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An analytic model of two-level compressive
buckling with applications in the assembly of
free-standing 3D mesostructures

Yan Shi,†ab Pengyu Pei,†a Xu Cheng,b Zheng Yan,c Mengdi Han,d Zhi Li,a

Cunfa Gao,a John A. Rogers,de Yonggang Huangdf and Yihui Zhang *b

Recently developed methods for mechanically-guided assembly exploit stress release in prestretched

elastomeric substrates to guide the controlled formation of complex three-dimensional (3D) meso-

structures in advanced functional materials and integrated electronic devices. The techniques of interfacial

photopolymerization allow for realization of such 3D mesostructures in free-standing forms, separated

from their elastomeric substrate, via formation of an integrated base layer. Theoretical models for the

complex modes of deformation associated with this scheme are essential in the optimal design of the

process parameters. Here, we present an analytic finite-deformation model of an isolated double-ribbon

structure to describe the buckling process and morphology change of the assembled mesostructures

upon removal of the substrate. As validated by finite element analyses (FEA), this analytic model can

accurately predict the profiles of the double-ribbon structure with a range of different design parameters.

We further illustrate the extension of this model to the analyses of 3D mesostructures with different

geometries. Inspired by analytic results for flexible base structures, combined experimental results and

numerical simulations demonstrate that mechanical interactions between the two different layers can be

leveraged to achieve hierarchical assembly of 3D mesostructures. These findings could be useful in further

advances in designs of free-standing 3D mesostructures based on mechanically-guided assembly.

1. Introduction

Techniques for the formation of three-dimensional (3D)
mesostructures are of rapidly growing interest in many fields
of study, particularly those that involve emerging technologies
in biomedicine,1–3 robotics,4–9 batteries,10,11 sensors,9,12,13

micro-electro-mechanical systems (MEMS),14,15 optics and

optoelectronics.16–20 Existing approaches include printing-
type techniques (e.g., two/multi-photon lithography,20,21 direct
writing,22–24 3D printing2,25), folding/bending-type techniques
(e.g., via residual stress,26,27 capillary force,28,29 active materials30,31),
and mechanically-guided assembly techniques (e.g., via com-
pressive buckling,24,32–34 tensile buckling35). This third category of
methods offers unique capabilities in the formation of complex
3D mesostructures in high-performance electronic materials and
integrated devices, due to its compatibility with well-developed
technologies in modern industries.32,33,36–44 These techniques
also apply over a wide range of length scales.34,36 Here, an
elastomeric substrate serves as an assembly platform that
applies forces to a 2D micro/nano-scale precursor structure to
affect its transformation into a controlled 3D architecture. In
most cases, the elastomeric substrate must remain to hold the
3D architectures in their desired forms. This requirement poses
certain limitations in practical applications that require, as
examples, high temperature operation or precise dimensional
stability. By introducing a series of steps in photolithography and
planar processing, Yan et al.45 recently reported strategies that
involve the integration of a photodefinable polymer (epoxy; SU8)
layer as an integrated base that allows release of 3D structures
from their elastomeric substrate. The pattern and thickness of
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the base layer can be modified by choosing different processing
parameters (e.g., dose of ultraviolet (UV) exposure, duration of post
expose bake) and photomasks for control of exposure to UV light.
Fig. 1(a) shows scanning electron microscope (SEM) images and
simulation results of a free-standing network and a peacock-like
structure formed in this way.45 Both experiments and simulations
show that a base with a sufficiently large bending stiffness (e.g.,
more than ten times larger than that of the top 3D structure) can
maintain the shape of the 3D mesostructure (e.g., the right panel of
Fig. 1(a)). Bases with insufficiently large bending stiffnesses tend to
deform with the 3D mesostructure (e.g., the left panel of Fig. 1(a))
after the release. The bending deformations of the base layer mainly
result from residual stresses restored in the buckled mesostructures,
and this procedure can be regarded as a two-level buckling process.
An understanding of such a two-level buckling phenomenon is
essential for optimal design of processing parameters related to this
approach. Although many theoretical models exist for postbuckling
behavior in thin-film structures,19,46–49 they focus mainly on the
single process of compressive buckling and cannot be used directly
to analyze the above two-level buckling process that involves an
additional process of energy conversion from the top 3D structure to
the base structure.

