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Abstract

Background: Conventional diet assessment approaches such as the 24-hour self-reported recall are burdensome, suffer from
recall bias, and are inaccurate in estimating energy intake. Wearable sensor technology, coupled with advanced algorithms, is
increasingly showing promise in its ability to capture behaviors that provide useful information for estimating calorie and
macronutrient intake.

Objective: This paper aimed to summarize current technological approaches to monitoring energy intake on the basis of expert
opinion from a workshop panel and to make recommendations to advance technology and algorithms to improve estimation of
energy expenditure.

Methods: A 1-day invitational workshop sponsored by the National Science Foundation was held at Northwestern University.
A total of 30 participants, including population health researchers, engineers, and intervention developers, from 6 universities
and the National Institutes of Health participated in a panel discussing the state of evidence with regard to monitoring calorie
intake and eating behaviors.

Results: Calorie monitoring using technological approaches can be characterized into 3 domains: (1) image-based sensing (eg,
wearable and smartphone-based cameras combined with machine learning algorithms); (2) eating action unit (EAU) sensors (eg,
to measure feeding gesture and chewing rate); and (3) biochemical measures (eg, serum and plasma metabolite concentrations).
We discussed how each domain functions, provided examples of promising solutions, and highlighted potential challenges and
opportunities in each domain. Image-based sensor research requires improved ground truth (context and known information about
the foods), accurate food image segmentation and recognition algorithms, and reliable methods of estimating portion size.
EAU-based domain research is limited by the understanding of when their systems (device and inference algorithm) succeed and
fail, need for privacy-protecting methods of capturing ground truth, and uncertainty in food categorization. Although an exciting
novel technology, the challenges of biochemical sensing range from a lack of adaptability to environmental effects (eg, temperature
change) and mechanical impact, instability of wearable sensor performance over time, and single-use design.

Conclusions: Conventional approaches to calorie monitoring rely predominantly on self-reports. These approaches can gain
contextual information from image-based and EAU-based domains that can map automatically captured food images to a food
database and detect proxies that correlate with food volume and caloric intake. Although the continued development of advanced
machine learning techniques will advance the accuracy of such wearables, biochemical sensing provides an electrochemical
analysis of sweat using soft bioelectronics on human skin, enabling noninvasive measures of chemical compounds that provide

J Med Internet Res 2019 | vol. 21 | iss. 12 | e14904 | p. 1https://www.jmir.org/2019/12/e14904
(page number not for citation purposes)

Alshurafa et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:nabil@northwestern.edu
http://www.w3.org/Style/XSL
http://www.renderx.com/


insight into the digestive and endocrine systems. Future computing-based researchers should focus on reducing the burden of
wearable sensors, aligning data across multiple devices, automating methods of data annotation, increasing rigor in studying
system acceptability, increasing battery lifetime, and rigorously testing validity of the measure. Such research requires moving
promising technological solutions from the controlled laboratory setting to the field.

(J Med Internet Res 2019;21(12):e14904)  doi: 10.2196/14904
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Introduction

The marked rise in obesity, particularly in the United States, is
a complex sociodemographic and public health problem that is
largely driven by poor diet, excessive caloric intake, and
insufficient caloric expenditure [1]. Weight loss interventions
in clinical and research settings have sought to curb this growing
health concern by providing recommendations on decreasing
caloric intake and increasing caloric expenditure [2]. Thus,
subjective diet assessments—including food records, 24-hour
dietary recall, and food frequency questionnaires (FFQs)—are
often used in weight loss interventions to evaluate diet adherence
and behavior change, although they are burdensome and prone
to biased measurements of dietary intake and physical activity
[3,4]. There is increasing interest in using health and fitness
wearable devices to measure eating behaviors as they address
the limitations of subjective diet assessments; these devices are
set to become a US $48.2 billion market by 2023 [5]. Broad
deployment of wearable activity trackers and heart rate monitors
in the last decade has coincided with the need to reduce errors
and improve our understanding of diet behaviors, calorie count,
and nutrient intake. Using wearable technologies not only
improves our understanding of diet behaviors but also aids the
design of novel interventions to prevent overeating. Although
emerging data suggest that diet and exercise programs are more
successful at obtaining weight loss and healthy behavior change
when they are mobile health (mHealth)–based interventions (ie,
delivered via a mobile phone) compared with non-mHealth
interventions (controls) [6], the effectiveness of combining
mHealth-based interventions with wearable technologies to
produce dietary change has yet to be properly studied.

To date, 3 types of technology-enabled wearable domains for
calorie and nutrient monitoring have emerged: (1) image-sensing
technology (eg, cameras coupled with novel algorithms that
detect and analyze foods in an image using a food database);
(2) eating action unit (EAU)–based technology (eg, wrist-worn
sensors to capture eating and diet behaviors); and (3)
biochemical measures (eg, sweat-sensing wearable technology
that measures nutrient status). Although their impact on
improving care and health outcomes remains untested, the
validity of such devices is a prominent concern among
researchers. Prior narrative reviews and surveys have focused
on describing existing technologies [7-9] and algorithms [10],
along with advantages and disadvantages of each type of
wearable. Here, we have described the outcomes of a 1-day
invitational workshop that identified challenges in developing
technology-enabled, automated calorie-monitoring methods

and proposed opportunities for future computing research in
this field. We have also discussed how technology and objective
measurements can support conventional subjective diet
assessment approaches.

