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Wearable sensors for Parkinson’s disease: which data are
worth collecting for training symptom detection models
Luca Lonini1,2, Andrew Dai 1,3, Nicholas Shawen1,4, Tanya Simuni5, Cynthia Poon5, Leo Shimanovich5, Margaret Daeschler6,
Roozbeh Ghaffari7, John A. Rogers7,8 and Arun Jayaraman1,2,9

Machine learning algorithms that use data streams captured from soft wearable sensors have the potential to automatically detect
PD symptoms and inform clinicians about the progression of disease. However, these algorithms must be trained with annotated
data from clinical experts who can recognize symptoms, and collecting such data are costly. Understanding how many sensors and
how much labeled data are required is key to successfully deploying these models outside of the clinic. Here we recorded
movement data using 6 flexible wearable sensors in 20 individuals with PD over the course of multiple clinical assessments
conducted on 1 day and repeated 2 weeks later. Participants performed 13 common tasks, such as walking or typing, and a clinician
rated the severity of symptoms (bradykinesia and tremor). We then trained convolutional neural networks and statistical ensembles
to detect whether a segment of movement showed signs of bradykinesia or tremor based on data from tasks performed by other
individuals. Our results show that a single wearable sensor on the back of the hand is sufficient for detecting bradykinesia and
tremor in the upper extremities, whereas using sensors on both sides does not improve performance. Increasing the amount of
training data by adding other individuals can lead to improved performance, but repeating assessments with the same individuals
—even at different medication states—does not substantially improve detection across days. Our results suggest that PD
symptoms can be detected during a variety of activities and are best modeled by a dataset incorporating many individuals.
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INTRODUCTION
Parkinson’s disease (PD) is a neurological movement disorder that
affects ~1% of people above 60 years of age in industrialized
countries.1,2 Cardinal motor symptoms of PD that are responsive
to levodopa therapy include tremors (particularly while at rest),
rigidity, and slowness of movements (bradykinesia). These motor
symptoms gradually worsen, hindering daily living and negatively
impacting quality of life.3,4 Dopaminergic medications are used to
alleviate some of these symptoms, but their effects tend to wear
off more quickly as the disease progresses and affects wider
domains. Some individuals also experience frequent changes in
symptoms (‘OFF/ON’ state) or involuntary movements (dyskinesia)
as a medication side effect,5 which in turn, forces individual
adjustments in dosing. Tracking how motor symptoms and their
response to medication change over time is crucial in quantifying
the progression of PD for a given individual, in order to craft
personalized treatment regimens.
The current gold standard of care to evaluate PD symptoms is

through clinical examinations, whereby a trained clinician asks the
patient to perform a series of standardized motor tasks (e.g. hand

pronation-supination or heel tapping) while visually evaluating the
quality of their movements and providing a symptom score. The
most common rating scale to perform such evaluation is the
Movement Disorder Society Unified Parkinson Disease’s Rating
Scale (MDS-UPDRS).6 In addition, patients can be asked to keep a
diary of their symptoms (e.g. Hauser diary,7 CAPSIT-PD,8 Parkin-
son’s Symptom Diary9). These methods are, however, limited by
poor temporal resolution and low accuracy, respectively.8

Automatic evaluation of PD symptoms using wearable accel-
erometers, inertial, and electromyography sensors has been
proposed as a way to overcome these limitations.10 Several
studies have shown that it is possible to estimate MDS-UPDRS
scores or detect motor symptoms using data from wearable
sensors and machine learning models. Whereas signal processing
has been used to manually design-specific features to identify
symptoms,11 machine learning algorithms such as support vector
machines or neural networks are increasingly used because of
their ability to learn a classification model from the data and
generalize to unseen scenarios. These models can be trained
based on movement data collected from several individuals, as
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they perform standardized tasks in the clinic, as well as ground
truth scores provided by clinicians.12–15 The data collection
procedure often involves recording data from multiple subjects,
wearing multiple sensors and undergoing repeated clinical
assessments over several hours, so as to collect enough data on
transitions between ‘OFF’ and ‘ON’ medication states. However,
there is no consensus on the minimal data collection procedure,
including number of sensors and sensor locations, or number of
repeated clinical assessments and type of activities required to
develop an accurate model while maximizing patient compli-
ance.16,17 This information is critical towards facilitating the
translation of this approach to real world symptom detection
and monitoring in the clinic, as well as in the home and
community.18,19

One of the main challenges for real world deployment is
collecting sufficient labeled data to comprehensively model the
varied presentation of motor symptoms during daily activities. In
particular, symptoms may manifest differently across individuals
and activities, and may also vary within the same individual over
time.20–23 This renders deployment of symptom detection models
in naturalistic environments challenging,24,25 and complicates the
problem of generalizing symptom detection across individuals.26

As such, it is still unclear how many individuals and sensors data
should be collected from, as well as whether data collected during
several medication states is needed to train a system that can
generalize symptom detection across days.
The objective of this study was to evaluate the relative value of

several methods for increasing the amount of training data when
developing machine learning models for PD symptom detection
during activities representative of common daily tasks. We
recorded movement data from 6 body-conforming flexible
wearable sensors attached to the hands, arms, and thighs, and
trained a machine learning classifier to detect the presence of
tremor or bradykinesia in upper extremities, as individuals with PD
performed a series of common daily activities and standard tasks
used in clinical assessments. We trained statistical ensembles
(random forest) and convolutional neural network (CNN) classifiers
using data from a single sensor or multiple sensors, and evaluated
the contribution of having sensors on both sides of the body. We
then evaluated the effect of number of participants used to train

the model on model performance. Finally, we evaluated whether
incorporating training data from multiple clinical assessments
rather than a single assessment improved the detection of these
symptoms.