In this work, we developed an analytic model to predict the
deformations of a two-level buckling process in a double-ribbon
structure (shown in Fig. 1(b)), which can be extended to the
analyses of more complex 3D structures. Such a double-ribbon
structure (Fig. 1(b)) represents a degenerated 2D model that
illustrates the two-level buckling process for the assembly of
free-standing 3D mesostructures. Specifically, an arch-shaped,
top-layer ribbon was firstly formed through the compressive
buckling of a straight 2D precursor, with use of a prestretched
soft substrate (which is not shown in Fig. 1(b)). Then, via
backside UV light treatment, a bottom-layer ribbon in photo-
definable polymer (SU8) was generated, with terminals bonded
with the top-layer ribbon. Release of the ribbons from the

substrate induces bending of the bottom-layer ribbon, leading
to the formation of a free-standing double-ribbon structure. As
validated by finite element analyses (FEA), the developed model
suggests a significant role of the stiffness ratio between the top
and bottom layers in the two-level buckling process. By utilizing
this type of two-level buckling approach, we demonstrated hier-
archical assembly of complex 3D mesostructures in free-standing
forms, through combined FEA and experimental studies.

2. An analytic model of the two-level
buckling

Fig. 2 provides a schematic illustration of the mechanics model for
the double-ribbon structure. For slender ribbon structures with the
thickness-to-length ratio smaller than 0.1, we adopted the Euler
beam theory to model the deformations, neglecting the effects of
axial elongation (i.e., related to the membrane strain) and shear
deformations of the ribbons. The top-layer ribbon with an original
length of L1 and bending stiffness of E1I1 (E, Young’s modulus; I,
moment of inertia) is clamped at the two ends. With the left end
fixed, the right end moves left to apply a compressive force ( p) to
the ribbon structure, triggering the compressive buckling when
the force reaches a critical value. For simplicity, the length of the
bonding sites was neglected in the current model. According to
the initial postbuckling analyses of a single straight ribbon,46 the
profile of the buckled structure can be given as

U1;2 ¼ a sin2
px
L1
; (1)

where U represents the coordinate of the profile, with the origin
point fixed at the left end of the ribbon; the first subscript denotes
the ribbon number and the second one denotes the coordinate
direction. Here, U1,2 means the position of the top-layer ribbon
along y axis, and a is the amplitude of the buckled configuration,
depending on the level of compressive loading. During the

Fig. 1 (a) Scanning electron microscope (SEM) images and finite element analysis (FEA) of isolated network and peacock-like structures formed through
mechanically-guided assembly. (b) FEA results that illustrate the two-level buckling process for the assembly of an isolated double-ribbon structure.
Scale bars, 500 mm. (a) is adapted with permission from Yan et al. (ref. 44), Copyright (2017), National Academy of Sciences.
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postbuckling, the total axial load p is p
�
þ �p, where %p represents the

additional axial load beyond the critical buckling, which is given by46

�p ¼ p2a2

8L2
1

1� 3
p
�

E1A1

1�
p
�

E1A1

p
�
; (2)

and p
�

is the Euler critical load and is expressed as p
�
� 4p2E1I1

L1
2

for the ends-fixed ribbon, as analyzed herein. Here, A1 is the
cross-section area of the ribbon. Based on the assumption of

negligible axial elongation, we have
1� 3

p
�

E1A1

1�
p
�

E1A1

� 1. Then the

amplitude is obtained from eqn (2) as

a � L1

ffiffiffiffiffiffiffiffi
8�p

p2 p
�

s
; (3)

