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Self-assembled three dimensional network designs
for soft electronics
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Low modulus, compliant systems of sensors, circuits and radios designed to intimately

interface with the soft tissues of the human body are of growing interest, due to their

emerging applications in continuous, clinical-quality health monitors and advanced,

bioelectronic therapeutics. Although recent research establishes various materials and

mechanics concepts for such technologies, all existing approaches involve simple,

two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here

we introduce concepts in three-dimensional (3D) architectures that bypass important engi-

neering constraints and performance limitations set by traditional, 2D designs. Specifically,

open-mesh, 3D interconnect networks of helical microcoils formed by deterministic

compressive buckling establish the basis for systems that can offer exceptional low modulus,

elastic mechanics, in compact geometries, with active components and sophisticated levels

of functionality. Coupled mechanical and electrical design approaches enable layout optimi-

zation, assembly processes and encapsulation schemes to yield 3D configurations that satisfy

requirements in demanding, complex systems, such as wireless, skin-compatible electronic

sensors.
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R
apid advances in the development of precision chem/
biosensors, low-power radio communication systems,
efficient energy harvesting/storage devices, high-capacity

memory technologies and miniaturized electronic/optoelectronic
components create opportunities for qualitatively expanding the
ways that microsystem technologies can be integrated with the
human body for treating disease states and monitoring health
status1–5. Realizing this potential requires not only advances in
the components but also in the strategies for their collective
integration into systems that offer stable, long-term operation at
intimate biotic/abiotic interfaces1,3,4. Promising research in this
direction focuses on development of materials and mechanics
concepts to enable system-level properties that are mechanically
and geometrically matched to those of the soft tissues of
the human body6–25. Although previously reported approaches
provide significant utility in this context12,14,26–42, they all rely
on planar, two-dimensional (2D) layouts of the functional
elements and electrical interconnects, where the 2D geometries
and/or materials define the essential physical characteristics.
The work reported here pursues a different strategy, in which
system architectures adopt engineered, three-dimensional (3D)
designs to provide properties that circumvent intrinsic limita-
tions associated with traditional, 2D counterparts. Specifically,
combined experimental and theoretical results demonstrate that
open networks of 3D microscale helical interconnects offer nearly
ideal mechanics for soft electronic systems that embed chip-scale
components, by virtue of model, spring-like behaviours similar to
those in man-made43–45 (for example, coil spring) and
biological46–50 (for example, tendrils) analogues. Furthermore,
scalable methods for forming the required 3D mesostructures
together with systematic approaches for defining mechanically
and electrically optimized layouts allow immediate application to
complex systems. Wireless sensor platforms capable of physio-
logical status monitoring in soft, skin-mounted formats provide
demonstration examples. These findings could find broad utility
in many classes of soft microsystems technologies.

Results
Mechanics of 3D helical coils. The assembly approach builds on
recently introduced concepts in deterministically controlled buck-
ling processes51,52, in which initial 2D structures spontaneously
transform into desired 3D shapes. Figure 1a presents finite element
analyses (FEA, see Methods section for details) for the formation of
an extended, spiral network of 3D helical microstructures from a
corresponding 2D precursor that takes the form of a collection of
filamentary serpentine ribbons (widths: 50mm; multilayer
construction: 2.5mm PI/1.0mm Au/5 nm Cr/2.5mm PI). Each unit
cell consists of two identical arcs with central angle y0 and radius r0.
The two ends include small discs that form strong covalent siloxane
bonds to an underlying elastomeric silicone substrate in a state of
biaxial prestrain; other regions adhere only through weak van der
Waals interactions. Compressive forces induced by releasing the
prestrain cause the 2D precursor to geometrically transform,
through a coordinated collection of in-plane and out-of-plane
translational and rotational motions, into an engineered 3D
configuration via controlled buckling deformations51,52. Specifi-
cally, each unit cell transforms into a single turn of a corresponding
3D helical microcoil whose pitch (p) depends on the serpentine
geometry and the magnitude of the prestrain, epre, according to
p¼ 4r0 sin(y0/2)/(1þ epre). The overall shape of coil follows mainly
from epre and y0 (Supplementary Fig. 1). Optical images of a
representative structure appear in Fig. 1b. The key dimensions
match those from FEA. For example, the experimental and FEA
results for the pitch, height of the microcoils are 1,150±40mm,
530±50mm and 1,170, 520mm, respectively.