Methods

An expert, consensus-building 1-day workshop, supported by
the National Science Foundation and organized by Northwestern
University, was held on June 20, 2017, in Chicago, Illinois. The
primary aim of the workshop was to discuss the development,
evaluation, and use of technology to detect and understand diet
behaviors and estimate calorie and macronutrient intake.

A total of 30 participants from 6 universities and from the
National Institutes of Health were selected to participate in the
workshop. To capture varying perspectives across multiple
fields, participants included population health researchers, such
as behavioral scientists, nutritionists, obesity epidemiologists,
and intervention developers (Bonnie Spring, Lisa Neff, Kevin
Hall, and Marilyn Cornelius); computer scientists (Nabil
Alshurafa, Adam Hoover, Edward Delp, and Mingui Sun); and
engineers in biomedical, material science, and computer
technology (Roozbeh Ghaffari, John Rogers, Veena Misra,
Adam Hauke, Andrew Jajack, and Jason Heikenfeld).
Multimedia Appendix 1 provides a list of participants at the
workshop. Owing to the exploratory nature of this workshop,
the organizers did not apply a theoretical framework.

A team consisting of at least 2 participants was organized to
lead a discussion about one of the following topics: types of
technology-enabled calorie and macronutrient monitoring,
potential research gaps and technical challenges to advance the
capture of energy expenditure, and methods for how technology
can assist conventional subjective diet assessments. Workshop
participants were also randomly separated into 2 groups to
delineate key topics for future research. Overall, there was
consensus regarding the need to refine technology-supported
calorie- and macronutrient-monitoring approaches. The primary
deliverable was a set of presentations delineating current gold
standards for measuring energy intake and an appraisal of the
state of research related to calorie- and macronutrient-monitoring
technology. Experts within each technology-enabled wearable
domain identified new insights and opportunities from these
presentations and conversations, which were used to inform the
final recommendations presented in this paper. A final review
of the recommendations was performed by the authors of this
paper.

J Med Internet Res 2019 | vol. 21 | iss. 12 | e14904 | p. 2https://www.jmir.org/2019/12/e14904
(page number not for citation purposes)

Alshurafa et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/14904
http://www.w3.org/Style/XSL
http://www.renderx.com/


Technology-Enabled Domains for
Measuring Calorie and Macronutrient
Intake

Technology-enabled measures can reduce participant burden
and increase granularity of diet data collection through
automated measures [11]. We have explained each
technology-enabled domain and identified key challenges to
advancing the technology in the sections that follow
(summarized in Figure 1). Each section also highlights potential
research opportunities to advance technology-enabled devices
in measuring calorie and macronutrient intake.

Image-Based Sensing
Image-based sensing systems [12,13] that combine wearable or
smartphone-based cameras with advanced computational
machine learning models, in particular deep learning [14], have
the capability to identify pixels in an image that represent foods
(this is known as food segmentation), provide accurate

timestamps when a meal is consumed (this is known as the
metadata associated with the image), estimate consumption
duration and frequency, and ascertain geographic eating
locations (these 2 are commonly referred to as contextual
information of the eating event). To enable these functions,
researchers have focused on using image-based systems to
identify food types [15]. These systems combine
image-processing techniques and big data analytics to estimate
energy contents for a meal [16,17] from food and nutrient
databases, such as the Nutrition Data System for Research and
the Food and Nutrient Database for Dietary Studies (FNDDS)
[18]. Thus, image-based systems are unique as they use known
foods in a database to guide the estimation of calorie intake and
can provide a fairly accurate analysis of the consumed food
types. However, accurate estimation of energy and nutrients in
an image relies on the system’s ability to distinguish foods from
the image background and to identify (or label) food items.
Although there are promising advancements, several challenges
remain in automating the estimation of calorie intake from
cameras (Table 1).

Figure 1. Overview of challenges in developing technology-enabled, automated caloric-monitoring methods.

Table 1. Challenges and research opportunities in adopting image-based sensing methods.

Research opportunityChallenge

Develop feasible method to annotate food images crawled from the Web or
collected from nutrition studies that can scale up

Lack of publicly available large-scale food image datasets with com-
prehensive ground truth labels

Reduce the burden of requiring fine-grain pixel-level training data for image
segmentation and leverage accurate image or specific image region level in-
formation to improve food segmentation performance

Inaccurate food image–segmentation algorithms

Design deep neural network–based models to capture structures in the image
that are associated with specific foods and incorporate contextual information
to improve robustness

Nonrobust food image–recognition systems

Develop methods that can directly link food images to portion size; explore
3-dimensional information from newer camera sensors on mobile devices

Inaccurate food portion size estimation in image
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Challenge: Lack of Publicly Available Large-Scale Food
Image Datasets With Comprehensive Ground Truth
Labels
A ground truth label, derived from observable data, is the
objective verification of particular properties of a digital image,
used to test the accuracy of automated image analysis processes.
The ground truth of food images includes known, fixed features
such as pixels representing food objects in the image (used for
food segmentation), food types (used for food recognition), and
food portion size in grams (used for portion size estimation).
Such information is necessary to train the image analysis system
to accurately estimate calorie intake from the image. Several
publicly available food datasets contain a substantial amount
of food images [18] and provide general labels of different food
types, but none provide information relative to portion size,
segmented food items, or additional context of the image source.
To reliably build a machine learning model that automatically
maps images to calories, successful image-based systems need
large collections of food images (ie, food image datasets) with
the necessary ground truth labels to improve the learned models.
These ground truth labels should clearly delineate different
food items even if they are on a single plate and should include
portion size information for each food item.