For the ends-fixed ribbon, the axial displacement U1,1 can be
approximated by46

U1;1 �
pa2

16L1
sin

4px
L1
� 4px

L1

� �
0 � x � L1ð Þ; (4)

Thereby, the axial compression T1 can be expressed by,

T1 ¼ �U1;1jx¼L1
� p2a2

4L1
: (5)

For the guided assembly of 3D structures through compres-
sive buckling, the compressive strain (or distance) is usually
controlled by a mechanical stretcher, which also represents an
important tunable parameter for manipulating the configura-
tions of the structure. For a given axial compression T1, the

amplitude a can be determined by eqn (5) as a ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
L1T1

p

p
. Then

the profile of the buckled ribbon in eqn (1) can be described
analytically.

Fig. 2 Schematic illustrations of the buckling procedures of the double-ribbon structure studied in the analytic model. (a) Front view of a clamped straight
ribbon with compressive load applied at the right end. The buckling mode is described using the dashed line. (b) A bottom-layer ribbon developed aligned to
the buckled top-layer one, with both ends bonded together. (c) Illustration of the deformed configuration due to the 2nd-level buckling upon load release.
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As shown in Fig. 2(b), a new bottom-layer ribbon was
developed after the compressive buckling of the top-layer
ribbon, and they were bonded together at the two ends. The
original length of the bottom-layer ribbon is

L2 = L1 � T1. (6)

After the removal of the elastomeric substrate, the clamped
boundaries were relaxed to allow rotational motions at the two
ends, while the rotational angles of the two different layers are
the same during the deformations. FEA results show that the
profiles of the buckled ribbons can be well characterized by
trigonometric functions or their variants as,

U1;2
� ¼ A1 sin

px
L3
þ A2 sin

2 px
L3

0 � x � L3ð Þ; (7)

U2;2
� ¼ A3 sin

px
L3

0 � x � L3ð Þ: (8)

It is noteworthy that the linear term of sinusoidal function is
typically chosen to describe the configuration of a buckled
ribbon with simply supported ends, while the quadratic term
is widely used to capture the buckled configuration in the
condition of clamped ends. In the current analyses, the ends
of the top-layer ribbon are bonded onto the base structure
that imposes a finite constraint on the rotation. As such, the
boundary constraint can be regarded as an intermediate state
between simply supported and clamped conditions. The FEA
results also indicate that the displacement of the top-layer
ribbon can be well treated as a combination of the linear and
quadratic terms. Furthermore, with consideration of the num-
bers of equations and unknowns, we simply used a linear term
(eqn (8)) to characterize the displacement of the bottom-layer
ribbon. Similar displacement functions were also adopted in
previous postbuckling analyses.39,47,48 In eqn (7) and (8), the
superscript ‘‘*’’ denotes the displacement in the final condition, i.e.,
after the removal of the substrate. L3 represents the axial projection
length of both layers (shown in Fig. 2(c)). A1, A2 and A3 are the
unknown parameters to be determined. During the manufacturing
process, the top-layer and bottom-layer ribbons are bonded per-
fectly at small regions adjacent to the two ends. Therefore, the
slopes of the two ribbons are approximately the same at the ends,
which requires the rotational angle (a in Fig. 2(c)) to be the same for
the two layers, i.e.,

dU1;2
�

dx

����
x¼0
¼ dU2;2

�

dx

����
x¼0

; (9)

All the unknown parameters (A1, A2, A3 and L3) can be deter-
mined by eqn (9), the invariant arc lengths of the ribbons as
well as the energy conservation detailed below.

