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Abstract
Connected wearable biosensors are a critical part of athletic
performance analysis, injury and recovery time assessment, and
hydration analytics, enabling elite athletes, trainers, and coaches
to characterize the daily demands of sports. However, existing
classes of wearable biosensors are constrained to a few body
locations and tend to limit mobility due to their bulky size and
weight. Recent advances in soft and stretchable skin-interfaced
wearable sensors capable of real-time physiological monitoring
and in situ sweat collection provide capabilities for real-time
continuous motion, physiology, and biochemical analysis in an
imperceptible mode from any location on the body. This review
presents anoverviewof the latest developments in skin-interfaced
wearable sensor technologieswith an emphasis on soft materials
and stretchable designsmost suitable in sports.We concludewith
a summary of unresolved challenges, opportunities, and future
directions facing the field of sports science and analytics.
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Introduction
Connected wearable technologies have enabled

continuous monitoring of physiology, biomechanics, and
movements during our daily activities and living. In
sports, these biosignals have found broad utility in
quantifying the performance and physical demands of
athletes. Existing classes of wearable devices support
continuous monitoring of athletes by leveraging recent
advances in miniaturized microelectronics [1], wireless
communication [2], rechargeable batteries, and multi-
modal inertial and impedance-based biosensors [3],
which are embedded in wrist bands, adhesives, athletic
apparel, and chest straps for tight attachment to the

body [4] (Figure 1). Although broadly deployed in
sports, these wearable technologies lack the real-time
metabolic and biochemical sensing capabilities
required for quantifying electrolyte balance and hydra-
tion levels and, in some instances, impede athlete
mobility due to physical characteristics of the device
(e.g. form factor and weight), leading to poor signal
quality and discomfort [5].

Recent advances in flexible/stretchable bioelectronics,
biochemical sensors, soft microfluidics, and elastic bio-

encapsulating materials have created new classes of
skin-interfaced wearable systems that are compelling for
use during intense sporting activities and in demanding
environments. The soft physical design and ultrathin
packaging of these skin-interfaced systems are essential
properties that overcome many of the key challenges
identified for conventional wearables. The Biostamp
nPoint (MC10 Inc, Figure 1), a recently commercialized
physiological monitoring device, embodies critical soft/
stretchable mechanics features needed for intimate
coupling with multiple locations on the human body,

thus paving the way for entirely new skin-interfaced
wearable systems.
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Figure 1

Representative commercial devices for athletic performance monitoring. Typical commercial embodiments exploit straps (Whoop Strap 2.0, MOOV
Now, Polar H10) or integrate with apparel (Catapult Optimeye X4) to interface with the skin for monitoring athletic performance. The BioStamp nPoint
(MC10 Inc.), harnessing recent advances in stretchable electronics, represents the first truly biointegrated commercially available platform for wireless
athletic performance monitoring.
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This review focuses on the latest innovations in soft,
stretchable wearable systems that enable a multitude of
sensing capabilities including motion, physiological, and
biochemical monitoring. These systems operate in a

mode that is significantly advanced in functionality
while exerting a minimal mechanical load on athletes to
offer real-time understanding of sports performance and
recovery. Beginning with an overview of key technolo-
gies underpinning skin-integrated devices, this review
highlights representative examples of wearable skin-
interfaced devices deployed in field studies and sports
outside of laboratory settings. This review concludes
with a discussion of the remaining technical challenges
and opportunities for commercialization and broad-scale
adoption in sports.
Enabling technologies for skin-interfaced
wearables
The direct integration of biosensors with the soft,
curvilinear surface of the human body necessitates
careful design to ensure seamless wear and reliable data

capture during strenuous endurance training and sports
activities. The most established classes of wearable
sensors rely on stiff, brittle inorganic materials (e.g.
silicon) well suited for rigid, planar devices [6]. How-
ever, such embodiments lack the requisite soft,
stretchable physical properties for establishing an inti-
mate, nonirritating interface with biological tissues,
including the skin, necessary for long-duration moni-
toring of athletes.
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Broad research efforts have sought to develop novel
classes of electronics and underlying materials that
overcome the physical design constraints inherent in
traditional planar electronics without sacrificing func-

tion or performance [7]. Flexible electronics with
submicrometer thicknesses have been shown to inte-
grate with, to a large extent, the curvilinear contours of
the human body, however not without random wrinkles,
folds, and other nonideal features [8]. Stretchability is a
critical characteristic for a robust and conformal inter-
face with biological tissues without movement-induced
device failure or loss in performance.

