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Viscoelastic Characteristics of
Mechanically Assembled Three-
Dimensional Structures Formed
by Compressive Buckling
Vibrational microplatforms that exploit complex three-dimensional (3D) architectures
assembled via the controlled compressive buckling technique represent promising candi-
dates in 3D micro-electromechanical systems (MEMS), with a wide range of applications
such as oscillators, actuators, energy harvesters, etc. However, the accuracy and effi-
ciency of such 3D MEMS might be significantly reduced by the viscoelastic damping
effect that arises from material viscosity. Therefore, a clear understanding and charac-
terization of such effects are essential to progress in this area. Here, we present a study
on the viscoelastic damping effect in complex 3D structures via an analytical model and
finite element analysis (FEA). By adopting the Kelvin–Voigt model to characterize the
material viscoelasticity, an analytical solution is derived for the vibration of a buckled
ribbon. This solution then yields a scaling law for the half-band width or the quality fac-
tor of vibration that can be extended to other classes of complex 3D structures, as vali-
dated by FEA. The scaling law reveals the dependence of the half-band width on the
geometries of 3D structures and the compressive strain. The results could serve as guide-
lines to design novel 3D vibrational microplatforms for applications in MEMS and other
areas of technology. [DOI: 10.1115/1.4041163]
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1 Introduction

Micro- and nanostructures in micro-electromechanical systems
(MEMS) are of significant current research interest, due partly to
their relevance to wide ranging classes of applications in biomedi-
cine [1–3], sensors [4–6], electronics and optoelectronics [7–9],
batteries and supercapacitors [10–12], robotics [13–15], and
others [16,17]. In MEMS, structural vibration plays a key role in
the transformation from mechanical signals to electrical signals
[18,19]. The utilization of three-dimensional (3D) micro- and
nanostructures provide significant advantages and design flexibil-
ity compared to those based on two-dimensional (2D) structures
[20–23], especially in areas of energy harvesting, sensing of ani-
sotropic mechanical properties, and simultaneous evaluation of
multiple mechanical properties (density, modulus, etc.), due to
their ability to support multidirectional vibrations and controlled
vibration modes [24].

Diverse manufacturing techniques based on phenomena such as
mechanical buckling [25–28], self-folding induced by residual
stress [29–32], surface instabilities [33–35], capillary forces
[36–38], and temperature changes [39,40] can provide access to
3D micro- and nanostructures. Among these methods, the com-
pressive buckling approach is notable for its ability to construct
complex 3D structures with vibration behaviors (e.g., natural fre-
quency) that can be tuned by applying tensile strain to the soft,
elastomeric assembly platform. In addition, this technique is com-
patible with a variety of active materials, such as poly (vinylidene
fluoride), Pb(Zr,Ti)O3 (PZT), and conductive metals, allowing
actuation by external stimuli based on electric and/or magnetic
fields. Such options provide great potential in the applications of
resonators, energy harvesters, and other systems based on continu-
ous adaption of the resonant frequency or vibration modes [24].

One major challenge in the design of 3D MEMS arises from
the effects of viscoelasticity in the constituent materials. Such
effects lead to dissipation of energy, changes in stress distribu-
tions, displacements, and frequencies during vibration [41–45].
For example, increases in the ambient temperature and/or humid-
ity can increase the viscosity [46–48], which, in turn, can reduce
the efficiency of 3D MEMS devices. The viscoelastic properties
can be characterized by dynamic mechanical analysis [49] and
creep and stress relaxation methods [50] for a wide range of mate-
rials, such as poly(methyl methacrylate), SU8 epoxy resin, poly-
propylene, polydimethylsiloxane, etc. [51–55]. The viscoelastic
damping effect due to viscosity of materials in a vibration system
can be characterized by the half bandwidth n or the quality factor
Q (Q ¼ 1= 2nð Þ) [56–58].