For the ultra-thin ribbons, the membrane strain resulted
from the axial elongation or shrinkage was usually negligible,
as compared to the bending-induced strain (at the top and
bottom surfaces) during the compressive buckling, since the
bending deformations are more energy favorable.47,50 As such,
the axial elongation/shrinkage of the ribbons can be neglected,

and therefore, the total arc lengths of the two ribbons remain
unchanged during the deformation, requiring thatðL3

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U1;2

�
� � 0h i2r

dx ¼ L1; (10)

ðL3

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U2;2

�
� � 0h i2r

dx ¼ L2: (11)

During the first-level buckling process, the work done by the
external force converts into the deformation energy that consists
of the membrane energy and the bending energy. By neglecting
the membrane strain, the deformation energy is equal to the
bending energy. The external work Wex can be derived from

p ¼ p
�
þ �p, and eqn (3) and (5),

Wex ¼
ðT1

0

pds ¼
ðT1

0

1þ T1

2L1

� �
p
�
ds ¼ T1 þ

T2
1

4L1

� �
p
�

(12)

in the condition shown in Fig. 2(a). From eqn (7) and (8),
the bending energy at the final state shown in Fig. 2(c) can be
expressed as

Wfinal ¼
ðL3

0

E1I1
U1;2

�� � 0 0h i2
1þ U1;2

�
� � 0� 	2
 �3 þ E2I2

U2;2
�� � 0 0h i2

1þ U2;2
�

� � 0� 	2
 �3
2

dx:

(13)

where the subscripts ‘‘1’’ and ‘‘2’’ represent the properties for
the top and bottom layers, respectively. The energy conserva-
tion of the system requires

Wex = Wfinal. (14)

Based on eqn (9)–(14), the unknown parameters A1, A2, A3

and L3 can be determined. The profile of the double-ribbon
structure was then obtained accordingly. The compression of
the bottom-layer ribbon along the axial direction can be calcu-
lated from T2 = L2 � L3.

3. Effects of the bending stiffness ratio
on the structural change
3.1 Validation of the analytic model

In this section, 3D FEA were employed to validate the above
analytic model. In FEA, four-node shell elements were adopted
to model the ribbons. The effective length (L1) and width of the
top-layer ribbon were 1 mm and 0.1 mm, and square bonding
sites (0.1 mm by 0.1 mm) were assigned at each end of the layer
for bonding to the bottom-layer ribbon. The entire simulation
consists of three main steps. Firstly, the critical buckling strain
and corresponding buckling mode determined from linear
buckling analysis were implemented as an initial imperfection
in the postbuckling calculations to model the deformed shape
of the top-layer ribbon at different levels of compression,
e.g., 20% and 30% compressive strain. Secondly, a bottom-
layer ribbon was built with the same width and set to bond with
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the top-layer ribbon during the subsequent deformations. It is
noteworthy that the displacement loads applied to the top layer
were maintained during this procedure. Finally, the removal of
the displacement loads relaxes the structure to an equilibrium
state. The simulations of the two-level buckling process were
performed using the conventional static analysis in the com-
mercial software ABAQUS, and the convergence of mesh sizes
was tested to ensure computational accuracy. SU8 was adopted
as the top-layer material and its elastic modulus (E1) and
Poisson’s ratio (n) are E1 = 4.02 GPa and n1 = 0.22,45 respectively.
According to the analytic model, the bending stiffness ratio
(E2I2/E1I1) is essential in the determination of the final config-
urations. In the current FEA, the thicknesses of the top and
bottom ribbons are both set to 0.01 mm for simplicity, and the
variation of the bending stiffness ratio is realized by varying the
Young’s modulus of the bottom ribbon.

Fig. 3 shows the profiles of the top-layer and bottom-layer
ribbons predicted by both the analytic model (dots) and FEA (line).
Here, two different levels of compressive strains, 20% (black) and
30% (red), were used to form the arc-shaped top ribbon through
the buckling-guided assembly. The bending stiffness ratio
(E2I2/E1I1) ranges from 2 in Fig. 3(a) to 20 in Fig. 3(d). As expected,
the bottom-layer ribbon with a larger bending stiffness tends to
maintain the as-assembled shape of the top-layer. This is evi-
denced by both the amplitude of the bottom-layer (A3) and the
compressed length (T2) that decreases with increasing the bending
stiffness ratio (E2I2/E1I1). In all of the different cases, the profiles
predicted by the analytic model agree well with the FEA results.
The relative large discrepancy at lower bending stiffness ratios are
mainly attributed to the simplified displacement function (i.e.,
using a linear sinusoidal term) that is not able to characterize the
deformation of the bottom-layer ribbon in this regime.