Although previous studies establish the utility of planar
serpentine interconnects in soft electronics, the existence of sharp,
localized stress concentrations that follow from their 2D formats
and their physical coupling to the substrate limit performance for
systems that require low modulus, elastic mechanics in compact
designs. By comparison, 3D helical microstructures avoid this
unfavourable mechanics due to smoothly varying, uniform
distributions of deformation-induced stresses that follow directly
from their 3D layouts. The result enables exceptionally high levels
of stretchability and mechanical robustness, without the propensity
for localized crack formation or fracture, as supported by results in
Fig. 1c,d and Supplementary Fig. 2. For purposes of quantitative
comparison, consider a 2D serpentine interconnect with the same
material composition (PI/Au/PI) and key geometric parameters
(Supplementary Fig. 2a), including the width (w), the thickness
(tmetal and tPI), the span (S) and the amplitude (A), as a
corresponding 3D helix. Here the number of unit cells in the 2D
serpentine is selected such that its total trace length (ltotal) is
approximately the same as that of the 3D counterpart (10.68 mm,
y0¼ 180o and r0¼ 425mm). The limit of elastic stretchability,
defined as the maximum overall dimensional change below which
structural deformations can recover completely, corresponds to the
point at which the constituent materials undergo plastic deforma-
tion at the locations of highest Mises stress. Results for analogous
2D and 3D systems appear in Supplementary Fig. 2b. Due to the
absence of stress concentrations, the elastic stretchability of the 3D
helices significantly exceeds that of the 2D serpentines. The
enhancement corresponds to a factor of B3 for epre¼ 50%, and
this factor increases continuously with epre until it reaches B9.5 for
epre¼ 300% (Supplementary Fig. 2b).

These improvements follow from qualitatively distinct deforma-
tion mechanisms in 3D compared to 2D layouts. Figure 1c
illustrates the nearly ideal, spring-like mechanics that characterize
responses in 3D helices. Here, deformations are almost completely
decoupled from those of elastomeric substrate and the cross-
sectional maximum Mises stress (scross-section

Mises ) are spatially uniform,
except for small regions near the bonding sites. Quantitative results
from FEA appear in Fig. 1e, which shows the maximum Mises
stress for each cross section along the natural coordinate normal-
ized by the arc length. Deformations of the 2D serpentine lead to
sharp, unavoidable stress concentrations at the arc regions, as
illustrated by the results in Fig. 1f. The ratio of the peak stress
[Peak scross-section

Mises

� �
] to its mean value [Mean scross-section

Mises

� �
] serves

as a metric for the magnitude of this concentration. This ratio
is only B1.2 for the 3D helices under both applied strains of
25 and 50%, which is nearly an order of magnitude smaller than
the ratio (B9.8) for the 2D serpentines. The non-uniformity in
the stress distribution can be characterized by the average
absolute deviation relative to the mean value, as given by

Fnon-uniformity ¼
R 1

0
scross-section

Mises
�Sð Þ�Mean scross-section

Misesð Þj jd�S

Mean scross-section
Misesð Þ , where �S denotes

the natural arc coordinate normalized by the total trace length of
entire interconnect. This dimensionless factor also highlights the
qualitative differences (for example, 0.15 versus 1.06 for 50%
stretch) between behaviours of the 3D helical and 2D serpentine
microstructures. Even when compared to fractal 2D designs, in
which microfluidic enclosures afford mechanical decoupling from
the substrate14 or to bar-type 2D serpentines, in which planar,
scissor-like mechanics dominates53, the 3D helical geometry is
superior due to the spring-like responses and associated uniformity
in the stress distribution (see Supplementary Figs 3–7 for details).
In particular, 3D helical interconnects outperform 2D serpentine
designs that undergo buckling deformations in the form of local
wrinkling, typically by a factor 42.3 for representative prestrains
(4100%). As compared to thick serpentine interconnects that are
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dominated by planar, scissor-like mechanics, 3D helical inter-
connects with a sufficient prestrain (for example, 4100%) exhibit a
considerable enhancement (for example, 41.8 times) in the elastic
stretchability. Similar improvements, at an even greater factor,
apply relative to 2D interconnects with fractal-inspired layouts
(Supplementary Fig. 7).