Several viscoelastic models have been proposed to characterize
the viscoelastic material properties including Maxwell model,
Kelvin–Voigt model, and standard linear solid model [59–61].
Among them, the Kelvin–Voigt model is a classical and widely
used viscoelastic model. For example, Ghayesh [62] investigated
the nonlinear dynamic response of a simply supported beam sup-
ported by a nonlinear spring. Mahmoodi et al. [63] reported the
experimental study of nonlinear vibration and frequency
responses of viscoelastic beams, with good agreement between
experimental results and numerical simulations. Kolahchi [64]
studied the nonlinear vibrations of viscoelastic rectangular plates.
These investigations focus on the viscoelastic damping effect of
2D plates or beams. Though Tseng and Dugundji [65] investigated
the vibration of a buckled beam, they only provided an exact solu-
tion for the case without viscoelastic damping. Similarly, Cottone
et al. [66] studied piezoelectric buckled beams as a vibration
energy harvester. The aforementioned theoretical models are
restricted to a few simple geometries and cannot be directly
extended to complex 3D structures. Therefore, it is important to
develop a theoretical model to predict the viscoelastic damping
effect of vibrations in complex 3D structures.

This paper presents a study on the viscoelastic characteristics of
3D mechanically assembled structures formed by compressive
buckling techniques via an analytical model and finite element

analysis (FEA). The Kelvin–Voigt model is used to capture the
viscoelastic effects of conventional materials (SU8, PVDF, etc.) in
these structures. An analytical model explicitly relates the half-
band width of a buckled ribbon to the geometry/material parameters
and the compressive strain. Then, a more general model describes
the half-band width of complex structures, with two fitting parame-
ters to account for the complexity of the vibration mode and struc-
ture. The models are validated by FEA with good agreement. They
provide insights into the effect of design parameters (material, com-
pressive strain, structure shape, etc.) on the vibration behavior and
may serve as useful references in the design of 3D vibrational plat-
forms and the potential applications of 3D MEMS.

2 The Viscoelastic Characteristics of Three-

Dimensional Buckled Ribbon and Three-Dimensional

Structures

A schematic illustration of a buckled ribbon excited by an
external harmonic load is shown in Fig. 1. A straight 2D slender
ribbon (length L, width b, and thickness h) is selectively bonded
to a highly prestrained elastomer at two ends as shown in Fig.
1(a). Release of the prestrain induces compression and triggers
buckling of the ribbon into the arch shape, as shown in Fig. 1(b),
where l represents the distance between two bonding sites after
compression. Considering that the viscosity of the soft elastomer
may increase the half-band width of vibration, the buckled ribbon
is transferred on to a rigid base using the technique reported by
Yan et al. [67]. An external harmonic load (see Fig. 1(c)) then
actuates the first-order vibration mode shown in Fig. 1(d).
Because of the base has larger modulus than the buckled ribbon,
its deformation can be neglected during the vibration analysis.
Due to the ribbon thickness (h) is much smaller than its width (b)
and length (L), finite-deformation beam theory with no shear
deformation [68–70] is adopted to establish an analytical model.
In general, the deformations of a planar ribbon can be described
by the displacement of the central axis u¼ uiEi [71] and the twist
angle w [68], where Ei is the unit vector before deformation in the
Cartesian coordinates (X, Y, Z), which all calculations are based
on. For the post-buckling and vibration shown in Fig. 1, only the
displacement components in the X–Z plane are involved.

2.1 The Construction of Governing Equations. For a mod-
erate level of compressive strain (e.g.,< 30%), the displacements
of the ribbon after the post-buckling could be expressed as
[24,72,73]

u1 0ð Þ ¼ A 0ð Þ cos
2p
L

Z

� �
þ 1

� �
; u3 0ð Þ ¼

pA2
0ð Þ

4L
sin

4p
L

Z

� �
� ecompreZ

(1)

where ecompre ¼ L� l=L is the relative dimensional change
between the two bonding sites, or called the compressive strain;
ecompre is related to the elastomer prestrain eprestrain via

ecompre ¼ eprestrain= 1þ eprestrainð Þ; ec ¼ p2h2= 3L2ð Þ is the critical

strain; and A 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3L2ecompre � p2h2
� �

=3p2

q
¼ L=p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ecompre � ec
p

is the static deflection amplitude of the buckled ribbon. Due to the
rigidity of the fix stage, the boundary conditions are

u1 6L=2ð Þ ¼ 0; u3 6L=2ð Þ ¼ 0;
du1

dZ
6L=2ð Þ ¼ 0 (2)