RESULTS
Sensor data from 19 participants performing the repeated clinical
assessments (Fig. 1a) were segmented into 5-second clips, yielding
a total of 41,802 data clips. Demographic data of participants is
reported in Table 1, whereas Table 2 contains the list of tasks used
for the assessments. The mean proportion of task performances
showing symptoms across participants were 48.5% (SD: 21.7%) for
bradykinesia, 22% (SD: 24.4%) for tremor, and 8% (SD: 11.5%) for
dyskinesias. The prevalence of tremor was substantially lower and
more variable than that of bradykinesia, with one participant
showing no manifestation of tremor at all. Because, the overall
prevalence of dyskinesia in this dataset was low, and only 8
individuals showed dyskinesia during more than one task
performance, we did not develop models for detection of
dyskinesia. We trained separate random forest (RF) classifiers27

for the detection of each symptom (tremor or bradykinesia) from a
set of features computed on the sensor data (Table 3). In addition,
we compared the symptom detection models based on RF
classifiers to those based on deep convolutional neural networks
(CNNs). Details on the implementation are described in the
Methods section.

Effect of adding sensors
Random forest models trained on hand data yielded the highest
mean AUROC for both the detection of bradykinesia (0.73, 95% CI:
0.68–0.77) and tremor (0.79, 95% CI: 0.74–0.84) across all activities
(Fig. 2a). Using data from sensors on both hands to detect
symptoms on the impaired side did not significantly improve
performance (bradykinesia: 0.73, CI: 0.69–0.78; paired t-test, t=
−0.74, p= 0.47; tremor: 0.79, CI: 0.74–0.84; paired t-test, t= 0.35,
p= 0.73). Similarly, using data from hand, arm, and thigh sensors
together did not confer a significant advantage relative to using
one hand sensor only for bradykinesia (0.73, 95% CI: 0.68–0.77;

Fig. 1 Data collection and sensor setup. a Individuals with PD underwent multiple clinical assessments spaced by 30min during a first visit
(day 1); assessments were done before and after each participant took their PD medication. A single follow-up assessment was performed
about 2 weeks later during a second visit (day 2). During each assessment, participants performed a series of daily activities and standardized
clinical tasks. b Overview of the MC10 BioStampRC senor; c Position of sensors on the body and sensor modalities; sensors were placed on
both sides, although only one side is shown for clarity. Data were recorded from the accelerometer (acc) and gyroscope (gyro) sensors, or from
the accelerometer and electromyography (EMG) sensor. Data from the EMG sensor was not used in the current study
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paired t-test, t= 0.54, p= 0.59) or for tremor (0.79, 95% CI:
0.72–0.86; t= 0.19, p= 0.85).
Using a CNN-based approach showed a similar result (Fig. 2b

bradykinesia—single hand: 0.69, CI: 0.63–0.75; hands bilateral:
0.68, CI: 0.63–0.73, p= 0.72; tremor—single hand: 0.78, CI:
0.73–0.82; hands bilateral: 0.70, CI: 0.62–0.77, p= 0.06); using data
from all sensors significantly degraded model performance
(bradykinesia: 0.60, CI: 0.54–0.66, p= 0.014; tremor: 0.60, CI:
0.50–0.69, p= 0.001), suggesting overfitting of the data. Therefore,
detection of symptoms in the upper extremities across all
activities was best achieved using one sensor placed on the hand

with the dominant symptoms. All subsequent analyses use only
data from such hand sensor.

Symptom detection across activities
Random forest models were able to detect bradykinesia and
tremor during both clinical structured activities (finger to nose and
alternating hand movements), and activities of daily living (Fig. 3).
Bradykinesia detection during fine motor tasks and walking
yielded the highest mean AUROC across participants (walking:
0.77, CI: 0.67–0.87; fine motor: 0.76, CI: 0.70–0.81); detection
accuracy was not significantly different from that achieved on
clinical structured tasks (0.73, CI: 0.66–0.80, p>= 0.50). In contrast,
detection during gross motor tasks had the lowest AUROC and
was significantly lower compared to that on clinical tasks (0.62; CI:
0.54–0.70, p= 0.04). Tremor was most accurately detected from
clinical tasks (0.79; CI: 0.71–0.88), though mean AUROC here was

Table 1. Participants’ demographics and associated clinical data

Participant ID Sex Age Onset
year

Diagnosis
year

Fluctuator (Y/
N)