Design of 3D interconnect network of helical coils. The
versatility in layouts that can be realized by the assembly
approach outlined in Fig. 1, the scalability of this process to
large areas, and the excellent mechanical behaviours of the
3D helical designs facilitate straightforward implementation even
in complex systems (see Supplementary Figs 8–15). The optical
image of Fig. 2a presents an example that consists of B50
separate chip-scale electrical components, B250 distinct 3D

helical interconnects (PI 2.5 mm/Au 1 mm/Cr 5 nm/PI 2.5 mm
multilayers with 50mm in width for each line; PI 2.5 mm/Au
1 mm/Cr 5 nm/PI 2.5 mm/Au 1 mm/Cr 5 nm/PI 2.5 mm multilayers
with 50 mm in width for each crossing point) adhered at
B500 bonding sites to an elastomeric substrate (E¼ 20 kPa;
Ecoflex 00–50, Smooth-on, USA; B4 cm diameter at rest), all
encapsulated with an ultra-low-modulus elastomer (E¼ 3 kPa;
Silbione 4717A/B, Bluestar Silicones, France). As described
subsequently and demonstrated in Supplementary Movie 1, this
platform provides wireless, battery-free capabilities in continuous
monitoring of physiological health from mounting locations on
the skin. The inset shows the device in a complex state of
deformation to illustrate the soft, skin-like physical properties.
The overall layout employs a spider-web-like geometry
(Supplementary Figs 16–18), selected to avoid failure at any
point in the system, to ensure uniform and extreme levels of
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Figure 1 | Assembly of conductive 3D helical coils and their mechanical properties. (a) Process for assembly illustrated by finite element analysis (FEA).

A 2D filamentary serpentine structure bonded at selected locations to an underling, bi-axially stretched (epre) soft elastomeric substrate (pre-streched).

Corresponding 3D helical coils formed by relaxation of the substrate to its initial, unstretched state (strain released). The colour represents the magnitude

of Mises stress in the metal layer. (b) Angled and cross-sectional optical images of an experimentally realized structure. The traces consist of

lithographically defined multilayer ribbons of polyimide/Au or Cu/polyimide bonded to a silicone substrate. Scale bar, 1 mm. FEA results for the

deformations and distributions of Mises stress in a 3D coil (c) and a 2D serpentine (d) with similar geometries at 0 and 50% uniaxial strain.

(e) Distribution of maximum Mises stress for each cross section along the natural coordinate normalized by the arc length, for the 3D helical coil in c, for

three different levels of applied strain (0, 25, 50%). (f) Similar results for the case of the 2D serpentine in d.
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stretchability and bendability in any direction and to minimize
the overall system size. This unusual layout follows from a
rigorous, systematic design approach that leverages FEA
modelling. Specifically, for any given design, FEA allows rapid
identification of locations of high Mises stresses and physical
collisions between the different regions of the interconnect
network and/or individual components, under various states of
deformation within a desired range of strains. Under constraints
of interconnect length and connectivity set by considerations in

electrical performance (details described below), an iterative
process guided by FEA allows optimization of all relevant
parameters, including the magnitude of the prestrain in the
assembly process, the spatial layouts of the components, the
configurations of the bonding sites and the geometries of the 2D
serpentine precursors. The use of serpentine unit cells with fixed
dimensions across the entire circuit simplifies the design process
and yields uniform distributions of Mises stresses. Overlaid on
these mechanical considerations is a set of electrical requirements.
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Figure 2 | Three-dimensional network of helical coils as electrical interconnects for soft electronics. (a) Optical image of the system at a bi-axially

stretched state of 50%, showing B250 3D helices, B500 bonding sites, B50 component chips and elastomers for full encapsulation (Encapsulation

material: Silbione 4717A/B, Bluestar Silicones, France; E¼ 3 kPa; bottom substrate: Ecoflex 00-50A/B, Smooth-on, USA; E¼ 20 kPa) Inset: optical image of

the device under a complex state of deformation. Scale bar, 5 mm. Scanning electron micrographs and corresponding FEA results of representative regions

of the 3D network, including (b) electrically isolated crossing points and (c,d) interfaces with chip components. Scale bars, 100mm (b), 1 mm (c) and 1 mm