Then a vibration displacement function Dui Z; tð Þ is superimposed
on ui 0ð Þ Zð Þ to give the total displacement of the buckled ribbon as

u1 Z; tð Þ ¼ u1 0ð Þ þ Du1 Z; tð Þ; u3 Z; tð Þ ¼ u3 0ð Þ þ Du3 Z; tð Þ (3)

By introducing a set of series u kð Þ Zð Þ and / kð Þ Zð Þ into the vibra-
tion displacements, the total displacements of the buckled ribbon
can be further written as
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u1 Z; tð Þ ¼ u1 0ð Þ þ Du1 Z; tð Þ ¼ u1 0ð Þ þ
Xn

k¼1

Da kð Þ tð Þu kð Þ Zð Þ (4)

u3 Z; tð Þ ¼ u3 0ð Þ þ Du3 Z; tð Þ ¼ u3 0ð Þ þ
Xn

k¼1

Da kð Þ tð Þ/ kð Þ Zð Þ (5)

The total displacements should satisfy the boundary conditions in
Eq. (2), leading to

u kð Þ 6L=2ð Þ ¼ 0; / kð Þ 6L=2ð Þ ¼ 0 and
duk

dZ
6L=2ð Þ ¼ 0 (6)

To describe the viscoelastic characteristics of the buckled ribbon,
the physical relationship for Kelvin–Voigt model is introduced as

r ¼ re þ rd ¼ Ee X;Z; tð Þ þ gE
@e X;Z; tð Þ

@t
(7)

where r is the stress, e is the strain, and E and g are the elastic
modulus and viscoelastic damping coefficient of the ribbon mate-
rial, respectively. According to the beam theory

e ¼ k� 1ð Þ � Xj (8)

where k is the stretch ratio and j is the curvature. Noe that X rep-
resents the distance from a point on the cross section to the central
axis of the ribbon, where the origin of the coordinate system
locates at.

To solve Da kð Þ tð Þ in Eqs. (4) and (5), the Lagrange’s equation
of motion is introduced. Specifically, the strain energy Ws of the
buckled ribbon is given by [74]

Ws ¼
1

2

ðL=2

�L=2

Ebh k� 1ð Þ2dZ þ 1

24

ðL=2

�L=2

Ebh3j2dZ (9)

By neglecting the terms of the third and higher order power of Da
in Eq. (9), the potential energy can be also written as

Ws ¼ 1=2DaTKDa, in which Da is a n� 1 vector Da 1ð Þ;
	

Da 2ð Þ;…;Da nð ÞgT
, and K is an n� n stiffness matrix. Similarly,

the kinetic energy can be given as

T D _að Þ ¼ 1

2

ðL=2

�L=2

qbh
@u1 vð Þ
@t

� �2

þ
@u3 vð Þ
@t

� �2
" #

dZ ¼ 1

2
D _aTMD _a

(10)

where D _a ¼ D _a 1ð Þ;D _a 2ð Þ;…;D _a nð Þ
	 
T

is the time derivative of
Da, i.e., D _a ¼ d Dað Þ=dt, q is the density of the ribbon material,
and M is an n� n mass matrix.

Based on Eq. (7), the dissipation function of the buckled ribbon
can be obtained as follows:

D ¼ 1

2

ðL=2

�L=2

gEbh
@k
@t

� �2

dZ þ 1

24

ðL=2

�L=2

gEbh3 @j
@t

� �2

dZ (11)

The potential energy of the external harmonic load can be written
as

Wext ¼ �
ðL=2

�L=2

PðtÞDu1ðZ; tÞdZ (12)

where PðtÞ is the external force exerted on per unit length of
bucked ribbon and x is the frequency of the external harmonic
load.

The Lagrange’s equation of motion requires that

@ T �Wsð Þ
@Da

� d

dt

@ T �Wsð Þ
@D _a

� @D

@D _a
� @Wext

@Da
¼ 0 (13)

By substituting Eqs. (7)–(12) into Eq. (13), the governing equation
of the buckled ribbon under an external harmonic load is obtained
as

MD€a þ CD _a þ KDa ¼ F (14)