Side predominantly
affected at first
assessment

MDS part III
—day 1,
time 0

MDS part III
—day 1,
time 60

MDS part
III—day 2

Days
between
visits

1004 M 52 2011 2013 Y Bilateral 31 30 14 11

1016 F 66 2016 2016 N Bilateral 19 21 32 14

1018 M 58 2012 2015 N Left 18 13 14 18

1019 F 36 2015 2015 N Left 36 14 10 19

1020 F 58 2005 2005 N Right 24 21 24 14

1024 M 70 2000 2000 Y Left 42 18 19 22

1029 M 74 2009 2010 N Left 42 32 21 13

1030 M 68 2010 2010 N Left 18 NA 22 20

1032 M 70 2012 2012 N Bilateral 28 12 26 16

1038 M 72 2007 2007 N Right 30 25 20 69

1044 M 59 2013 2014 Y Left 29 24 24 13

1046 F 69 2012 2014 N Right 21 18 18 14

1047 M 52 2009 2010 Y Right 18 9 6 20

1049 F 54 2006 2008 Y Left NA 24 24 13

1051 M 62 2013 2015 N Left 14 6 11 49

1052 M 69 2007 2008 Y Bilateral 31 15 NA NA

1053 F 66 2014 2014 Y Left 25 15 NA NA

1054 F 65 2000 2002 Y Right 44 15 NA NA

1055 M 75 2006 2009 Y Right 36 26 NA NA

1056 M 72 2005 2006 Y Left 46 61 NA NA

Table 2. Tasks performed by participants during the visits for the
assessment of PD symptoms

Task Symptom detected Type of task

Walking Bradykinesia/Tremor Functional

Walking while counting Bradykinesia/Tremor Functional

Finger to nose Bradykinesia/Tremor Clinical

Alternating hand movements Bradykinesia/Tremor Clinical

Sit to stand Bradykinesia Functional

Sitting Tremor Functional

Standing Tremor Functional

Drawing on paper Bradykinesia/Tremor Fine motor

Typing on a computer keyboard Bradykinesia/Tremor Fine motor

Nuts and bolts Bradykinesia/Tremor Fine motor

Pouring water from a bottle and
drinking

Bradykinesia/Tremor Gross motor

Organizing a set of folders Bradykinesia/Tremor Gross motor

Folding towels Bradykinesia/Tremor Gross motor

Tasks were divided into functional, fine motor, and gross motor groups

Table 3. Features computed on both the accelerometer and
gyroscope data to train the symptom detection classifier

Feature Feature dimension

Range (X,Y,Z) 3

Skew (X,Y,Z) 3

Kurtosis (X,Y,Z) 3

Cross-correlation peak (XY,XZ,YZ) 3

Cross-correlation lag (XY,XZ,YZ) 3

Dominant frequency (acceleration magnitude) 1

Relative magnitude 1

Moments of power spectral density (acceleration
magnitude)

4

Moments of Jerk magnitude 4

Sample entropy (X,Y,Z) 3
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not significantly higher than AUROC for walking (0.70; CI:
0.53–0.88; p= 0.25) or fine motor tasks (0.72; CI: 0.62–0.81, p=
0.23). Again, detection during the execution of gross motor tasks
was significantly worse than during clinical tasks (mean AUROC:
0.56; 95% CI: 0.49–0.63; p < 0.001).
Overall, AUROC values for CNN models for detection of

bradykinesia and tremor were comparable to those of random
forest models. Detection performance was highly variable across
subjects, and as such there was no significant difference in mean
AUROC values (p>= 0.26) (see Supplementary Material). Interest-
ingly, detection of bradykinesia from walking achieved better
results than for all other tasks (p= 0.02). This suggests that it is
possible to detect symptoms from some daily activities and
structured clinical assessments with comparable accuracies.

Effect of number of training subjects
To evaluate the effect on accuracy of number of subjects in the
training dataset, we trained random forest models on data from
an increasing number of participants (from 3 to 18). At each
iteration, a model was trained on a random subset of participants
and tested on the left-out ones.
Models for tremor detection showed a noticeable improvement

with added training subjects (Fig. 4). The mean AUC when
evaluating data from a new subject improved from 0.76 (CI:
0.74–0.78) for a training set using data from only three individuals
to 0.80 (CI: 0.79–0.82, p < 0.001) for a training set using data from
10 individuals. However, improvement seemed to plateau,
showing limited improvement beyond that point. Similarly, for
bradykinesia detection, increased training pool size also correlated
with increases in expected AUC (three subjects: 0.68, CI: 0.66–0.70;
12 subjects, 0.76, CI: 0.74–0.77, p < 0.001), and plateaued around a
similar number of training subjects.

Due to the large number of trainable parameters, CNNs require
larger datasets than random forest models to prevent overfitting,
and therefore were not included in this analysis.