(d). The widths and thicknesses of all coils throughout this system are 50 and 1 mm, respectively. (e) Optical image of a device supported by two fingers. (f)

Block diagram of the functional components for a set of electrophysiological (EP) sensors with an analogue signal processing unit that includes filters and

amplifiers, a three-axial digital accelerometer, a Bluetooth system on a chip (SoC) for signal acquisition and wireless communication, and a wireless power

transfer system for battery-free operation. The signal acquisition involves sampling of the EP sensor output through an internal analogue-to-digital

converter (ADC) and data acquisition of the accelerometer output via a serial peripheral interface (SPI). When operated using a custom graphical user

interface on a smart phone, this system can capture and transmit a range of information related to physiological health, as shown in Supplementary Movie 1.
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For example, the length of the line that supplies power must be
minimized to reduce resistive dissipation and electromagnetic
noise associated with radio frequency power delivery. A large
decoupling capacitor (22 mF) at the power source and smaller
bypass capacitors at each branch of the supply route, all of which

have low equivalent series resistance, help to suppress this noise.
The antenna and the electrodes for sensing electrophysiological
signals must be spatially separated from the power line
to minimize electromagnetic interference, but they must also
enable impedance matching (50O). These and other coupled
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substrate (Ecoflex 00-50A/B, Smooth-on, USA; E¼ 20 kPa). Partial release of the prestrain mechanically transforms the 2D serpentines into 3D helices.

Coating the entire structure with a thin, low-modulus silicone elastomer (Silbione 4717A/B, Bluestar Silicones, France; E¼ 3 kPa) defines the encapsulation

layer. Finally, releasing the remaining prestrain enhances the 3D geometry of the helices and completes the process. The insets correspond to magnified

views of a local region. (b) Elastic stretchability of a 3D circuit system encapsulated at different states of partially released strain in this two-stage

encapsulating process (blue for uniaxial stretching along X axis; red for uniaxial stretching along Y axis; black for radial stretching). (c) Bar graph of the

elastic stretchability for a 3D circuit system formed by using a one-stage encapsulating process, two-stage encapsulating process and no encapsulation. (d)

System-level deformation and distribution of stresses determined by FEA with encapsulation introduced after (d) full and (f) partial release of the prestrain.

In all of the FEA images, the colour represents the magnitude of Mises stress in the metal layer. (e) Optical images of a device deformed in similar ways.

Scale bars, 1 cm (a–d). The scale bar of the inset of (a) is 1 mm.
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considerations in mechanics and electronics underpin the
optimized design shown in Fig. 2a.

The scanning electron microscope (SEM) images in Fig. 2b–d
highlight some key representative regions of this system,
including heterogeneously integrated structures of 3D microcoils,
chip-scale components and the supporting elastomeric substrate.
In terms of the mechanics, these frames highlight the level of
agreement between experiment and FEA predictions across
the entire structure. Figure 2b illustrates electrical crossovers
enabled by the multilayer construction of the traces. As shown in
Fig. 2b–d, the bonding sites retain an undeformed shape due to
the low modulus of the underlying elastomer and the relatively
large thickness (B6 mm) of the interconnect structure. The
result leads to low levels of Mises stresses at these locations.
The chip-scale components prevent corresponding near-surface
regions of the elastomer from relaxing after release of the
prestrain, thereby inducing a certain level of strain concentration.
As such, the portions of the helical interconnects that join directly
to the chips undergo a slightly enhanced compression, consistent
with the increased Mises stresses in Fig. 2d. The FEA results in
the lower images show the stress field associated with the 3D
microcoil. The maximum computed stress in the metal layer
across the entire 3D interconnect structure is B130 MPa.
This value corresponds to B0.19% strain, which is below the
yielding point (B0.3%).