Fig. 1 Illustration of (a) a straight ribbon attached to a prestrained substrate at selected bond-
ing sites, (b) the compressive post-buckling induced by the contraction of the elastomer, (c)
the external load, and (d) the first-order vibration mode. Two phases corresponding to the larg-
est vibration amplitudes are shown, i.e., up line: phase 0 deg, down line: phase 180 deg.
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2.2 The Half-Band Width of the First-Order Vibration
Mode. For the first-order vibration mode excited by the external
harmonic load, FEA results show that the vibration displacement
can be well characterized by superposition of the following base
functions, with two terms (i.e., n¼ 2) in Eqs. (4) and (5), as [24]:

u 1ð Þ Zð Þ ¼ 1þ cos
2pZ

L

� �
; u 2ð Þ Zð Þ ¼ 1� cos

4pZ

L

� �
(15)

/ 1ð Þ Zð Þ ¼
pA 0ð Þ

2L
sin

4pZ

L

� �
;

/ 2ð Þ Zð Þ ¼
pA 0ð Þ

3L
6 sin

2pZ

L

� �
� 2 sin

6pZ

L

� �" #
(16)

The potential energy of the vibration is then derived as

Ws ¼
Ebh3

L3
k11Da2

1ð Þ þ k22Da2
2ð Þ

� �
(17)

where

k11 ¼ �
5p6A2

0ð Þ
3L2

þ
2p4A2

0ð Þ
h2

and k22 ¼
28p6A2

0ð Þ
3L2

þ 4p4 (18)

The kinetic energy is then written as

T ¼ qbhL m11D _a2
1ð Þ þ m22D _a2

2ð Þ þ m12D _a 1ð ÞD _a 2ð Þ
� �

(19)

where

m11 ¼
p2A2

0ð Þ
16L2

þ 3

4
;m22 ¼

10p2A2
0ð Þ

9L2
þ 3

4
;m12 ¼ 1 (20)

The dissipation function is calculated as

D ¼ p4gEbh3

3L3
c11D _a2

1ð Þ þ c22D _a2
2ð Þ

� �
(21)

where

c11 ¼ �
p2A2

0ð Þ
L2
þ

6A2
0ð Þ

h2
þ 1; c22 ¼

32p2A2
0ð Þ

L2
þ 16 (22)

A harmonic load P tð Þ ¼ P0 sin xtð Þ is exerted on the ribbon lead-
ing to the potential energy as

Wext ¼ �P0L Da 1ð Þ þ Da 2ð Þ
� �

sin xtð Þ (23)

Substitution of Eqs. (17)–(23) into Eq. (13) gives the governing
equations

M11 M12

M12 M22

" #
D€a 1ð Þ

D€a 2ð Þ

2
4

3
5þ C11 0

0 C22

" #
D _a 1ð Þ

D _a 2ð Þ

2
4

3
5

þ
K11 0

0 K22

" #
Da 1ð Þ

Da 2ð Þ

" #
¼

P0L sin xtð Þ
P0L sin xtð Þ

" #
(24)

where

M11 ¼ 2qbhLm11; M22 ¼ 2qbhLm22; M12 ¼ qbhLm12

C11 ¼
2p4gEbh3

3L3
c11; C22 ¼

2p4gEbh3

3L3
c22

K11 ¼
2Ebh3

L3
k11; K22 ¼

2Ebh3

L3
k22

(25)

The solutions to Eq. (24) are

Da 1ð Þ
Da 2ð Þ

� �
¼ B1 sin xtþ h1ð Þ

B2 sin xtþ h2ð Þ

� �
(26)

with the specific deducing process and the expressions of B1, B2,
h1, h2 presented in the Appendix.

Therefore, the transverse vibrational displacement and velocity
of the buckled ribbon can be written as

Du1 Z; tð Þ ¼ Da 1ð Þu 1ð Þ Zð Þ þ Da 2ð Þu 2ð Þ Zð Þ ¼ B Z;xð Þsin xtþ hð Þ
(27)

v1 Z; tð Þ ¼ xB Z;xð Þcos xtþ hð Þ (28)

where

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Br1 xð Þu 1ð Þ Zð Þ þ Br2 xð Þu 2ð Þ Zð Þ
 �2 þ Bi1 xð Þu 1ð Þ Zð Þ þ Bi2 xð Þu 2ð Þ Zð Þ