Aside from the final 3D configuration, the overall variation of
the mesostructure geometry also represents an important con-
cern of the morphological control during the fabrication. For the
double-ribbon structure, two dimensionless parameters, i.e., the
average deflection ratio (%A3/L1, with %A3 denoting the average
displacement along the y direction) and compressed length ratio
(T2/L1) of the bottom layer characterize the structural variation in
a quantitative manner. %A3/L1 measures the flatness of the base
ribbon structure, which is important in the mechanically-guided
3D assembly. T2/L1 provides a quantitative measurement of the
in-plane compression (along the x direction) after the relaxation
of the entire structure. Smaller average deflection ratio or shorter
compressed length ratio indicate a lower level of morphology
change in the top-layer ribbon, which is more preferable in the
assembly of free-standing 3D mesostructures. Fig. 4 presents the
results of these two parameters (%A3/L1 and T2/L1) for a wide range
of bending stiffness ratios, with consideration of two typical
compressive strains (20% and 30%) in the first-level buckling.
Both parameters decrease rapidly with increasing the bending
stiffness ratio, which is consistent with the results in Fig. 3. For a
bending stiffness ratio over 20, the deformations of the top-layer
ribbon are basically negligible during the 2nd level buckling, i.e.,
after the removal of the substrate.

3.2 Extension of the analytic model

The above analytic model can be extended directly to the analyses
of some 3D mesostructures. One of the examples is a double
cross-ribbon structure (with same widths) assembled through
bi-directional buckling. Fig. 5(a and b) shows the configura-
tions of the double cross-ribbon structure with two different
bending stiffness ratios (1 and 10) and bi-axial compressive
strains (20% and 30%) used to assemble the cross-ribbon

Fig. 3 Profiles of the top-layer and bottom-layer ribbons predicted by the analytic model (dots) and FEA (lines), where 20% (black) and 30% (red)
compressions are adopted for the 1st-level buckling. The bending-stiffness ratio is set as 2, 5, 10 and 20 in (a), (b), (c) and (d), respectively.
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structure in the 1st level buckling. The predictions of the
deflection ratio based on the analytic model show good accor-
dance with the FEA (Fig. 5(b)), indicating that this model can be
well generalized to the analyses of 3D beam structures with

bidirectional symmetry or multi-fold rotational symmetry. This
model is also applicable to the double-ribbon structure with
different widths for the two layers, considering the proportional
dependence of the bending stiffness on the ribbon width.

Fig. 4 Overall deformations of the double-ribbon structure calculated with FEA (black) and analytic model (red), respectively. (a) Average deflection ratio
( %A3/L1) versus bending-stiffness ratio in the conditions of 20% and 30% initial compressions, respectively. (b) Axial compression ratio (T2/L1) of the
bottom-layer ribbon versus bending-stiffness ratio in the conditions of 20% and 30% initial compressions, respectively.

Fig. 5 Simulation results for the assembly of hierarchical structures by cross-shaped ribbons. (a) Configurations of the buckled structures with two
different initial compressions (20% and 30%) and stiffness ratios (1 and 10). (b) Average deflections ratios calculated with FEA (black) and analytic model
(red) in the conditions of 20% and 30% initial compressions, respectively.
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For the design of more complex 3D mesostructure with pat-
terned bases, the concept of equivalent bending stiffness can be
employed, and the ratio (E2t2

3/E1t1
3) can be regarded as a more

general parameter to govern the process, where t2 and t1 are the
thicknesses of two layers.