Delamination has the potential to occur at the chip/substrate
interface during the process of mechanical-guided assembly, as
shown in experimental results (Supplementary Fig. 19). Theoreti-
cally, delamination occurs more readily as the prestrain increases or
the effective rigidity of the chip increases. Such trends are in
qualitative agreement with experimental observations (Suppleme-
ntary Fig. 19), in which the delamination area increases as the
effective rigidity of the chip increases. In addition, delamination
occurs mainly at the periphery regions of the chips. This type
of partial delamination does not affect the bonding conditions
between electrical interconnects and substrate, and thereby has a
minor effect on the integrity of the entire device.

As depicted in Fig. 2e,f, the device functions as a soft, skin-
mounted technology with important capabilities in monitoring of
well-known parameters relevant to physiological health status.
Wireless delivery of power to a receiver antenna charges a
supercapacitor which then supplies regulated power to the entire
system. Sensors allow quantitative measurements of motion, via
accelerometry, and electrophysiology, via skin-interfaced electrodes.
Raw data pass through a collection of analogue filters and
amplifiers prior to wireless transmission using a Bluetooth protocol
to a customized app running on a smart phone. Details appear in
the Methods and Supplementary Figs 20–23.

Soft encapsulation strategy for enhanced mechanics. Practical
applications demand encapsulating layers to protect the active and
passive components and the interconnects. As compared with
liquid encapsulation14, the solid encapsulation approach adopted in
this paper avoids the potential for leakage or evaporation. As in
previously reported systems that use 2D serpentines, ultra-low-
modulus elastomers are attractive due to the minimal mechanical
constraints that they impose on the motions of the components
and interconnect networks. Typically, introduction of this
encapsulation material occurs as a final step in the fabrication.
An alternative, improved strategy that naturally follows from the
3D assembly process outlined in Fig. 1 involves applying this
material as a liquid precursor at a state of partial release of
the substrate prestrain, eencap, crosslinking it into a solid form and
then completing the release, as shown in Fig. 3a. This last step
deforms the cured material in a manner that softly embeds the

3D helical interconnects via mechanical interactions during final
release. As illustrated by experimental results (Supplementary
Fig. 24), the 3D buckled structures in the system maintain their
original forms during the encapsulation process because their
equivalent moduli are sufficiently high that they are not deformed
by shear forces associated with the viscosity of the uncured
elastomer or liquid.

Quantitative mechanics modelling reveals significant associated
improvements in the elastic stretchability (Fig. 3b,c), compared to
the usual case of encapsulation at the final stage of fabrication and
assembly. Specifically, the enhancement corresponds to a factor of
B2.2 and 2.8 times for uniaxial and radial stretching,
respectively, when eencap¼ 30% and epre¼ 150% for the device
in Fig. 2a (Esubstrate¼ 20 kPa and Eencapsulation¼ 3 kPa). Modelling
is critical for the practical implementation of this concept, simply
because the use of eencap above a certain threshold (439% for the
case examined here) can lead to plastic yielding of the
interconnects before full release (Fig. 3b). Near this limit, the
elastic stretchability of the encapsulated 3D circuit system
approaches that of the unencapsulated counterpart, particularly
for uniaxial stretching (for example, 120 versus 144% for X axis
and 123% versus 146% for Y axis) (see Supplementary Discussion
for more discussions). By comparison, encapsulation at eencap¼ 0
(that is, encapsulation after complete assembly) retains only
limited levels of stretchability (for example, B50% for X axis,
51% for Y axis, and 25% for radial stretching, respectively), as
shown in Fig. 3d. The deformation mode in Fig. 3e is, in fact,
close to that of an ideal, unencapsulated system (Supplementary
Fig. 25). In this construction, a radial strain of 70% induces
maximum Mises stress of only B199 MPa (corresponding to its
yield strain, B0.3%) in the active materials (Au of the
interconnects), consistent with reversible, elastic behaviours.
Furthermore, the stress distribution is uniform across most of the
circuit (Fig. 3e), as additional evidence of the efficient mechanics.