Effect of number of training sessions
We analyzed whether training models on data from multiple
clinical assessments (sessions) performed on day 1 improved their
performance at detecting symptoms on the same day or on a
different day (day 2). Random forest models for detection of
bradykinesia benefited from adding training data collected over
multiple sessions, relative to models trained on a single session,
when tested on data from the same day (Fig. 5). However, the
improvement was modest (mean AUROC change: 0.02; p < 0.001),
and was not significant when models were tested on data from a
subsequent visit (mean AUROC change population: 0.02, p=
0.053).
A similar pattern was observed for detection of tremor (day 1:

mean AUROC change population: 0.03, p < 0.001), although a
small but significant improvement was observed also on day 2
when multiple sessions data were added (day 2: mean AUROC
change population 2: 0.03, p < 0.001). As above, CNNs were not
included in this analysis as they tend to underperform with smaller
datasets. Therefore, collecting data from repeated assessments
does not substantially help generalization across days.

DISCUSSION
This study aimed to investigate how to efficiently collect wearable
sensor data for detection of bradykinesia and tremor in the upper
extremities. To that end, we evaluated the effects on model
performance of number and location of wearable sensors used,
types of tasks performed by participants, and number of data

A

B

Fig. 2 The effect of sensor location and number of sensors on model performance. AUROC curves for detection of bradykinesia and tremor
using random forest population models a when trained on data from either a single hand (with dominant symptoms), both hands (Hand_Bi),
or a combination of hand, forearm and thigh sensors unilaterally (Combo). Corresponding AUROC curves from CNN population models b for
detection of bradykinesia and tremor. Using a combination of sensors did not yield any advantage to only using hand sensors. Solid lines
indicate mean AUROC and shaded areas represent 95% confidence intervals
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collection sessions performed. In addition, we evaluated how
many individuals are needed to reach optimal model perfor-
mance. We used random forest classifiers, based on pre-
engineered features, and compared them to convolutional neural
networks trained on raw sensors data.
Overall, CNN-based models showed comparable mean AUROC

values to those of classifiers based on random forest. This suggests
that the networks can learn features for detection of PD symptoms
directly from the raw sensor data, without the need of engineering
a feature set. Although CNNs have the potential to learn
representations of the data that can distinguish between different
activities or contexts (i.e. walking vs. gross vs. fine motor tasks), we
did not observe any substantial improvement relative to random
forest models for the detection of symptoms. Future work should
explore alternative architectures for the CNN, including LSTM
models28 to see whether any improvement in generalization can
be obtained.
Another novelty of our study was the use of soft wearable

sensors,29 which adhere to the skin and are able to conform to its
deformation during movements. This allows greater flexibility in
sensor placement for collecting data from any part of the body,
and with minimal burden for the wearer. Our results suggest that
a single motion sensing device placed on the hand is sufficient to
detect symptoms of tremor or bradykinesia in the upper
extremities. This is in agreement with a previous study evaluating
the minimum number of traditional wearables to estimate
bradykinesia.16

Combining data from sensors on both sides of the body did
not aid detection on the impaired side, for bradykinesia and
tremor. Other studies have evaluated the contribution of using
non-movement sensing modalities, such as EMG, though it is
unclear how necessary these modalities are for symptom
detection.30 It is also possible that the optimal combination of
sensor locations and modalities may be dependent on the types
of tasks that are analyzed, but this study was focused on the
evaluation of upper limb symptoms. It remains to be seen
whether soft sensors provide an advantage over traditional
wearables in terms of improved symptom detection during daily
activities.
We also found that fine motor tasks and walking are suitable

activities for automated evaluation of PD symptoms in the upper
limbs using a single-hand sensor. Detection of bradykinesia and
tremor from fine motor tasks or walking had comparable accuracy
to detection from tasks used for clinical evaluation of these
symptoms (e.g. finger to nose movements). Symptom detection
during gait has previously been focused primarily on freezing of
gait, rather than bradykinesia or tremor.11,31–34 Other studies have
shown that motor symptoms can be quantified by prompting
users to perform gait and finger tapping tests at home.35,36 Our

results suggest that fine motor tasks and walking may also be
useful targets for symptom monitoring during naturalistic
behaviors at home.
We observed that increasing the number of subjects in the

training dataset improved model performance, even if accuracy
tended to decrease when the model was trained on data from
more than 10 individuals. This may be partially due to the high
variability in manifestation of PD symptoms, particularly bradyki-
nesia, across individuals. Therefore, a smaller amount of appro-
priately targeted data may lead to more accurate models than a
larger pool of more general data. In the field of activity
recognition, some studies have proposed methods for developing
“semi-personalized” models.37 The best method for doing so in
the context of symptom detection and scoring in Parkinson’s
disease should be explored in future studies.
Collecting data from repeated assessments significantly

improved symptom detection, although to a limited extent.
Incorporating data from ‘ON’ and ‘OFF’ medication states, as well
as transition states may aid symptom detection, but this effect
seems to be attenuated in population models. Interestingly,
bradykinesia detection on a separate visit (day 2) was not
improved by increasing the number of data collection sessions
used for training. The difference in model performance could be
explained by changes in the behavior of participants,38 or in the
medication state of participants at the subsequent visit. Sensors
were removed between visits and replaced at the second visit,
which may also explain this observation. Therefore, generalizing
symptom detection to a different day does not seem to be aided
by the use of data from additional assessments, even when
altering the medication state.
The cost-benefit ratio of training data collection needs to be