Research Opportunities

To address the need for constructing large-scale food datasets
with food images that provide comprehensive ground truth
information, a solution is to merge food images sourced from
the internet or from nutrition studies with manual annotation
from crowd-sourcing platforms. Amazon Mechanical Turk
(AMT) has been used for food image collection and annotation
tasks [19,20], although AMT is not tailored for building large
food image datasets efficiently with proper labels. This
inefficiency may be partly attributed to its high cost and
dependency on crowdsource workers unfamiliar with the context
in which the data were collected (eg, restaurant food vs
homemade meal). There are opportunities to develop novel tools
that not only label foods in the image but also remove irrelevant
images to aid crowdsource workers in accurately labeling
necessary data. These approaches can be developed using a
combination of crowd input and advanced automatic image
analysis techniques [21].

Challenge: Inaccurate Food Image–Segmentation
Algorithms
Image segmentation is the process of partitioning an image
using an algorithm into disjointed and coherent regions on the
basis of prespecified features. Food image segmentation is
important for multifood images in which subsequent analysis,
such as recognition and portion size estimation, depends on
having accurate segmentation of each food in the image. Owing
to the complexity of food images (eg, occlusion, hidden or
mixed foods, and shadows), accurate food image segmentation
is a difficult task and affects the ability of image-based sensing
systems to identify food types. Previous studies [22-26] have
used image-segmentation methods such as contour-to-region,
graph-based, and superpixel-based approaches. A segmentation
method based on deep neural networks has been proposed [27]
to reliably build a model that automatically segments foods.

However, these models require pixel-level food labels or labeled
bounding boxes to indicate regions containing foods, which is
time-consuming and computationally expensive.

Research Opportunities

Owing to the inefficiency and high expense, some studies have
applied graph-based methods to select regions containing foods
[28] or have explored techniques where only image-level labels
indicating the presence or absence of foods are required instead
of requiring pixel-level labels of food objects [29]. The
opportunity to advance such methods remains, as does the main
opportunity of creating efficient segmentation algorithms that
provide pixel-level labels and training for each image in a food
dataset.

Challenge: Nonrobust Food Image Recognition Systems
Research [30-32] in food recognition has analyzed multiple
features and classification algorithms (aimed at identifying
foods) that are effective but mainly restricted to a known food
dataset that has been established a priori. Researchers [27,33,34]
use either an end-to-end deep neural network or image features
with variations of support vector machine (SVM) [35]
classification algorithms to optimize food recognition. However,
many studies on food recognition assume that only 1 food item
is present in an image and apply a multiclass classification
algorithm to identify the foods. In real-world scenarios, there
is typically more than 1 food item in an image, where each food
item is a segment in the image and is described by handcrafted
or deep features and then classified by an SVM classifier
[22,36].

Research Opportunities

Robust and accurate food image recognition remains a challenge
because many foods have a deformable appearance and thus
lack of rigid structures and because there often exists subtle
differences in visual features among different food categories.
Factors such as food preparation and personal preferences can
also affect the appearance of food ingredients. Deep neural
network–based approaches provide opportunities to improve
the robustness and accuracy of food recognition systems but
depend heavily on well-constructed training datasets and proper
selections of neural network architectures. However, there is
an opportunity to provide contextual information in the food
recognition algorithm, which can include environmental cues
and previous diet history. There have been advances in
restaurant-specific food recognition [23,37,38] where location
and menu information are used to assist with recognition. Others
[39] have integrated recipe and cuisine as context and prior
knowledge to aid automatic food recognition. Food patterns
across time and dietary preferences are increasingly being shown
to improve food classification accuracy [40]. Incorporating
contextual cues can be essential to advancing the robustness of
food recognition algorithms.

Challenge: Inaccurate Portion Size Estimation in Image
Estimating food portion size from an image is challenging as
preparation and consumption impose large variations on food
shape and appearance. Several food portion estimation
techniques based on reconstructing the 3-dimensional (3D)
models of the foods have been developed, which require users
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to take multiple images or videos or to modify mobile devices
[41-45] to enable reconstruction. These approaches work well
for irregularly shaped foods, but they do not work well when
there are no strongly matched features (ie, corresponding sets
of points) occurring on multiple frames. These approaches also
require users to capture multiple images from different angles,
making them tedious and unsuitable for long-term health
monitoring and data collection. Others have focused on
developing methods to estimate food portion size from a
single-view image [17,46-49]. These methods use geometric
model–based techniques that require food labels and food
segmentation masks (ie, pixel location of foods in the image).
Errors from automatic food classification and image
segmentation can propagate into the final portion estimation.
In addition, existing methods have only examined small model
libraries consisting of foods with simple geometric shapes (eg,
apples, burgers, and pizza). Further research is required to
develop more comprehensive model libraries capable of dealing
with irregularly shaped foods.