The modulus of the top encapsulation has a significant effect
on the elastic stretchability of the 3D helical interconnects
(Supplementary Fig. 26). A low-modulus elastomer (Silbione)
reduces mechanical constraints on the deformations of helical
interconnects, thereby achieving a much higher stretchability
than possible with elastomers with higher modulus values
(for example, Ecoflex). The circuit can be designed with improved
density via the use of increased prestrain during the 3D assembly
process. By increasing the prestrain from 150 to 200%, the area
of entire circuit can be reduced to B70% of the original area.
The elastic stretchability undergoes a relatively small correspond-
ing reduction, as in Supplementary Fig. 27.

The devices might encounter compression along the thickness
direction during practical use, associated with physical contact or
normal impact. Quantitative modelling of the encapsulated
helical interconnects provides insights into the mechanics
associated with such situations. For a variety of prestrains
(50–300%) used in the assembly process, compressive forces
(for example, B10 kPa) sufficiently large to reduce the out-of-
plane dimensions of the interconnects to 30% of the original
values (that is, a compression ratio of 0.3) lead to maximum
principal strains in the metal layer that are below 1.3%, which is
much smaller than the fracture strain (45%) of gold or copper.
This result indicates that the 3D helical interconnects can survive
such compression ratios (0.3) and pressures 410 kPa. Experi-
mental demonstrations of robust performance of 3D coil
interconnect networks, involve simple test structures a LED to
allow visual observation of operation. Each LED interconnect
takes the form of a 3D helical coil (width 50mm, thickness 1 mm),
selectively bonded to an elastomeric substrate (Ecoflex 00–30,
Smooth-on, USA; E¼B30 kPa) using interface chemistries
described previously and encapsulation with an ultra-soft
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elastomer (Silbione 4717A/B, Bluestar Silicones, USA; E¼
B3 kPa) as outlined above. The computational results and
experimental results are in Supplementary Figs 28 and 29. The
experiments show that an LED system constructed with networks
of helical interconnects can survive different types of compressive
loadings that might occur in practical use, consistent with
modeling results.

Experimental measurements of the mechanical responses also
show good agreement with modelling, even at the full system level
of B250 helical interconnects and B50 chips (Fig. 3d–f).
Overlays of optical images with FEA results (Supplementary
Fig. 30) facilitate comparisons. Local regions can be examined
quantitatively by using the index of structural similarity (SSIM)54.
The results reveal SSIM indices of B0.81, 0.75 and 0.77,
respectively, for the cases of radial, X axis and Y axis stretching
shown here (see Supplementary Fig. 31 for details). For reference,
comparisons of images of local areas to themselves after
translation or rotation (Supplementary Fig. 32) indicate that an
SSIM value of 0.75 corresponds to a 2.3% relative X axis offset,
a 2.0% relative Y axis offset or a 3.3� rotation relative to the
image centre; an SSIM of 0.81 corresponds to a 1.8% X axis
offset, a 1.5% Y axis offset or a 2.5� rotation.

Demonstration of soft electronics built with 3D helical coil.
Figure 4a and Supplementary Figs 33–35 present optical images
of the system in various states of deformation, with an FEA result
for the rightmost frame. Functionally, devices with these designs
offer reliable operation in all such circumstances (Supplementary
Figs 34 and 35). Figure 4b,c shows capabilities in three-axis
accelerometry for tracking of 3D motion and respiration. As in
Fig. 4d, simultaneous monitoring of electrophysiological signals
is also possible, including capture of electrocardiogram (ECG),
electromyogram (EMG), electrooculogram (EOG) and electro-
encephalogram (EEG) data for quantitative evaluation of cardiac,
muscle, eye and brain activity, respectively. Multimodal operation
depicted in Fig. 4e, Supplementary Fig. 36 and Supplementary
Movie 1 involves recording of three-axis acceleration and EP
signals simultaneously, where the former provides important
contextual information on the latter. As shown by Supplementary
Fig. 37, ECG data collected using a device in an undeformed state
are identical to those collected using a device stretched radially to
a strain of 50%. This invariance in operation is consistent with
electrical resistances of the coils that remain constant under
mechanical deformation. The 3D design approaches, the coupled
mechanical/electrical considerations in layout and the two-stage
encapsulation method, are each critically important in the
properties and the operation of such systems.