considered when developing symptom detection models for PD,
especially given the need for a trained clinician to evaluate the
presence and severity of symptoms. It may be important to target-
specific types of activity, as symptom detection is improved
during fine motor tasks and walking relative to gross upper
extremity activity. Our findings also indicate that increasing the
number of body sensor devices, the number of subjects whose
data is used for training models, or the number of data collection
sessions per individual does not necessarily translate into an
improved accuracy for detection of bradykinesia and tremor.
Unique strategies for leveraging the value of extremely large
datasets (deep learning), or for personalizing detection models
(transfer learning) are likely to be important directions for
continued improvement of accuracy in motor symptom detection
outside of the clinic.

Fig. 3 Symptom detection across activities. AUROC curves for bradykinesia and tremor detection using population models (random forest),
split by groups of activities. Symptoms were detected equally well during both clinical structured tasks (e.g. finger to nose movements) and
most of daily functional activities (walking and fine motor tasks, e.g. typing on a keyboard). The lowest AUROC was during the execution of
gross motor tasks
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Limitations
Because of the limited number of individuals in this study who
exhibited symptoms of dyskinesia, this study did not examine
models for dyskinesia detection. The low number of dyskinesia
events may be in part associated to restricting the monitoring to
upper extremity symptoms only. Dyskinesia is a significant side
effect of levodopa use, and is another important target of
symptom monitoring in patients with PD. A study with a larger
number of individuals may be necessary to capture sufficient
instances of dyskinesia and to perform a similar analysis for
detection of this important symptom.
Our study is limited in exploring longitudinal model perfor-

mance due to having available data for only two distinct visits.
Additionally, not all participants were able to complete the second
visit, leading to reduced statistical power in that analysis. Also,
data used here were collected in a supervised clinical environ-
ment, and thus is not perfectly representative of real-world
behaviors. However, the tasks used here were intended to
approximate some typical daily activities that patients might
perform. Accelerometer data collected from a smartwatch during
an extended period of time outside the clinic, as performed in the
parent CIS-PD study, may be able to address this limitation and
will be explored in a future analysis.
Another limitation of our study was the fact that we only had

one rater for scoring the standardized motor assessments.
Therefore, we could not estimate the inter-rater variability, and
thus the uncertainty of the target scores provided to the model.
Furthermore, whereas our aim was to evaluate the relative
contribution of different data sources to the accuracy of detection
models, our dataset was still limited in size to draw general
conclusions. Future studies should examine these aspects with a
larger and broader dataset in terms of subjects and monitoring
periods.

METHODS
Study design
Twenty individuals (13 males; mean age: 63.35 ± 9.63 y) diagnosed with PD
and a Hoehn and Yahr stage of 2 provided written consent and
participated in the study, which took place at Northwestern Memorial
Hospital (Chicago, IL, USA) and was approved by the Northwestern
University Institutional Review Board (IRB #: STU00203796). Ten partici-
pants were considered as “motor fluctuators”, meaning that they were
‘OFF’ for an average of 2 h daily, as determined by the clinician interview
and confirmed by the modified Hauser diary; the remaining 10 participants
tended to experience stable symptoms before and after taking medica-
tions (Table 1). One participant had a deep brain stimulation (DBS) device
implanted. This analysis was a sub-study (Wireless Adhesive Sensor Sub-
Study) of a larger multi-center study sponsored by the Michael J. Fox
Foundation and named “Clinician Input Study on Parkinson Disease” (CIS-

PD), which aimed at developing objective biomarkers to monitor
Parkinson’s symptoms based on wearable sensors data.
In order to capture changes in symptom severity over time the study

included two sets of experimental visits (day 1 and day 2), performed in
the clinic on 2 different days, spaced about 2–3 weeks apart. The day 1 visit
consisted of 6 repeated assessments (sessions), spaced by at least 30 min
apart (Fig. 1a). Participants were instructed to come to the clinic without
taking any PD medication for at least 12 h prior to the visit, so as to start
the assessment in the ‘OFF’ medication state. After completing the first
session, they were instructed to take their PD medications, in order to
assess their symptoms as they transition into the ‘ON’ medication state.
During each session, participants performed 13 different motor tasks
(standardized motor assessments, Table 2), some of which resembled daily
activities with others being standard clinical tasks used to elicit symptoms,
e.g. finger to nose and alternating hand movements. A trained clinician
rated the severity of tremor, bradykinesia and dyskinesia in the upper
extremities for the left and right side on a scale from 0 to 4 during the
execution of each task (Table 2). The day 2 visit consisted of a single
session and was meant to introduce longitudinal variability and
characterize participants’ symptoms on a completely different day and
during their regular medication schedule. Only the first 15 participants
performed the day 2 assessment. In addition to the aforementioned
activities, an MDS-UPDRS (Part III) motor assessment was also performed
during session 1 and 3 (time 0 and 60minutes) on day 1, and during the
visit on day 2. The total MDS-UPDRS score for each subject are reported in
Table 1. Sensor data from one of the participants (1020) were not used as
not all of their clinical assessments were rated by the trained neurologist.