Research Opportunities

Despite some promising results from existing approaches, the
performance of current portion estimation methods is not yet
satisfactory. More recently, several groups [27,50] have
developed portion estimation methods using deep learning.
However, these techniques estimate food volumes rather than
food energy. With food volumes estimated, food density is still
required to compute weights, which can then be mapped to food
energy using a food composition resource, such as the FNDDS
[18]. Therefore, new approaches [16] that can directly link food
images to food energy in the image are desirable.

Depth sensors and dual camera configurations are quickly
gaining popularity on consumer mobile devices. More 3D
information can be collected without significantly adding to a
user’s burden capturing the eating scene. For example, mobile

phones equipped with depth sensors enable simultaneous capture
of image depth and the RGB color model image. For dual
camera systems, at least two images are captured from slightly
different angles, enabling multiview 3D reconstruction
techniques. The additional information captured by the mobile
devices may improve the accuracy of food portion estimation
by providing additional 3D information on food objects.

Eating Action Unit–Based Sensing
Although existing imaging technologies have shown reasonable
success in estimating calorie intake and nutrients from images,
there is growing interest in capturing proxies to calorie intake
with sensor modalities that have fewer wearer privacy concerns.
EAUs (ie, fine-grained activity units that occur during eating)
are a mechanism to understand calorie intake patterns and
behaviors. Accelerometer- and gyroscope-based inertial
measurement units [51,52] are examples of EAUs that assess
eating patterns. These techniques have been developed as a
result of observing feeding gestures (or bites) and their
correlation to calorie intake [53,54]. The underlying assumption
of EAUs is that by counting the number of bites and estimating
average calories per bite, we can provide a reasonable estimate
of overall calories consumed, map the number of bites to calories
to determine over- or underconsumption, and enable users to
automatically quantify their calorie intake using EAU-based
devices [55].

Capturing EAUs enables actionable insight, where information
generated can be used by wearers, clinicians, and dietitians in
a timely manner. They also enable interventionists to test the
efficacy of calorie-informed, just-in-time interventions in close
proximity to eating episodes. Although the detection of EAUs
has shown promise, several challenges prevent these systems
from being adopted in clinical and population settings (Table
2).

Table 2. Challenges and research opportunities in adopting eating action unit–based sensing methods.

Research opportunityChallenge

Use wearable video cameras to validate contextual information surrounding
when sensor–algorithm pairings fail in real-world settings

Limited understanding of context surrounding system success and failures

Identify novel ways of protecting bystanders and other sensitive informa-
tion in the field of view of cameras both in hardware and software to ensure
wearer privacy concerns are addressed, thereby increasing likelihood of
capturing naturally occurring behavior

Privacy protection in ground truth data collection methods

Define food categories that are most useful for clinicians and researchers
for diet interventions and food recalls

Inability to accurately distinguish between food categories

Challenge: Insufficient Understanding of the Context
of System Success and Failure
Several systems have shown promise in free-living populations
but fall short of delineating the contexts for when and where
their systems succeed and fail, which prevents others from
building on previous work to advance EAU systems under
challenging scenarios. For example, gesture EAUs are
confounded by smoking action units; however, few studies
attempt to consider other challenging contextual scenarios that
can confound eating behaviors [56]. Attempts to advance eating

detection while considering challenging contexts are limited
primarily because confounding contexts are not clearly
delineated. A preliminary study in 8 participants who wore a
wrist-worn sensor for a few hours in a free-living situation
demonstrated that wearable video cameras have an
approximately 38% false-discovery rate, which typically
corresponded to phone-related gestures [57]. The false-discovery
rate could be mitigated by integrating phone usage information
with the system. However, data are limited in the context in
which 1 device outperforms the other, limiting our ability to
advance EAU-based eating detection systems.
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Research Opportunity

Additional data are needed on the strengths and limitations that
lead systems to succeed and/or fail in free-living populations.
Understanding the context of success or failure enables
identification of strengths and weaknesses of various systems
and advances both the hardware and algorithm used to solve
these challenges. Studies are beginning to identify the context
in which sensor-algorithm pairings fail; however, they lack
validity through visual confirmation. With the exception of a
few recent studies [57-62], few researchers have incorporated
wearable video cameras in the field to provide such validation.
Researchers should continue using wearable video cameras in
free-living populations and clearly state the context within which
the system succeeds or fails.

Challenge: Inability to Protect Privacy When Using
Wearable Video Cameras in the Field
Evaluation of an eating detection system necessitates testing
against visually confirmed (with video) ground truth (ie, means
of validating the activity in a real-world setting). Visual
confirmation of eating behaviors is the strongest form of ground
truth available for EAUs but also one of the most burdensome
on the participant and researcher. Many researchers limit their
studies to controlled settings primarily because of the limited
robustness of the sensor and the time required to manually label
video streams to produce ground truth. There is significant time
and cost associated with designing a fail-safe device that can
function in free-living environments [63]. However, people are
generally unwilling to wear wearable video cameras in
real-world settings owing to privacy concerns, and the likelihood
of behaving naturally in the presence of a video camera is
limited [64]. Recent research has shown that, given acceptable
levels of incentives and properly orienting the camera,
participants are willing to don wearable video cameras in
real-world settings for a short period of time. Some researchers
bypass the use of wearable video cameras by combining other
sources of information, such as food journaling and sensor data
[65], commercial electroencephalography (EEG) sensors to
produce labels for a wearable EEG device [66], and a GoPro
Hero 3 camera mounted on the chest facing the jaw [58].