 �2q
tan h ¼ Bi1 xð Þu 1ð Þ Zð Þ þ Bi2 xð Þu 2ð Þ Zð Þ

 �
= Br1 xð Þu 1ð Þ Zð Þ þ Br2 xð Þu 2ð Þ Zð Þ
 � (29)

with Br1, Br2, Bi1, and Bi2 presented in the Appendix. In Eq. (27),
B(Z, x) is the spatial part of the transverse vibrational displace-
ment and the vibration amplitude A(x) is defined as the maximum
of B with respective to the position Z. At a given position, the nor-
malized vibrational velocity as a function of the frequency is

l xð Þ ¼ 2xBEbh3

P0L4
(30)

The half-band width of the buckled ribbon is

n ¼ x2 � x1

2x0

(31)

where x0 is the resonant frequency, i.e., the frequency at which
l xð Þ reaches its maximum lmax; x1 and x2 are the two solutions
to l xð Þ ¼ lmax=

ffiffiffi
2
p

. We refer to Eq. (31) as the general form of
the analytical model.

It is verified that u 1ð Þ Zð Þ and / 1ð Þ Zð Þ in Eqs. (15) and (16)
could dominate the vibration mode, when the static deflection
amplitude of the buckled ribbon is much smaller than the ribbon
thickness, i.e., A 0ð Þ � h, while u 2ð Þ Zð Þ and / 2ð Þ Zð Þ could domi-
nate the vibration mode when A 0ð Þ � h. Then, the vibration veloc-
ity in Eq. (30) could be degenerated to

l� ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 �M11 þ K11ð Þ2 þ x � C11ð Þ2

q A 0ð Þ � h
� �

(32)
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l� ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 �M22 þ K22ð Þ2 þ x � C22ð Þ2

q A 0ð Þ � h
� �

(33)

which lead to the half-band width

n� ¼ x2 � x1

2x0

¼ C11

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M11K11

p ¼ p4gh

6L2

ffiffiffi
E

q

s
c11ffiffiffiffiffiffiffiffiffiffiffiffiffi

m11k11

p

¼ p4gx0

6

c11

k11

A 0ð Þ � h
� �

(34)

n� ¼ x2 � x1

2x0

¼ C22

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M22K22

p ¼ p4gh

6L2

ffiffiffi
E

q

s
c22ffiffiffiffiffiffiffiffiffiffiffiffiffi

m22k22

p

¼ p4gx0

6

c22

k22

A 0ð Þ � h
� �

(35)

We refer to Eqs. (34) and (35) as the simplified form of the analyt-
ical model for A 0ð Þ � h and A 0ð Þ � h, respectively.

2.3 The Extension of the Analytical Model to General
Three-Dimensional Structures. Since the 3D structures formed
via controlled buckling technique usually have a large static
deflection amplitude, this paper focuses on the case when
A 0ð Þ � h. The half-band width of the buckled ribbon in Eq. (35)
can be further written by using the relationship ecompre

¼ p2A2
0ð Þ=L2 1þ h2=3A2

0ð Þ

� �
� p2A2

0ð Þ=L2, as

n�2 ¼
p4gx0

6

c22

k22

¼ gx0n̂ (36)

where n̂ is the nondimensional half band width of the buckled rib-
bon as

n̂ ¼ p4

6

c22

k22

¼ 4ecompre þ 2

7ecompre þ 3
(37)

By using the first-order Taylor expansion, the nondimensional
half-band width of the buckled ribbon demonstrated in Eq. (37)
can be approximately written as

n̂ � 2

3
1� 1

3
ecompre

� �
(38)

Inspired by the structure of the analytical solutions in Eqs. (36)
and (38), the nondimensional half-band width n̂ can be expressed
in the form of scaling law by a single-variable function of the
compressive strain ecompre as

n̂ ¼ a 1þ becompre

� �
(39)

where a and b can be determined by fitting the FEA results of the
n̂ 	 ecompre curves. As we show in Sec. 3, the scaling law Eq. (39)
applies to the vibration of a variety of 3D structures formed by the
compressive buckling technique with viscoelastic materials. In
addition, it can be seen from Eq. (36) that this scaling law is inde-
pendent of structural dimensions and material properties.