Sensor setup
Study participants were instrumented with 6 BioStampRC sensors (MC10
Inc., Lexington, MA, USA), which are flexible wearable sensors that can be
attached directly to the skin and include a tri-axial accelerometer, a
gyroscope, and a single lead (2 electrodes) analog voltage sensor (Fig. 1b).
A single BioStampRC can record data from up to 2 sensors simultaneously.
Here, sensors were placed on the dorsal part of each hand, on each thigh
proximal of the femur epicondyle, and on each forearm on top of the
flexor carpi radialis (Fig. 1c). All sensors were set to record data from the tri-
axial accelerometer (sampling rate: 62.5 Hz; range: ±4G) and from the
gyroscope (sampling rate: 62.5 Hz; range:±1000 °/s), except for the forearm
sensors which recorded the acceleration and the electromyography (EMG)
signal from the left and right flexor carpi radialis muscles (1000 Hz). Data
from each sensor were initially stored on the local memory (32 MB), then
transmitted to a tablet via Bluetooth, and finally uploaded to the MC10
cloud server. EMG data were not used in the current analysis.

Data analysis and preprocessing
Data processing and analysis was performed using Python 3.5. Sensor data
for each participant was downloaded and organized according to side and
sensor modality, as well as activity and session based on the timestamp
information recorded during data collection using the BioStampRC app.
Data from sensors on the left (right) side was matched with clinical scores
for bradykinesia, tremor and dyskinesia for the corresponding side. All
sensor data (accelerometer and gyroscope) were segmented into 5-second

Fig. 4 Comparing performance of population models with different number of individuals in the training pool. Plots showing the trend in
expected AUROC for bradykinesia and tremor detection when testing on a new individual, when using population models with varying
numbers of individuals in the training pool. Shaded areas mark 95% confidence interval on the mean
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clips with 50% overlap, and data from each clip was filtered using a 4th
order Butterworth filter. The length of the time window was chosen
according to previous work12,13 and considering the average time scale of
activities (e.g. opening a water bottle, pouring, and drinking), Acceler-
ometer data were filtered with a high-pass filter (0.5 Hz) to remove the
effect of limb orientation; in addition, a low-pass filter with cutoff at 3 Hz
was applied to the accelerometer and gyroscope data for bradykinesia
detection. Such a choice has been found to help detection of symptoms in
previous studies.12 Accelerometer and gyroscope data from each clip were
matched with their corresponding metadata (patient ID, side, activity,
session, clinical score). A total of 41,802 clips were generated from this
process. Out of these, 41% had bradykinesia and 22% tremor. There were
not enough examples of dyskinesia (8%), and therefore these data were
not used to train a dyskinesia detection model.

Symptom detection models
We trained 2 random forest (RF) classifiers:27 one for detecting whether a
data clip had bradykinesia, and the other for tremor. Therefore, clinical
scores >0 for each clip were assigned a value of 1 (symptom present). Each
classifier inputted a vector of 56 features (Table 3), which were calculated
on both the accelerometer and gyroscope data from each clip. These
features capture movement properties related to speed and frequency and
were successfully used in prior PD studies.12 We used RF because of the
low number of hyperparameters to be tuned and its ability to reduce
overfitting. The number of trees was set to 50 and was optimized using the
out-of-bag error method.
In addition, we trained two classification models based on deep

convolutional neural networks (CNN). CNN-based models can perform end-
to-end learning of symptom detection from the raw sensors data, and
therefore does not need the development of a set of features to encode a
data clip. Features representing the relationship between sensor data and
symptoms are learned from the raw data and encoded in the weights
across the network layers. CNNs have been used in a variety of tasks, such
as image classification, speech recognition, and natural language
processing (NLP), where they tend to outperform traditional approaches
based on feature engineering.39 Deep networks have also been used to
classify wearable sensor data for activity recognition28 and recently
symptom detection in Parkinson’s14,31, where they proved to be at least as
effective as traditional methods based on feature engineering.39 Each CNN
(Fig S1) consisted of the following layers: 2 convolutional layers (kernel
sizes= 32 and 16 samples) with 16 and 32 rectified linear units (ReLU),
respectively, each followed by a max-pooling layer (pool-size= 4 and 6
units). The last two layers are 2 dense layers with 32 neurons each, also
with ReLU activation functions. Dense layers used dropout,40 such that a
fixed proportion (0.5) of units were ‘shut down’ during training to reduce
overfitting. The output layer used a softmax function for the classification,
with as many neurons as classes (2), which output the probability of the
input clip showing a symptom (bradykinesia/tremor). The total number of

trainable parameters for each model was 24,722. Further details on the
CNN models are provided in supplementary material.
We trained population-based models, i.e, models trained on data from

other subjects to detect bradykinesia and tremor in a new subject. Area
under the receiver operating characteristic curve (AUROC) was used to
assess model performance. Mean AUROC across subjects was computed
using a leave-one-subject-out cross validation for population models.
Statistical comparisons were performed using t-test for either paired or
independent samples.