Research Opportunity

Ensuring a long-lived, minimally intrusive method for capturing
ground truth is necessary for capturing realistic data and
rigorously testing interventions. As many participants report
concerns for bystanders as their main reason for being unwilling
to wear a camera all day [64,67,68], researchers may be able to

design video cameras that are both privacy-preserving and that
aid in validating other body-worn sensors by providing video
confirmation of EAUs. Importantly, this will ensure that sensors
being deployed adequately validate the behaviors they claim to
capture in the settings they are most needed.

Challenge: Inability to Accurately Distinguish Between
Food Categories
Similar to image processing, EAU-based sensors have shown
success in distinguishing between different food categories.
Chewing crunchy chips compared with chewing a banana
produces very different sensor signals, and researchers are
beginning to capitalize on these variations to distinguish between
food items and type. Automatically determining solid versus
liquid ingestion has provided some utility in identifying sources
of ingestion behavior and intervention design, allowing
researchers to investigate this phenomenon [69-71]. This could
provide utility in a hospital setting, where foods provided to
patients are known a priori, narrowing the food search space.
However, this limits utility in free-living populations, and the
challenge remains in increasing external system validity.

Research Opportunity

Knowledge of an individual’s diet may narrow the search space,
enabling sensors to automatically distinguish between
individuals, given their known diet and food environment. An
opportunity exists to categorize foods in a way that would be
most useful for researchers and clinicians in improving calorie
intake estimates. Although distinguishing between liquid and
solid consumption may have research utility, it is unknown what
other types of food categories may be distinguishable.
Within-subject variability of nutrients is influenced by gender,
age, and education [72]. Thus, this research opportunity would
be most helpful for populations with low-variability diets,
particularly among elderly participants or patients on restricted
diets.

Biochemical Measure–Based Sensing
There are concerted efforts underway to characterize the
biochemical changes in the body that result from food and
calorie intake. Novel classes of biochemical and electrochemical
sensing systems could be used to analyze changes in metabolic
activity observed in interstitial fluid, saliva, or sweat [73,74].
In this section, we have reviewed wearable sweat monitoring
systems that have been deployed recently in remote
environments (Table 3).

Table 3. Challenges and research opportunities in adopting biochemical measure–based sensing methods.

Research opportunityChallenge

Apply wearable biochemical sensors to monitor electrolytes, metabolites,
and proteins in biological fluids (eg, saliva, sweat, and interstitial fluid)

On-body biochemical monitoring

Develop stable biochemical tests to determine concentrations (bioassays)
of glucose, lactate, cortisol, ammonium, sodium, chloride, and potassium,
which require limited handling and refrigeration with dehydration or
freeze-drying methods

Stability of wearable sensors under different environmental conditions for
metabolites, electrolytes, and proteins

Develop low-cost battery and energy harvesting solutions to enable single-
use and multiuse modes of operation

Reusable vs single-use wearable sensors
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Challenge: On-Body Biochemical Monitoring
Recent efforts have focused on biochemical analysis of eccrine
sweat using wearable devices [75-77], which leverage both
colorimetric and electronic-based sensors that collect sweat
directly from skin pores and measure biomarker concentrations
and dynamics (eg, sweat loss and sweat rate) in real time. This
opens new possibilities for characterizing electrolyte and
metabolite loss during daily activities, which can be correlated
with blood metabolites, hormone, proteins, pathogens, and drugs
[78,79].

Continuously monitoring biomarkers in sweat requires highly
sensitive techniques for extraction and electrochemical analysis.
Researchers have devised strategies to reduce the contamination
effects of skin in contact with the device, while increasing sweat
collection volume. This new class of wearable biochemical
sensors could provide viable pathways for creating noninvasive
and remote analysis of diet, wellness, and health [75]. However,
shelf-life stability of biochemical sensors, susceptibility to
contamination, and fundamental limitations in capturing
sufficient volumes of sweat remain problematic.

Research Opportunity

Key opportunities lie in the design and deployment of
biochemical-sensing devices that can endure temperature
changes owing to environmental factors and mechanical impact
while maintaining signal quality without degradation over time.
Beyond device resiliency, comparisons of sweat and blood
analyte levels must be tested across healthy and sick populations
to determine validity and applicability of on-body sweat sensing.

Challenge: Enabling Robust Onboard Enzymatic and
Chemical Assays (Biochemical Tests and Assays) Under
All Environmental Conditions
The rich heterogeneous blend of electrolytes, metabolites, and
proteins in sweat represents a unique set of noninvasively
collected data. These biomarkers have been shown to correspond
to the physiologic state and may serve as the basis for
understanding cognitive impairment in the field. To date, most
studies have focused on characterizing electrolytes and
metabolites (eg, glucose or lactate) using bioassays in controlled
laboratory settings. Metabolic biomarkers could change with
physical stress and diet during daily activity outside of controlled
laboratory settings. The stability of wearable biochemical
sensors is thus crucial to maintain over extended time periods
in real-world settings.