The strategies for achieving stretchable electronics
utilize either inherently stretchable materials [9e13],
unconventional layouts [14e16], or a combination
thereof (Figure 2A and B). Replacing traditional elec-
tronic materials with those that are intrinsically
stretchable, using either organic or inorganic chemis-
tries, or by utilizing engineered composites that
combine ultra-thin, typically nanoscale wires, mem-
branes, ribbons or platelets of established, high-perfor-
mance materials (e.g. silicon, metals) with soft
substrates/superstrates, yields systems that can bend,
stretch, and flex [17].

Soft encapsulating substrates are of considerable
importance in defining robust interfaces with the body.
These substrates (Figure 2C) are typically comprised of
textiles or soft elastomeric materials [18] that have been
www.sciencedirect.com
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Figure 2

Enabling technologies for skin-interfaced wearable devices. (a) Representative examples of stretchable materials including stretchable nanocomposites
[12] (left), inherently stretchable organic polymers [13] (center), and composites with liquid metals [9] (right). (b) Representative examples of uncon-
ventional layouts for enabling stretchability including serpentine device interconnects [14] (left), open mesh designs [15] (center), and ‘island–bridge’
layouts [16] (right). (c) Representative examples of stretchable substrates including textiles [10] (left), elastomeric materials [18] (center), and elas-
tomeric materials with embedded microfluidic channels [11] (right).
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shown to support bending, flexure, and dynamic multi-
dimensional deformations. In addition to stretchability,
moisture-resistant barrier layers, coatings, and
embedded microfluidic channels help limit failure
modes caused by sweat excretion and fluid exposure [5].
Although most wearable devices primarily interface with
the skin, alternative surfaces such as the fingernails,
outer ear lobe, inner mouth cavity, and surface of the eye

represent other areas of interest for sports applications,
where soft, biocompatible encapsulating materials,
moisture barriers, and mechanical ruggedness are crucial
features.
Soft wearables for athletic performance
monitoring
Interest in wearable device technologies stems from the
need for quantifying the physiological health state of
athletes during activity (e.g., sporting event or training),
recovery, and rest. Biometric parameters of interest such
as movement (both geospatial and biomechanical),
electrophysiological (heart rate), and hydration state
(sweat loss) must be readily accessed either in real time
or upon the event completion [7]. Although biochemical
signals offer important physiological insights, few com-

mercial solutions exist for in situ biomarker monitoring
(e.g., electrolytes and metabolites). Soft wearable de-
vices, owing to the previously described conformal,
seamless interfacing with the body, offer new integrated
platforms for continuous monitoring of both biophysical
and biochemical signals of interest. The sections that
follow highlight emerging wearable devices for capturing
these signals and the potential insights offered for ath-
letic performance.

Inertial and motion tracking
Complex multidimensional motion and kinematic
measurement tools monitor sport-specific movements
to assess motion quality and biomechanics for energy

expenditure characterization and injury prediction [19].
Commercially available systems such as STATSports
and Catapult Sports measure body weight, motion,
distance traveled, and body position using inertial sen-
sors and global positioning system modules [20]. These
apparel integrated systems track body movements from
the torso, requiring directly coupled sensors to achieve
localized motion tracking of core and limb movements.
In contrast, skin-interfaced wearable devices in flexible/
stretchable formats can intimately couple with various
body locations, offering highly localized motion capture

capabilities from conformal multimodal sensors.
Figure 3A shows a representative example [21] in which
encapsulated commercial accelerometers, in a stretch-
able islandebridge configuration (e.g. Figure 2C), cap-
ture various body motions in a series of on-body tests.
Other sensor embodiments exploit [22] high gauge-
factor strain sensors for detecting human motions.
Integrating a network of this class of stretchable sensors
Current Opinion in Biomedical Engineering 2019, 9:47–56
on the body would greatly expand the range of
measurable full-body movements, such as gait, balance,
and joint specific motions, in previously inaccessible
areas (such as the knee or ankle) during athletic activ-
ities [23].

