and

at a pH of 7.4, with a continuous electrical bias (alternating
current [a.c.], sine wave, 3 V, 100 Hz) applied between transistor
electrodes (source, drain, and gate) and a platinum (Pt) refer-
ence probe in PBS (Fig. 3C), provides a means for accelerated
testing of lifetime at elevated temperatures, as reported in pre-
vious studies (31, 52–54). The transfer characteristics of the
transistors and the associated leakage current appear in Fig. 3 D
and E, respectively. Stable operation occurs throughout ∼9 d of
immersion, comparable to timescales of over 60 y at physiolog-
ical temperature (37 °C) based on Arrhenius scaling (30). Simi-
larly, soak testing of t-SiO2-encapsulated magnesium thin films
(200 nm, electron-beam evaporation) in settings and layouts
similar to those of the microdie arrays reveals that the failure
mechanism is hydrolysis of the t-SiO2 (∼100 nm/d in 96 °C PBS),
as shown in SI Appendix, Fig. S5.
The encapsulation strategy outlined in Fig. 3A is compatible

not only with silicon electronics, but also with other types of
printable semiconductor devices, such as μ-ILEDs, of relevance
for combined electronic–optoelectronic systems that offer ad-
vanced capabilities in neuroscience research, for instance. Fig.
3F provides an example of this type, with cointegration of indium
gallium nitride-based (InGaN) μ-ILEDs and microdie onto a
common platform with dual-sided t-SiO2 encapsulation (900 nm),
using previously reported procedures for transistors (38) and
μ-ILEDs separately (35). The resultant starburst layout facilitates
contact over certain types of nonplanar topography, e.g., here
shown on a table-tennis ball with a diameter of 4.5 cm. The optical
images show a group of magnified views of an integrated microdie,
an entire system, and a printed μ-ILED in on and off states, re-
spectively. As shown in Fig. 3G, the performance of the μ-ILED
and transistor (Fig. 3G, Inset) remain unchanged after 103 cycles
of bending into cylindrical shapes with radii of curvature of ∼2 cm
and after 9 d of immersion in 96 °C PBS.

Printed Microelectronic Assemblies for Multiplexed Electrophysiological
Mapping. Integration of printed microdie with t-SiO2 encapsulation
layers serves as the basis of active platforms with multiplexed
addressing capabilities in high fidelity, spatiotemporal recording of
biopotential distributions across soft tissues, including those of the
brain. Fig. 4A shows an interconnected array for this purpose.
Details of the fabrication process appear in SI Appendix, Fig. S6.
The overall system includes 64 sensing sites (8 columns, 8 rows,
area of ∼1 cm2) with active matrix readout, each of which contains
a printed microdie (Fig. 4B) with 2 underlying Si transistors for
multiplexed addressing and local buffering (Fig. 4B, Insets, and SI
Appendix, Fig. S7) (45). The encapsulating layer of t-SiO2 (900 nm)
also serves as a dielectric interface to soft tissue for capacitive
sensing via coupling to the underlying electrodes and buffer
transistor for amplification (32). The other transistor (as multi-
plexer) allows readout of signal from each pixelated unit in a rapid
time sequence controlled by a back-end data acquisition (DAQ)
system (SI Appendix, Figs. S7 and S8) with a minimal number of
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addressing connection wires (27). Additional details on the oper-
ation of the system appear in SI Appendix.
Fig. 4 C and D show results that demonstrate coupling/sensing

operation and summarize bending tests. Immersion in PBS
(37 °C, pH of 7.4) while electrically biasing the PBS via a Pt
reference electrode results in coupled responses of the multi-
plexed arrays, thereby allowing tests of their functionality (SI
Appendix, Fig. S9). Fig. 4C displays the output characteristics of a
representative unit cell in response to an a.c. input (∼2 mV, 10
Hz), where the voltage gain is ∼0.98 (defined as ratio between
output voltage [Vout] and input voltage [Vin]). At a bending ra-

dius of 1 cm (Fig. 4D, Inset), the yield (ratio between the number
of working sensing sites divided by the total site number) remains
∼100% throughout 2,000 cycles. Fig. 4E presents a histogram
plot of voltage gain across all sensing sites in a 64-channel system
in response to an a.c. input (∼2 mV, 10 Hz), with an average gain
value of 0.98. The Fig. 4E, Inset, shows the corresponding spatial
map for the statistics of all gain values. The results indicate ex-
cellent uniformity across the full array and also 100% yield.
Details of in vitro experiments are in SI Appendix, Figs. S10 and
S11. Fig. 4 F and G summarize the performance of 10 different
arrays. The statistics of test transistor mobility, VT (SI Appendix,
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Fig. S12), average gain, and array yield show minor sample-to-
sample variations.