Research Opportunity

Wearable biochemical sensors that employ onboard dehydrating
reagents or buffers that reduce degradation could lead to
broad-scale deployment of these systems. Refrigeration is useful
in protecting against bioassay degradation, but it requires special
instructions and specialized equipment for proper handling and
modes of operation. The development of new classes of
wearable devices that require limited handling and refrigeration
and that can handle enzyme-linked immunosorbent assay and
protein-based analysis, using dehydration and freeze-drying
steps to promote chemical stability, represents an area of
enormous potential for robust remote-based deployment of
wearable technologies.

Challenge: Reusable Versus Single-Use Sensors
Continuous monitoring of sweat biomarkers requires flexible
electronics modules, memory storage, and onboard batteries to
facilitate data capture, signal processing, and transmission.
Significant practical considerations, such as sensor corrosion
at the interface with ionic fluids, need for cleaning, and the
resulting signal degradation that could occur over time limit the
utility of reusable systems. Electrochemical sensing systems
consisting of a reusable electronics module and single-use
electrochemical sensors provide compelling routes to address
these challenges. Single-use system designs may circumvent
the challenges of long-term wear, fluid–device interface, and
signal degradation. However, disposable devices must be
carefully engineered to support sufficiently reduced cost to
warrant single-use deployment.

Research Opportunity

Sweat is a corrosive biofluid that engenders significant device
cleaning to facilitate reuse of the device. Thus, single-use
wearable biochemical-sensing systems address important
limitations of reusable systems assuming cost constraints are
met. Hybrid designs, in which the reusable module mechanically
couples to a single-use biochemical sensor, may mitigate the
limitations of reusable and single-use systems. Although hybrid
systems tend to cost more, they have significantly greater signal
processing and battery capacity for long-term continuous
monitoring.

Challenges Across Sensing Modalities
Regardless of the type of sensing modality, calorie estimation
techniques share a set of common challenges because of the
unique role that eating and nutrition play in everyone’s lives.
These challenges are related to sensor development, validation,
and refinement both in controlled and free-living settings.

Challenge: Burden of Multimodal Systems
Although many researchers have studied detecting eating using
a single wearable device, several are beginning to combine
multiple sensors and context via multiple wearable devices to
advance the total accuracy of an eating detection system.
Mirtchouk et al [80] showed that using in-ear audio with head
and wrist sensors improved accuracy from 67.8% with audio
alone to 82.7% and 76.2% for head and wrist sensors,
respectively. However, these approaches were mainly tested in
a laboratory setting, not in a free-living environment, and it is
unknown how well the findings translate to free-living
populations. Multimodal sensor studies that attempt to determine
utility of sensors in real-world settings are sorely needed.

Wrist sensors coupled with other sensor modalities (eg, GPS
and respiratory plethysmography) may aid in distinguishing
among smoking, eating, and other activities. Examples of
multimodal systems include using a jaw motion sensor, a hand
gesture sensor, and an accelerometer [81] and using an airflow
sensor, a respiratory plethysmography chest sensor, and a
wrist-worn sensor [82]. However, the burden of wearing all
these sensors is significant. Thus, novel ways of combining less
burdensome sensors and devices or integrating noncontact or
noninvasive devices are needed while advancing the accuracy
in detecting calorie and macronutrient intake or proxies.
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Challenge: Time Asynchronization Across Sensors
A multidevice system brings challenges in coordinating and
synchronizing activities and sensing across devices. As each
device manages its own internal clock, this network of clocks
can become unsynchronized following power failure or reset.
Most devices are designed to be standalone and use an internal
clock, as opposed to time stamping their data using a nearby
smartphone or body sensor unit. Time synchronization in real
time has been a long-studied problem; however, automated
time-synchronization methods post data collection can enable
researchers to test multiple devices simultaneously, without the
need to reengineer the device to use a central hub. Without
reliable millisecond time-synchronization techniques,
annotations from 1 sensor stream (eg, video camera) are not
transferable to another sensor stream.

Challenge: Lack of Automation in Data Labeling
Once a sensor is deployed in a real-world setting, a supervised
learning model, which aims to categorize data from prior known
labels or information (ie, supervised training), is designed to
process the data and determine system viability. However, one
challenge in building a supervised learning model is providing
sufficiently annotated instances or labels to train the model.
Prior studies in real-world settings have depended on
self-reported annotations [59,83-86], which are burdensome
and rarely timely. More recently, studies are using wearable
cameras worn by participants to provide annotations through
visual activity confirmation poststudy [57-62]. To visually
confirm, a data labeler is hired to watch the video and label
points in time when the activity occurred, which is
time-consuming and prone to error. Computer scientists are
beginning to design tools to automatically annotate using active
learning systems that attempt to reduce the required number of
annotations to build a reliable machine learning model.
However, systems currently developed focus on building models
that process data with samples that are fixed in time (eg, an
image or a minute of data). Active learning systems designed
to handle activities with varied durations (eg, eating episodes,
feeding gestures, and chewing duration) can fill this gap.