3 Examples and Discussions

The analytical model is validated by FEA, as presented in
Fig. 2. The FEA were performed using the commercial software
ABAQUS. The material was assumed to be a photopatternable epoxy

Fig. 2 Finite element analysis validations of the analytical model for the first-order vibration
mode: (a) transverse vibrational displacement as a function of position, (b) the nondimen-
sional half-band width n̂ as a function of the compressive strain ecompre, and (c) a comparison
of the nondimensional velocity responses of the buckled ribbon with and without the visco-
elastic damping effect
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(SU8), a typical polymer used in 3D assembly. The Young’s mod-
ulus, Poisson’s ratio and density of SU8 are E¼ 4.02 GPa,
�¼ 0.22, and q¼ 1.2 g/cm3 [24]. gx0 is assumed to be a constant
to simulate the viscoelastic damping effect of Kelvin–Voigt model
based on the data obtained by dynamic mechanical analysis, creep
and stress relaxation, and other methods [49,53,54,75,76]. The
vibrational displacement and velocity under the harmonic external
load were obtained by the steady-state analysis, after importing
the shape and stress of the buckled ribbon determined from the
post-buckling analysis. The ribbon was discretized by Four-node
finite-strain shell elements (S4) and at least 20 elements were
implemented along the width direction of the ribbon to guarantee
the convergence.

Under a representative compressive strain ecompre ¼ 0:1, the
analytical results of the transverse vibrational displacement match

well with the FEA results, as shown in Fig. 2(a). Figure 2(b) gives
a comparison of the nondimensional half-band width n̂ calculated
by the general form of the analytical model (Eq. (31)), the scaling
law (Eq. (38)), and FEA. The scaling law agrees well with FEA
under compressive strain ecompre > 0:05, a typical value used in
compressive buckling techniques. The general form of the analyti-
cal model agrees well with FEA in a broader range of compressive
strain ecompre, even when ecompre is close to the critical strain ec.
Note that the nondimensional half-band width increases signifi-
cantly when ecompre decreases to ec, which is consistent with the
simplified form of the analytical model for A 0ð Þ � h (Eq. (34)).
Further, Fig. 2(c) plots a comparison of nondimensional velocity
responses of the buckled ribbon with and without the viscoelastic
damping effect. A obviously sharp peak of l�=l�1;max	x=x0

curve occurs at the natural frequency (x=x0 ¼ 1) for the case
without the viscoelastic damping effect, where l�1;max represents
the maximum of velocity response with respect to the frequency
when the viscoelastic damping effect is present.

To compare the half-band width of 3D buckled structures with
that of their corresponding 2D precursors, the FEA results of three
pairs of structures (buckled ribbon, tent, and table) are presented
in Fig. 3. The nondimensional half-band widths of these 3D struc-
tures are 	25% larger than their 2D precursors. It is also noticed
that the nondimensional half-band widths of these 2D structures
are almost the same.

Figure 4 shows the variations of the nondimensional half-band
width n̂ of three complex structures (tent, table, and helix) with
compressive strain ecompre ranged from 0.05 to 0.30. The relation-
ship of n̂ versus ecompre can be well modeled by the scaling law in
Eq. (39) with proper parameters a and b. The paramters relate the
nondimensional half-band width n̂ to the topology of 2D precursor
and the compressive strain ecompre. When ecompre ranges from 0.05
to 0.30, n̂ decreases by about 5%. For the same compressive

Fig. 3 The nondimensional half-band width of three 3D struc-
tures and their 2D precursors

Fig. 4 Extension of the scaling law to representative 3D structures, with validations by FEA:
(a) tent, (b) helix, and (c) table
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strain, the nondimensional half-band widths of the three structures
show about 20% difference among each other. To further illustrate
the relationship between n̂ and the structure shape, we study more
3D structures as shown in Figs. 5 and 6.

Figure 5(a) shows the geometry of the table structures with dif-
ferent central circle radii r. The table structure becomes the tent
structure when r equals to the ribbon width. Figures 5(b)–5(g)

presents the FEA results of the nondimensional half-band width n̂
of the first-order mode, when the normalized circle radius r/L
ranges from 0.07 to 0.175, as well as a demonstration of
r/L¼ 0.50, and the compressive strain ecompre ranges from 0.05 to
0.30. The scaling law in Eq. (39) could remarkably characterize
the FEA results for all cases with proper parameters a and b,
which change slightly with r/L as shown in Fig. 5(h).