Physiological monitoring
Beyond location- and position-based tracking, biophys-
ical parameters such as muscle activity (Electromyog-
raphy [EMG]), body temperature, respiration, heart
rate, and blood pressure provide deep insights into both

the physiological health state of an athlete before,
during, and after physical activity, and the efficiency of
different training regimes [24]. Recent advances in
epidermal sensors provide significantly enhanced capa-
bilities for continuously monitoring these parameters
during athletic events.

EMG measurements by soft, stretchable electrode
arrays conformally interfaced to the skin record the
electrical signal associated with muscle activation. As
the recorded signal proportionally increases to the force

of muscle contractions, EMG measurements can quan-
titatively assess muscle utilization and overall muscle
health. A recent study [25] (Figure 3B) shows that
multichannel, large-area EMG sensors can measure
multiple muscles by utilizing various levels of stiffness.
EMG sensors, when attached to the forearm and leg, can
simultaneously record the signals from both muscle
groups correlating different muscle activation states to
different bulk-body motions.

Body temperature during exercise represents another

key component for both understanding metabolic ac-
tivity to optimize performance and for maintaining
overall health (e.g. prevent heat stroke). Recent work
[26] introduces a highly sensitive, wireless, and
stretchable temperature sensor that conformally and
robustly integrates to the skin (Figure 3C). This inti-
mate interfacing enables measurement of skin hydration
state due to changes in skin thermal properties. Other
work [27] exploits similar principles to monitor tem-
perature changes resulting from muscle activity during a
workout. In an on-body demonstration, the sensor, worn

on the bicep, recorded a 0.9 �C temperature increase
(from 31.7 �C to 32.6 �C) during a workout. This class of
soft, stretchable temperature sensors enables highly
accurate temperature measurements comparable to
infrared (IR) thermal imaging [28], offering the possi-
bility for garnering deeper insight into thermoregulatory
processes during exercise in a real-time, continuous
manner.

Respiration rate, when coupled with these aforemen-
tioned measurements, offers additional insights about

exercise-induced fatigue critical for maintaining peak
performance [29]. As with motion measurements,
www.sciencedirect.com
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Figure 3

Skin-interfaced wearable devices for physiological monitoring. (a) Optical image of an integrated strain sensor for capturing various body motions [21].
(b) Optical image of a wearable device for recording EMG signals for quantitatively assessing muscle activation [25]. (c) Representative example of a
soft, flexible temperature sensor for monitoring muscle activity [26]. (d) Integrated device for measuring respiration rate [31]. (e) Representative example
of an ECG sensor for monitoring heart rate during exercise [32]. (f) Optical images of a skin-interfaced wearable device for blood pressure monitoring
[34]. ECG, electrocardiogram; EMG, electromyography.
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respiration rate monitoring typically utilizes highly
sensitive strain sensors, which in turn, enable facile
integration into multimodal sensing platforms [30]. One
example [31] utilizes a simple benchtop fabrication
approach for low-cost, high-throughput manufacture of
skin-interfaced sensors capable of measuring EMG,
temperature, and respiration rates. As Figure 3D shows,
the device comprises a series of metallic sensors

connected by gold-on-polyethylene terephthalate
serpentine ribbons. This results in a robust sensing
platform suitable for exercise monitoring, which, as
validated through on-body testing, demonstrates clear
differentiation between normal and deep breaths.

Athletic performance relies not only on kinematics,
biomechanics, and motion control but also on the car-
diovascular output of the athlete. Of primary interest are
heart rate, heart rate variability, and heart rate recovery,
which track physical exertion and the body’s autonomic

response when the body has an elevated need for
oxygenated blood and nutrients. Heart rate, heart rate
variability, and heart rate recovery represent important
biometrics for evaluating an individual’s overall physio-
logical health state and are thus topics of intense aca-
demic interest in sports science and performance [5].
Although many sensor embodiments exist, few exhibit
sufficient durability for athletic environments. A recent
embodiment [32] (Figure 3E) exploits thin, soft, and
stretchable construction with skin-safe adhesive to
robustly interface to the skin and perform wireless

electrocardiogram (ECG) measurements. On-body
testing during daily activity demonstrates the accurate
wireless recording of ECG waveforms in real time with
minimal motion artifacts and reduced noise due to
conformal skin interfacing.