Challenge: Unknown Acceptability of System by Users
For a system to succeed in real-world settings, it must be
acceptable for the population of interest. Although several
surveys have been designed to assess wearability of systems,
there is no validated standard survey or approach to assess
willingness to wear and use a device in the nutrition context.
Current systems deploy devices for a variable amount of time
(eg, 1–2 days, 1 week, or 1 month) and then report comfort
based on a Likert scale. Habits regarding technology adoption
are not properly understood until at least 1 week (when most
individuals stop using an app or a device) [87]. As a result,
acceptability must be clearly limited to the number of days the
system was actually tested in free-living populations. An
important contributor to system acceptability is battery lifetime,
which is closely tied to device burden (ie, frequency of
recharge).

Challenge: Short System Battery Lifetime
Long battery lifetime is essential for wearable technology to
ensure high sensor sensitivity and recall of eating episodes in
free-living populations. It is reported to be the most important
feature rated by mobile device users [88-90]. Battery lifetime
becomes critically important in longitudinal studies where
reducing user burden is key to gathering more data and
encouraging habituation. If users must recharge a device
multiple times a day, this will limit data collection. Moreover,
battery lifetime enhancements enable populations who may
otherwise not be able to manage a device (eg, pediatric or
geriatric populations). There are several software approaches
to increase battery lifetime including duty-cycling, high-powered
sensors, or triggering with low-power sensors. Reducing
computational complexity and designing for specificity also
reduces wasted energy. New materials enable batteryless sensing
devices powered by energy harvested from the environment,
wearer motion, or Wi-Fi gateways. Although these sensors show
promise, they are not without challenges, as reliability can be
an issue when ambient energy is not readily available. Wearable
sensors are increasingly being developed to last several months
[91,92], but most commercial sensors last <12 hours [93] when
attempting to collect continuous inertial measurement unit data.
Low-maintenance sensor solutions must be designed, and careful
consideration of battery lifetime must exist in every phase of
system and study design.

Challenge: Limited Rigor of System Testing
Although technology development serves as an important
contribution to the health community, reproducibility of the
results is essential to determine proper construct validity, internal
reliability, and test-retest reliability to increase confidence in
the potential of a system to work in real-world settings. Most
existing wearable sensors and systems show success by their
principal investigator but have not extended beyond the
laboratories in which they were implemented. To prevent bias
in reporting, researchers need to disseminate their systems
(hardware, software, and datasets) to other teams to provide
independent testing and review. Such rigor in testing of sensing
platforms is needed across all sensor modalities.

How Technology-Enabled Devices Can
Assist Conventional Subjective Diet
Assessment

Conventional diet assessments comprise subjective and objective
(eg, double-labeled water and metabolic chamber) approaches
[94]. Although both approaches measure calorie and
macronutrient intake, subjective diet assessments are more
commonly implemented in research and clinical settings [95],
in part owing to greater convenience and reduced cost [96].
Subjective diet assessments are not constrained by battery
lifetimes and are acceptable for target populations. However,
each type of subjective diet assessment introduces unique types
of measurement error depending on how the diet data are being
collected. A description of each assessment, and its strengths
and limitations, is presented in Table 4. We posit that
technology—such as image sensing, EAU, and biochemical

J Med Internet Res 2019 | vol. 21 | iss. 12 | e14904 | p. 8https://www.jmir.org/2019/12/e14904
(page number not for citation purposes)

Alshurafa et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


measures—can assist subjective diet assessments to capture
habitual dietary intake and eating behaviors, as systematic and
random errors associated with both approaches are
fundamentally independent. Replacing subjective diet
assessments with technology may be difficult as other limitations
could arise, such as ambiguity in identifying food images

through image distortion or uncertainty over whether the food
was truly consumed [97]. Combining information from
technology and subjective diet assessments improves the validity
of dietary intake data because the 2 approaches complement
each other’s strengths and limitations.

Table 4. Conventional subjective measurements of energy and macronutrient intake.

LimitationsStrengthsDescriptionMethod

Memory dependent; error prone in
quantifying portion sizes; requires
intensive interviewer effort, which
can decrease motivation to collect
accurate data; repeated measures
needed to capture usual intake; can
alter eating behaviors if recalls are
scheduled in advance

Open-ended, enabling greater detail
about intake and food preparation;
good for culturally diverse diets; less
burdensome

Inquiry about everything one had to
eat and drink during the previous day
(usually midnight to midnight);
probes often used to collect more de-
tail and standardize the interview

24-hour diet recalls

Requires intensive respondent effort,
which can decrease motivation to
collect accurate data or lead to poor
response rate; burdensome on staff to
analyze data owing to entering and
coding items; repeated measures
needed to capture usual intake; can
alter eating behaviors since respon-
dents are monitoring their diets

Open-ended; does not rely on memo-
ry if records are completed on time;
allows for self-monitoring

Detailed list of all foods and drinks
consumed over a specified amount of
time, written by respondent and ideal-
ly using weight scales or measuring
tools to determine portion size; pro-
vides data about actual intake

Food records

Memory dependent; food list is fixed
and may not capture usual intake,
particularly in a culturally diverse di-
et; may be difficult to quantify food
portions without food images; diffi-
cult to inquire about mixed dishes;
respondent may have difficulty inter-
preting the questions