As mentioned above, a stiffer base (bottom-layer ribbon) is
preferable in fixing the shape of the isolated 3D structure. From
another perspective, a more flexible base (or a lower stiffness
ratio) results in a more evident deformation of the bottom layer,
which offers a possible route to the assembly of complex 3D
structures. The theoretical analyses in Section 3.1 suggest a
bending stiffness ratio (E2I2/E1I1) less than 5 can induce a distinct
deformation of the bottom-layer structure. Following this concept,

we introduced a base design inspired by Kirigami,32,38 an ancient
art of paper cutting, to achieve 3D assembly of the bottom-layer
structure, even when the structures at different layers have the
same thicknesses. As an illustrative example, Fig. 6(a) presents a
design, in which the bottom layer (blue) is cut into an unfolded
2D box-like shape, consisting of five membranes. Here, the
narrowed regions whose widths are similar to those of the top-
layer (green) serve as creases, connecting the different mem-
branes. Due to the substantially reduced stiffness at the creases,
the bending deformations of the bottom layer tend to localize at
the narrowed regions, while the membranes remain almost flat in
most cases. Based on this assumption and the analytic model in
Section 2, the two-level buckling process of the 3D box-like

Fig. 6 Schematic illustration of the buckling process to form the 3D box-like structure. (a) Feature dimensions used in the analytic model. (b) Configurations
of the buckled structures with the thickness ratio ranging from 0.25 to 2. (c) Profiles of the box-like structure predicted by FEA (black) and analytic model (red).
The equivalent bending stiffness ratio is set as 0.0156, 0.125, 1 and 8, respectively. Scale bars, 4 mm.
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structure (Fig. 6(a)) can be analyzed. The profile of the top
structure in the 1st level buckling are given in eqn (1)–(5). The
original length L1 and width b1 of the top layer are shown in
Fig. 6(a). The deformation of the bottom layer is accommodated
mainly by the creases (width, b2). To simplify the analyses, the
crease region is assumed to deform into a circular arc after the
buckling process. Based on these assumptions, the profiles of
the buckled ribbons and box can be characterized by

U1;2
� ¼ A1 sin

px
L3

0 � x � L3ð Þ; (15)

U2;2
�

¼

x tany 0� x�Lb cosðyÞð Þ

y0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ðx�x0Þ2

p
Lb cosðyÞoxox0ð Þ

y0þR x0 � x� x0þLsð Þ

y0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ðx�ðx0þLsÞÞ2

p
x0þLsoxoL3�Lb cosðyÞð Þ

L3�xð Þ tanðyÞ L3�Lb cosðyÞ � x�L3ð Þ

8>>>>>>>>>><
>>>>>>>>>>:

;

(16)

where Ls represents the side length of the central square and
Lc is the length of the crease, as shown in Fig. 6(a). L3 is the
x-directional length between the bonding sites of the top structure
in the final configuration. Lb is a feature size shown in Fig. 6(a).
Note that x0 = Lb cos(y) + R sin(y), y0 = Lb sin(y) � R cos(y) and
R = Lc/y can be directly obtained from geometric relations. By
neglecting the membrane energy, the unknowns A1, L3 and
y can be obtained by substituting eqn (15) and (16) into
eqn (10)–(14).

FEA were employed to validate this theoretical extension. In
the simulations, the 2D patterns for the top-layer and bottom-
layer structures are shown in Fig. 6(a). The thickness (t1) for the
top layer is 50 mm, while that (t2) for the bottom layers ranges
from 12.5 to 100 mm, as in Fig. 6(b). In other words, the general
bending stiffness ratio (E2t2

3/E1t1
3) ranges from 0.0156 to 8. The

profiles of the box structure predicted by this analytic model
and FEA are shown in Fig. 6(c), indicating that the analytic
model derived from the 2D ribbons can be extended to the
analyses of 3D box-like structure for moderate stiffness ratios
(e.g., 40.1). For extremely small equivalent bending stiffness
ratios (E2t2