Similarly, Fig. 6(a) shows the geometry of the helix structures
with different top angles h. The helix structure becomes the tent
structure when h is 0 deg. The scaling law in Eq. (39) could
also remarkably characterize the FEA results for all cases

(Figs. 6(b)–6(g)) with proper parameters a and b, which change
slightly with h as shown in Fig. 6(h).

4 Conclusions

This paper presents a study on the viscoelastic characteristics of
3D structures formed by compressive buckling techniques via an
analytical model and the FEA. The Kelvin–Voigt model is intro-
duced to characterize the material viscoelasticity. A validation
between the analytical model and FEA is presented, and a scaling
law to characterize the half-band width is obtained and extended
to more complex 3D structures including tent, table, and helix.
Some main conclusions can be drawn as: (1) The nondimensional
half-band width of the buckled straight ribbon, tent, and table
structures are about 25% larger than that of their 2D precursors.
(2) The scaling law relates the half-band width to the structure
shape and the compressive strain via two parameters. The model
and FEA focus on the vibration when the 3D structure is

Fig. 5 Extension of the scaling law to 3D table structures with different central circle radii,
with validations by FEA: (a) illustration of the precursor and geometries, (b)–(g) the nondi-
mensional half-band width n̂ as a function of the compressive strain, for different normalized
central circle radii (r/L 5 0.07, 0.10, 0.125, 0.15, 0.175, and 0.50) of the 2D precursor, and (h)
parameters a and b that characterize the scaling law of the nondimensional half-band width,
as a function of r/L
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transferred on to a rigid base after compressive buckling to
remove the soft elastomer. Taking the underlying substrate into
the model is a future direction, which may broaden the application
to cases when the 3D structure is transferred on to a deformable
base such as skin or remains on the soft elastomer. This paper
could serve as design guidelines of MEMS for their potential
applications in energy harvesting and mechanical sensors.
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Appendix

Using Da ¼ Im D~að Þ and substituting D~a ¼ D~Aeixt into
Eq. (24) leads to

Fig. 6 Extension of the scaling law to 3D helical structures with different top angles, with
validations by FEA: (a) illustration of the precursor and geometries, (b)–(g) the nondimen-
sional half-band width n̂ as a function of the compressive strain, for different top angles
(h 5 0 deg, 20 deg, 120 deg, 150 deg, 170 deg, and 180 deg) of the 2D precursor, and (h) param-
eters a and b that characterize the scaling law of the nondimensional half-band width, as a
function of h
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�x2M11 þ ixC11 þ K11 �x2M12

�x2M12 �x2M11 þ ixC22 þ K22

� �
D ~A 1ð Þ
D ~A 2ð Þ

" #

¼ MD~A ¼ P0L
P0L

� �
(A1)

Then, by multiplying the inverse coefficients matrix M�1 at both
sides of Eq. (A1), the solutions of D ~A 1ð Þ and D ~A 2ð Þ can be
expressed as

D ~A 1ð Þ ¼ Br1 þ iBi1; D ~A 2ð Þ ¼ Br2 þ iBi2 (A2)

where

Br1 ¼
�P0L K22 þ M12 �M22ð Þx2

 �
T1 þ T2C22x

	 

T2

1 þ T2
2

Bi1 ¼
�P0L T1C22x� T2 K22 þ M12 �M22ð Þx2

 �	 

T2

1 þ T2
2

Br2 ¼
�P0L K11 þ M12 �M11ð Þx2

 �
T1 þ T2C11x

	 

T2

1 þ T2
2

Bi2 ¼
�P0L T1C11x� T2 K11 þ M12 �M11ð Þx2

 �	 

T2

1 þ T2
2

(A3)

where

T1¼ M2
12�M11M22

� �
x4þ K11M22þK22M11þC11C22ð Þx2�K11K22

T2¼ C11M22þC22M11ð Þx3� C11K22þC22K11ð Þx
(A4)

Thereby, the solutions of Eq. (24) are obtained as

Da 1ð Þ
Da 2ð Þ

� �
¼ Im

D~a 1ð Þ
D~a 2ð Þ

� �
¼ B1 sin xtþ h1ð Þ

B2 sin xtþ h2ð Þ

� �
(A5)

where, B1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

r1 þ B2
i1

p
, B2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

r2 þ B2
i2

p
, tan h1 ¼ Bi1=Br1,

and tan h2 ¼ Bi2=Br2.
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