Blood pressure (BP) represents another cardiovascular
signal of great significance. Physical exercises induce an
increase in cardiac output related with increase in both
systolic BP and diastolic BP. Although typically
measured by a BP cuff, a skin-interfaced sensor is critical
for monitoring BP during sports activities. Using ECG

measurements, such sensors can measure an athlete’s
BP via the established pulse transit time method [33].
An advanced device embodiment [34] (Figure 3F)
combines three epidermal ECG electrodes with a fabric-
based flexible piezoresistive sensor to measure the pulse
from the wrist. By comparing the signals from before and
after exercise, the flexible piezoresistive sensor provides
signals that reflect respiration and enables tracing the
Skin-interfaced wearable devices for biochemical and hydration monitoring. (a
Photograph of integrated epidermal microfluidic device with time-sequenced
device worn during swimming [40]. (d) Image of a patch worn on the arm of a
chloride [45]. (e) Wireless electrochemical sensor for wireless multimodal swea
colorimetric analysis of biomarkers [47].
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missing pulse features, an indicator of blood vessel
expansion.

Biochemical and hydration monitoring
Although biophysical signals offer a critical window into
the physiological health state of athletes, understanding

the biochemical basis of athletes is essential for maxi-
mizing performance and preventing injuries due to
overtraining [35]. Traditional biochemical measurement
tools are ill-suited for in situ performance tracking due
to their reliance on blood draws and subsequent analysis
either off-field or in centralized laboratory facilities [36].
Biofluids such as sweat, saliva, and tears contain vital
biochemical information and as such offer attractive
noninvasive alternatives to blood, with sweat being the
most viable one for athletic performance monitoring
[37]. In this section, we highlight two emerging and

promising wearable, sweat-based biochemical analytical
platforms classified as epidermal microfluidic devices
(‘epifluidics’) and wearable electrochemical sensors.

Epidermal microfluidic devices comprising skin-inter-
faced sensors formed from soft, stretchable elastomeric
substrates with embedded microfluidic channels
leverage simple colorimetric assays for the capture,
storage, and quantitative analysis of sweat [38]. Although
sweat contains many metabolite and electrolyte targets
of interest, most work focuses on detecting chloride and

lactate. A recent example [38] integrates the colori-
metric analysis of sweat glucose, lactate, chloride, and pH
with sweat rate measurements (Figure 4A). Sweat enters
the device from the natural pressure generated by the
sweat glands and continues to enter separate chambers
via embedded microfluidic channels. Each chamber
contains a commercially available colorimetric assay for
an analyte of interest such that sweat components
interact with the colorimetric reagents and develop
distinct colors quantitatively linked to analyte concen-
tration. Using a smartphone to capture an image of the

device, application-based color analysis of each assay
chamber provides a simple analytical pathway. Incorpo-
ration of advanced microfluidic channel geometries
(Figure 4B) enables time- (or volume-) sequenced cap-
ture and analysis of sweat by routing sweat such that the
chambers fill in a sequential manner [39]. With geome-
tries designed to prevent bidirectional fluid flow (i.e.
entering from the outlet), epifluidic devices can capture
and analyze sweat from athletes in a variety of environ-
ments, including aquatic or transitional environments (as
in triathlons) (Figure 4C) [40].
) Photographs of multiparameter colorimetric sweat sensors [38]. (b)
multiparameter analysis [39]. (c) Photograph of epidermal microfluidic
subject while cycling to record real-time concentration changes in sweat
t analysis [46]. (f) Integrated device for the wireless electrochemical and
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Because the concentrations of constituents in sweat can
dynamically vary depending on physiological status, the
real-time monitoring of some sweat biomarkers is crit-
ical. Skin-interfaced electrochemical sensors provide
continuous monitoring of specific analyte targets by
leveraging amperometric or potentiometric measure-
ment techniques to generate an electrical signal pro-
portional to the quantity of the analyte in the sample