Code availability
The code used to process and analyze the findings of this publication are
available in a GitHub repository, [https://github.com/Luke3D/CIS_PD-NDM/].
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improves the AUROC for bradykinesia detection on day 1. However, no significant changes in AUROC occur when models are tested on data
from a different day (day 2). A similar pattern is observed for detection of tremor, although a modest improvement was observed on day 2

Wearable sensors for Parkinson’s disease: which datay
L. Lonini et al.

7

Scripps Research Translational Institute npj Digital Medicine (2018)    64 

https://github.com/Luke3D/CIS_PD--NDM/


AUTHOR CONTRIBUTIONS
Conception, design, and study direction: L.L., A.D., N.S., T.S., D.D., R.G., J.A.R., and A.J.
Clinical studies: L.L., A.D., N.S., T.S., C.P., and L.S. Data analysis: L.L., A.D., N.S., R.G., J.A.R.,
and A.J. Manuscript writing: L.L., A.D., N.S., T.S., C.P., L.S., D.D., R.G., J.A.R., and A.J.

ADDITIONAL INFORMATION
Supplementary information accompanies the paper on the npj Digital Medicine
website (https://doi.org/10.1038/s41746-018-0071-z).

Competing interests: J.A.R. and R.G. both hold equity in the company MC10 that
makes wearable devices for medical applications. The remaining authors declare no
competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES
1. Tysnes, O. B. & Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Transm.

124, 901–905 (2017).
2. Pringsheim, T., Jette, N., Frolkis, A. & Steeves, T. D. L. The prevalence of Parkinson’s

disease: a systematic review and meta-analysis. Mov. Disord. 29, 1583–1590
(2014).

3. Jankovic, J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neuro-
surg. 79, 368 LP–368376 (2008).

4. Antony, P. M. A., Diederich, N. J., Krüger, R. & Balling, R. The hallmarks of Par-
kinson’s disease. FEBS J. 280, 5981–5993 (2013).

5. Bastide, M. F. et al. Pathophysiology of L-dopa-induced motor and non-motor
complications in Parkinson’s disease. Prog. Neurobiol. 132, 96–168 (2015).

6. The Unified Parkinson’s Disease Rating Scale (UPDRS. Status and recommenda-
tions. Mov. Disord. 18, 738–750 (2003).

7. Hauser, R. A. et al. A home diary to assess functional status in patients with
Parkinson’s disease with motor fluctuations and dyskinesia. Clin. Neuropharmacol.
23, 75–81 (2000).

8. Reimer, J., Grabowski, M., Lindvall, O. & Hagell, P. Use and interpretation of on/off
diaries in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 75, 396–400 (2004).

9. MONTGOMERY, G. K. & REYNOLDS, N. C. Compliance, reliability, and validity of
self-monitoring for physical disturbances of Parkinson’s disease: the Parkinson’s
symptom diary. J. Nerv. Ment. Dis. 178, 636–641 (1990).

10. Maetzler, W., Domingos, J., Srulijes, K., Ferreira, J. J. & Bloem, B. R. Quantitative
wearable sensors for objective assessment of Parkinson’s disease. Mov. Disord. 28,
1628–1637 (2013).

11. Moore, S., MacDougall, H. & Ondo, W. Ambulatory monitoring of freezing of gait
in Parkinson’s disease. J. Neurosci. Methods 167, 340–348 (2008).

12. Patel, S. et al. Monitoring motor fluctuations in patients with Parkinson’s disease
using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 13, 864–873 (2009).

13. Klucken, J. et al. Unbiased and mobile gait analysis detects motor impairment in
Parkinson’s disease. PLoS ONE 8, e56956 (2013).

14. Eskofier, B. et al. Recent machine learning advancements in sensor-based
mobility analysis: deep learning for Parkinson’s disease assessment. 38th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society.
submitted (2016). https://doi.org/10.1109/EMBC.2016.7590787

15. Hoff, J. I., Plas, A. A., Wagemans, E. A. H. & van Hilten, J. J. Accelerometric
assessment of levodopa-induced dyskinesias in Parkinson’s disease. Mov. Disord.
16, 58–61 (2001).

16. Daneault, J. F. et al. Estimating Bradykinesia in Parkinson’ s Disease with a
Minimum Number of Wearable Sensors. in 2017 IEEE/ACM International Con-
ference on Connected Health: Applications, Systems and Engineering Technologies
(CHASE) 5–6 (2017). https://doi.org/10.1109/CHASE.2017.94

17. Odin, P. et al. Viewpoint and practical recommendations from a movement
disorder specialist panel on objective measurement in the clinical management
of Parkinson’s disease. npj Park. Dis. 4, 14 (2018).

18. Espay, A. J. et al. Technology in Parkinson’s disease: challenges and opportunities.
Mov. Disord. 31, 1272–1282 (2016).

19. Del Din, S., Godfrey, A., Mazzà, C., Lord, S. & Rochester, L. Free-living monitoring of
Parkinson’s disease: lessons from the field. Mov. Disord. 31, 1293–1313 (2016).