Measures usual intake; less burden-
some on respondent and research staff

Questionnaire asking whether a food
item was consumed during a specified
period of time; contains 2 components
(food list and frequency response
question); provides data about relative
intake

Food frequency questionnaire

One primary concern for using subjective diet assessments
includes intentional or unintentional misreporting of dietary
intake [98]. Specifically, 24-hour dietary recalls and FFQs rely
on memory, which can depend on age, education, attention
during eating, and consistency of diet patterns [94,99]. Many
individuals underestimate portion sizes for foods and beverages
[100] and are sometimes provided with household items, food
scales, and/or 2-dimensional images of foods with anchors to
improve portion size accuracy [94]. However, these instruments
create additional burden and decrease motivation to accurately
capture caloric and macronutrient intake. These limitations have
far-reaching implications as investigators would be uncertain
if the subjective diet assessments are accurately characterizing
true dietary intake [101], correctly identifying whether
participants are adhering to specific diet interventions [102],
and introducing bias when investigating diet-disease associations
[101]. Image-sensing and EAU behavior approaches can
minimize misreporting by objectively capturing food images
and by identifying timing of eating episodes, allowing
individuals and researchers to corroborate information from
subjective diet assessments. Furthermore, image-sensing and
EAU measures can also serve as visual or verbal cues to assist
recall when conducting subjective diet assessments.

A limitation specific to 24-hour dietary recall and food records
is the measurement of acute intake and not the usual diet [94].
Multiple measures are needed to capture usual intake, and data

collection must occur for every day of the week [94]. However,
increasing the number of subjective diet assessments creates
greater burden for the individual and the research team.
Image-sensing and EAU measures can reduce the number of
24-hour dietary recalls and food records needed to capture the
best estimates of absolute dietary intake, while automating the
analysis of dietary data. To this end, more research is needed
to evaluate the number of images and EAU measures needed
to provide the best approximation of absolute dietary intakes.

Biochemical measures can also determine nutrient status of the
body. However, biochemical concentrations are not true markers
of dietary intake and can reflect how the body absorbs,
transports, metabolizes, and excretes the nutrient [103].
Therefore, biochemical measures cannot replace subjective diet
assessments since it would be unclear how nutrient status is
influenced by dietary intake or in vivo processes. Recent
advances in statistical approaches, such as prediction models
that use data from technology and conventional subjective
approaches, account for measurement errors and can provide
more accurate results [104,105].

Technology-enabled devices that measure calories and nutrients
can also have far-reaching implications in clinical practice. A
recent study reported that providers perceive health-tracking
technologies as very useful when reviewing patient data,
managing medical visits, and facilitating patient–provider
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communication [106]. A growing number of patients are also
engaging with health technology. According to the National
Cancer Institute’s 2017 Health Information Trends Survey, 34%
reported owning an electronic monitoring device to track their
health behaviors [107]. A growing opportunity remains in
developing efficient strategies to merge technology with
subjective diet assessments toward obesity prevention and
treatment efforts.

Discussion and Conclusions

Sensors from the 3 domains presented (image-based,
EAU-based, and biochemical measure–based) have the potential
to identify markers that improve estimates of calorie intake.
However, the technologies still require considerable user input
from the end user, scientist, or clinician who may have to label
or segment images or metrics from such wearables to train a
machine learning system. Fully automating technology-enabled
calorie and nutrient monitoring would open the possibility to
providing highly informed and validated information to augment
recall methods and advance estimates of calorie intake for
clinicians and patients.

Wearable-based sensing modalities focused on biochemical
processes offer a solution for understanding food nutrients.
However, more technical expertise is needed to merge
conformal, low battery, secure, and valid technology with
appropriate caloric assumptions. Once a stronger correlation
can be drawn between biochemical products analyzed and
calories consumed, biochemical-based wearables may provide

promise in future automated calorie estimation systems.
However, as with most wearable technologies, adherence to
wearing the device remains problematic. This may be overcome
if the value in such technologies pans out.

Although calories and nutrients can be consumed and monitored,
it is essential to understand the behavioral choices that drive
these decisions and if those behaviors can provide insight into
calorie intake. All 3 systems have the potential to provide such
information from cortisol levels for stressful eating (using
biochemical sensors) to late-night snacking (using image-,
physical-, and behavioral-based sensors) and beyond. The
biggest challenge then becomes how to use the reliable big data
collected from these devices to drive an actionable outcome
such as lower calorie consumption or identification of eating
behaviors that increase calorie intake.

It is our view that the defined research opportunities regarding
calorie intake monitoring apps are the most promising, which
may move the science toward a ubiquitous future of such
monitoring. Nonetheless, challenges remain to fully introduce
such solutions to have the desired health impact that clinicians
and patients alike expect. At present, the next logical step is for
scientists to improve the functionality of such devices, for
human-computer interaction experts to improve usability, and
for clinical teams and behavioral scientists to assess what
information can be used to improve health behavior
interventions given these new advanced technological tools.
This translational, multidomain effort will demonstrate whether
calorie intake monitoring enables higher quality of life and thus
challenges the public health crisis of obesity.
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