Chronic Stability and Biocompatibility Assessments. Accelerated
testing involves immersion in PBS at high temperatures. Here,
Fig. 5A shows an exploded-view illustration of an actively mul-
tiplexed array (sensing area ∼1 cm2) described in Fig. 4, with
thicknesses of the different layers from top to bottom (with a
total thickness of ∼38 μm), where t-SiO2 serves as encapsulation
(∼1 cm2, 900-nm thickness). The bonding layers are polymers
(e.g., polyimide, PDMS, and Kiwk-sil film) and the electrode

materials are Cr (10 nm) and Au (500 nm). Results of tests that
involve immersion in 96 °C PBS (pH of 7.4) appear in Fig. 5 B
and C in the form of average gain, noise amplitude, and yield.
The system shows high, stable gain values and yields, with low
nosie operation until failure of t-SiO2 by complete hydrolysis,
corresponding to system lifetime of 9 d. Statistical results of the
operational lifetimes for the 64 pixelated electronic components
in a representative array device appear in SI Appendix, Fig. S13,
where a gain value of 0 defines failure. Fig. 5B, Inset, presents a
spatial map of gain values across the array after system failure on
the ninth day of immersion (all gain values correspond to 0),
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consistent with liftetimes defined by rates of hydrolysis of t-SiO2
(SiO2 + 2H2O → Si(OH)4, ∼100 nm/d in 96 °C PBS) (30) and by
separate experiments (SI Appendix, Fig. S5).
Inductively-coupled-plasma optical emission spectrometry

(ICP-OES) measurements yield important information on the
elemental species that are released and/or dissolved in biofluids
surrounding the implants during immersion and their concen-
trations. Fig. 5D illustrates the concentration of Si as a function
of time during the immersion of an active array (Fig. 5A) in PBS
at 96 °C and pH of 7.4 (40 mL). Measurements show a linear
dependence throughout the functional lifetime of the system
(∼9 d) with a rate of ∼0.27 ppm/d, suggesting that hydrolysis of
the t-SiO2 barrier proceeds with a stable rate at the exposed
surface (∼100 nm/d in 96 °C PBS). After full dissolution of the
t-SiO2, the system fails immediately and the Si concentration
saturates at ∼2.5 ppm. The simulated results (green) agree well
with experiments (red) (SI Appendix). Fig. 5E shows the metal
concentrations (e.g., Au and Cr) in the surrounding fluid after

system failure (from day 10). These concentrations increase with
dissolution and/or delamination processes after consumption of
the t-SiO2. As a result, Fig. 5F highlights remnants of various
materials in biofluids with a single multiplexed device, with
amounts of 96 μg for Si, 32 μg for Au, and 2.9 μg for Cr after 20-d
immersion in 96 °C PBS. Specifically, the release of Cr (2.9 μg)
from the multiplexed device into PBS corresponds to amounts
well below the toxicity levels according to the standard of
World Health Organization (WHO reference no. WHO/SDE/WSH/
03.04/04, 50 μg).
Fig. 5 G and H summarize thickness-dependent and temperature-

dependent studies related to chronic stability. The data indicate a
linear dependence of the lifetime on thickness of the t-SiO2 in 96 °C
PBS (Fig. 5G), as might be expected, with a good agreement between
simulated (line) (55) and experimental results (symbols), consis-
tent with previous reports (30). Fig. 5H illustrates lifetimes (with
900-nm-thick t-SiO2 barrier) at different temperatures, where the
simulated results suggest a survivability over decades (∼60 y) at a
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physiological temperature (37 °C), also consistent with projections
based on previous measurements of the rate of hydrolysis of t-SiO2
(∼0.04 nm/d in 37 °C PBS) (33, 56). Details of the simulation appear
in SI Appendix, Fig. S14.

Conclusion
In summary, the results presented here establish a scalable ap-
proach for building combined electronic–optoelectronic micro-
systems with potential to serve as functional interfaces to soft
tissues. Demonstrations include deterministic assemblies of as many
as tens of thousands (>32,000) of thin, microscale functional ele-
ments derived from source wafers, as interconnected networks
across areas that approach those of the human brain, where dense
layers of silica serve as encapsulation for chronically stable opera-
tion in biofluids. Alignment of this scheme with state-of-art
technologies in the consumer electronics industry is a critically
important feature, not only for high performance operation but
also for scaled deployment with spatial diversity and variable densities,
layouts, and geometries. Detailed studies highlight the robustness
and functionality at the materials and device levels. Additional on-

going work seeks to exploit systems of the type described here as
implants for animal studies in brain and cardiac research, with
ultimate potential for use as therapeutic devices in humans.

Materials and Methods
Details of fabrication steps, device structures, printing processes, transistor char-
acteristics, encapsulation strategies, procedures for soak tests, and failure mech-
anism analyses appear the SI Appendix. Operation of the multiplexing and DAQ
systems, in vitro performance of the active matrix systems, and reactive diffusion
modeling and simulations of t-SiO2 dissolution are also in the SI Appendix.
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