20. Marras, C. Subtypes of Parkinson’s disease: state of the field and future directions.
Curr. Opin. Neurol. 28, 382–386 (2015).

21. Thenganatt, M. A. & Jankovic, J. Parkinson disease subtypes. JAMA Neurol. 71,
499–504 (2014).

22. Wickremaratchi, M. M. et al. The motor phenotype of Parkinson’s disease in
relation to age at onset. Mov. Disord. 26, 457–463 (2011).

23. Chou, K. L. et al. The spectrum of ‘off’ in Parkinson’s disease: What have we
learned over 40 years? Parkinsonism Relat. Disord. (2018). https://doi.org/10.1016/
j.parkreldis.2018.02.001

24. Hammerla, N. Y. et al. PD disease state assessment in naturalistic environments
using deep learning. in Proc. Twenty-Ninth AAAI Conference on Artificial Intelligence
and Twenty-Seventh Innovative Applications of Artifical Intelligence Conference.
1742–1748 (AAAI Press, Cambridge, 2015).

25. Fisher, J. M. et al. Unsupervised home monitoring of Parkinson’s disease motor
symptoms using body-worn accelerometers. Park. Relat. Disord. 33, 44–50 (2016).

26. Jankovic, J. Motor fluctuations and dyskinesias in Parkinson’s disease: clinical
manifestations. Mov. Disord. 20, S11–S16 (2005).

27. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
28. Guan, Y. & Ploetz, T. Ensembles of deep LSTM learners for activity recognition

using wearables. Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol.
https://doi.org/10.1145/3090076. (2017).

29. Liu, Y. et al. Epidermal mechano-acoustic sensing electronics for cardiovascular
diagnostics and human-machine interfaces. Sci. Adv. 2, e1601185–e1601185
(2016).

30. Roy, S. H. et al. High-resolution tracking of motor disorders in Parkinson’s disease
during unconstrained activity. Mov. Disord. 28, 1080–1087 (2013).

31. Camps, J. et al. Deep learning for freezing of gait detection in Parkinson’s disease
patients in their homes using a waist-worn inertial measurement unit. Knowl.
Based Syst. 139, 119–131 (2018).

32. Rodríguez-Martín, D. et al. Home detection of freezing of gait using Support
Vector Machines through a single waist-worn triaxial accelerometer. PLoS ONE 12,
e0171764 (2017).

33. Silva de Lima, A. L. et al. Freezing of gait and fall detection in Parkinson’s disease
using wearable sensors: a systematic review. J. Neurol. 264, 1642–1654 (2017).

34. Pham, T. & Moore, S. Freezing of gait detection in Parkinson’s disease: a subject-
independent detector using anomaly scores. IEEE Trans. Biomed. Eng. 64,
2719–2728 (2017). S. L.-I. T. & 2017, U.

35. Arora, S. et al. Detecting and monitoring the symptoms of Parkinson’s disease
using smartphones: a pilot study. Park. Relat. Disord. 21, 650–653 (2015).

36. Zhan, A. et al. Using smartphones and machine learning to quantify Parkinson
disease severity the mobile parkinson disease score. 21218, (2018).

37. Hong, J.-H., Ramos, J. & Dey, A. K. Toward personalized activity recognition sys-
tems with a semipopulation approach. IEEE Trans. Human Mach. Syst. 46, 101–112
(2016).

38. Lonini, L., Gupta, A., Kording, K. & Jayaraman, A. Activity recognition in patients
with lower limb impairments: do we need training data from each patient?
in2016 38th Annual International Conference of the IEEE Engineering in Medicine
and BiologySociety (EMBC) 3265–3268 (IEEE, 2016). https://doi.org/10.1109/
EMBC.2016.7591425

39. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
40. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout:

a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15,
1929–1958 (2014).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2018

Wearable sensors for Parkinson’s disease: which datay
L. Lonini et al.

8

npj Digital Medicine (2018)    64 Scripps Research Translational Institute

https://doi.org/10.1038/s41746-018-0071-z
https://doi.org/10.1109/EMBC.2016.7590787
https://doi.org/10.1109/CHASE.2017.94
https://doi.org/10.1016/j.parkreldis.2018.02.001
https://doi.org/10.1016/j.parkreldis.2018.02.001
https://doi.org/10.1145/3090076
https://doi.org/10.1109/EMBC.2016.7591425
https://doi.org/10.1109/EMBC.2016.7591425
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Wearable sensors for Parkinson&#x02019;s disease: which data are worth collecting for training symptom detection models
	Introduction
	Results
	Effect of adding sensors
	Symptom detection across activities
	Effect of number of training subjects
	Effect of number of training sessions

	Discussion
	Limitations

	Methods
	Study design
	Sensor setup
	Data analysis and preprocessing
	Symptom detection models
	Code availability

	Electronic supplementary material
	Acknowledgements
	ACKNOWLEDGMENTS
	Author contributions
	Competing interests
	ACKNOWLEDGMENTS