3/E1t1
3), e.g., 0.0156 in the first example of Fig. 6(c),

Fig. 7 Hierarchical assembly of complex 3D mesostructures. (a) Schematic illustration of an approach for forming 3D box-like structure via two-level
buckling process, together with an experimental result. (b) 2D precursor designs and assembled configurations for mesostructures that resemble the
pyramid, diamond and propeller. Scale bars, 4 mm.
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a relative large discrepancy between the FEA and model occurs,
since the crease regions are unable to accommodate all of the
deformation energy. According to these derivations, it is note-
worthy that the above model can be also extended to the
analyses of other 3D structures that are assembled mainly by
bending deformations.

4. Application in the hierarchical
assembly of complex 3D
mesostructures

Following the concepts described in Section 3.2, a novel
approach for hierarchical assembly of 3D structures is pre-
sented in this section. As shown in Fig. 7(a), firstly, a planar
precursor of the cross-like structure was partly bonded on a
biaxially prestretched elastomeric substrate (not shown in
figures),33,38 to allow the formation of 3D tent-like structure
after relaxing the substrate. Secondly, a patterned box-like base
(thinner than the top structure) was developed underneath the
tent structure. Finally, after releasing from the substrate, the top-
layer tent structure drives the reconfiguration of the patterned
base into a 3D box structure without any further intervention.

Millimeter-scale experiments were carried out to demon-
strate the utility of this approach in the hierarchical assembly.
The 2D precursors of single-layer polyimide (PI) films (12.5, 25,
50, and 75 mm in thickness) were patterned into desired shapes
by an automated mechanical cutting. For films thinner than
60 mm, a thermal release tape, whose adhesion reduces con-
siderably after heating to 95 1C, was utilized to facilitate the
retrieval of the patterned films from the adhesive cutting mat.
The assembly process started with the adhesion of the bottom
layer to a water-soluble tape, whose adhesion reduces considerably
after immersing in water. Next, the bonding sites of the buckled
(top) structure are glued to the bottom layer with a commercial
adhesive (Super Glue, Gorilla Glue Company), followed by curing
for B5 min at room temperature. Finally, the water-soluble tape
with multilayered structure is immersed in water. After heating
(80 1C) for B40 min, the multilayered structure fell off the tape,
assembling into the desired hierarchical structure automatically.
This process was also modeled quantitatively by FEA, in which the
elastic modulus of 2.5 GPa and Poisson’s ratio of 0.34 were used
for the PI films.

Fig. 7 presents a set of complex 3D structures that resemble
box, pyramid, diamond and propeller, as achieved using this
approach. In all of the different designs, 33% biaxial compres-
sive strain were used in the 1st level buckling to form the top-
layer structures. To realize evident folding deformation in the
bottom-layer structures, the top-layer structures are all thicker
than the bottom layers in the different designs in Fig. 7. For
such complex assembly processes, the FEA results still show good
agreements with the experimental images for the final configura-
tions, suggesting the FEA as a reliable design tool. These results
well demonstrate the concepts of the hierarchical assembly, which
can potentially scale down for the rapid formation of smaller
mesostructures.

5. Concluding remarks

In summary, we developed an analytic model for the two-level
buckling process in an isolated double-ribbon structure. The
analytic results, as validated by FEA, provide a simple way to
estimate the morphology change of the isolated structures after
their release from the substrate. In the two-level buckling process,
the material modulus and shell thickness come into play in the
form of bending stiffness ratio, according to the quantitative
results that characterize the shape fixity of the assembled struc-
ture (i.e., the top-layer structure). The results show that the
developed model can be extended to the analyses of more
complex 3D mesostructures. In the condition of small bending
stiffness ratios (i.e., with relative flexible base structure), we
leveraged the mechanical interactions between the two differ-
ent layers to demonstrate a route to the hierarchical 3D self-
assembly, by combined mechanics modeling and experimental
measurement. This study can serve as references in the design
of isolated 3D mesostructure and micro-devices.
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