[41]. This results in highly sensitive and selective
measurements with low power requirements suitable for
miniaturization into a wearable format [42]. High
sensitivity is required for detecting most analytes of
interest, which typically appear in low concentrations in
noninvasively sampled biofluids [43]. Intimate,
conformal device interfaces are essential for high-fidel-
ity capture of biofluids in a way that avoids irritation and
sample contamination [44]. Advanced sensing systems
[45,46] incorporate multiple chemical sensors onto a
single platform and utilize epidermal electronic designs

with integrated wireless communication capabilities, as
highlighted in Figure 4D and E. These devices transmit
real-time data wirelessly to a smartphone for the user to
analyze sweat composition and correlate well with
samples analyzed by conventional techniques.

Recent efforts have led to the integration of both of
these biochemical sensing approaches into a single
analytical platform for the wireless, battery-free analysis
of chloride, pH, lactate, and glucose [47] (Figure 4F).
This approach leverages the facile nature of the colori-

metric assays to monitor pH and chloride levels while
exploiting the high sensitivity of the electrochemical
sensors for capturing glucose and lactate in a time-
evolved setting. This capability enables multiday moni-
toring of both sweat glucose and lactate, demonstrating
significant promise for long-term continuous deploy-
ment for tracking changes during training and rest cycles.
Opportunities and outlook
Emerging classes of soft, stretchable wearable devices
represent a transformative advance in body integration
with utility for athletic performance and recovery
monitoring. By achieving intimate, conformal interfaces
with the body, such devices offer significant improve-
ments in both measurement accuracy and multifunc-
tional analysis compared with existing commercial
platforms. Such systems enable an expansion of both the

type and quantity of biosignal measurements possible
and do so without impeding athletic performance. This
seamless interfacing offers opportunities to better un-
derstand complex physical motions from a biomechan-
ical standpoint (e.g. human gait and baseball pitch)
while monitoring the stresses on muscles and joints to
prevent injuries (e.g. anterior cruciate ligament [ACL]
tears). However, these multifunctional capabilities
require not only further refinement and enhancement of
sensor accuracy and performance but also an
Current Opinion in Biomedical Engineering 2019, 9:47–56
understanding of the complexities that arise from the
power management of sensors and electronics modules
[48]. The power draw of many sensor modalities for
long-term, continuous monitoring typically necessitate
the integration of large onboard batteries, which in-
crease the bulk of the device, thereby limiting the
ability to conformally interface with the body. Emerging
physiological, environmental, and biochemical sensors

that exploit energy harvesting and the human body’s
natural sweat excretion mechanisms are physically
imperceptible to athletes and poised to eliminate po-
tential barriers to adoption.

The breadth of physiological targets and locations for
body interfacing dictate variable operational life spans
for this class of wearable devices. Recent devices, such
as the MC10 BioStamp [49], are reusable (with a
disposable skin adhesive layer) and designed for
continuous physiological monitoring, whereas others,

such as L’Oreal’s My UV Patch [50], are single-use de-
vices. Utilization of industry-standard materials,
including medical-grade skin adhesives (e.g. 3M Inc.),
communication electronics (e.g., NFC and Bluetooth
modules), and manufacturing processes (e.g., flexible
hybrid and roll-to-roll manufacturing) help to minimize
fabrication costs at volume, thereby achieving price
points necessary for single-use ($1e$5) and reusable
wearable products ($50e$500) in consumer health and
medical markets. As this field matures, the environ-
mental impact of disposable, single-use or limited-use

devices with onboard batteries must be considered.
Early-stage efforts currently focus on utilization of sus-
tainable, environmentally friendly materials, and
energy-harvesting strategies [17].

With an increase in sensor ubiquity, the volume of
collected data will necessitate new algorithms and ap-
proaches to understanding physiological relevance. Data
analytics tools will provide ways to quickly assess large
physiological data sets to communicate actionable in-
formation back to coaches and trainers. Recent studies
[51] have found that commercial platforms are begin-

ning to provide insights to improve athletic performance
and recovery. These data analytics and feedback con-
siderations, when taken together, provide a roadmap to
fully realize the potential of skin-interfaced wearable
biosensors to transform the current state of athletic
performance monitoring.
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