Discussion
The results presented here establish concepts, as well as routes for
practical implementation, for 3D microstructure designs in soft
electronics. Specific findings include quantitative advantages of
ideal, spring-like mechanics in 3D helical coils compared to
traditional 2D layouts; scalable approaches for forming 3D helical
frameworks as interconnect networks between advanced micro-
system components; combined electrical/mechanical techniques
for optimizing system design; encapsulation materials and
methods for ideal, 3D mechanics; and multimodal, wireless,
skin-mounted demonstration devices for health monitoring.
These ideas in 3D design have relevance not only to interconnect
networks but also to other sub-systems, such as the antennas, the
sensor structures and certain of the active and passive device
components as well. Compatibility of the 3D assembly
approaches with the most advanced methods in 2D micro/
nanofabrication provides alignment both with state-of-the-art

microsystems technologies and unusual classes of materials and
devices. A combination of established and developing elements in
overall architectures that leverage both 2D and 3D layout features
affords powerful opportunities not only in bio-integrated
electronics but also in many other areas of emerging interest,
from soft robotics to systems for virtual reality to hardware for
autonomous navigation.

Methods
Finite element analysis. Three-dimensional FEA techniques allowed prediction of
the mechanical deformations and stress distributions of helical interconnects and
entire circuit systems, during processes of compressive buckling and
re-stretching. Four-node shell elements with a three-layer (PI/metal/PI) composite
modelled the interconnects, and eight-node solid elements modelled the substrate
and encapsulation. Refined meshes ensured computational accuracy using
commercial software (Abaqus). The critical buckling strains and corresponding
buckling modes determined from linear buckling analyses served as initial
imperfections in the postbuckling analyses to determine the deformed configura-
tions and strain distributions. To evaluate stretchability in the encapsulated
condition, 3D helical interconnects determined by postbuckling analyses were
embedded in an encapsulation solid that covered the entire area of substrate. The
elastic stretchability corresponds to point at which the Mises stresses in the metal
layer exceed the yield strength (B199 MPa for Au and 357 MPa for Cu, both
corresponding to B0.3% yield strain) across at least one quarter of the width of
any section of the interconnect. Previous experimental studies32,55 support the use
of this type of criterion. A typical hyper-elastic constitutive relation, that is, the
Mooney–Rivlin law, captured the properties of the elastomeric substrate
(elastic modulus Esubstrate¼ 20 kPa and Poisson’s ratio nsubstrate¼ 0.49) and
encapsulation material (Eencapsulation¼ 3 kPa and nencapsulation¼ 0.49). The relevant
material parameters are (C10¼ 2.68 kPa, C01¼ 0.67 kPa, D1¼ 0.006 kPa� 1) for
the substrate and (C10¼ 0.40 kPa, C01¼ 0.10 kPa, D1¼ 0.04 kPa� 1) for the
encapsulation. The other material parameters are EAu¼ 70 GPa and nAu¼ 0.44 for
gold; ENi¼ 200 GPa and nNi¼ 0.31 for nickel; ECu¼ 119 GPa and nNi¼ 0.34 for
copper; and EPI¼ 2.5 GPa and nPI¼ 0.27 for PI.

Fabrication of networks of 3D helical coils for fundamental study. Spin-casting
poly(methyl methacrylate) (PMMA; B100 nm in thickness, Microchem, USA)
formed a thin sacrificial layer on a glass substrate. Spin-casting polyimide
(PI; 1B3 mm in thickness, Sigma-Aldrich, USA), depositing thin layers of metal by
electron beam evaporation (Cr/Au or Cu, thickness 0.1–1 mm), performing
photolithography, wet-etching, spin-casting another layer of polyimide followed by
oxygen reactive ion etching defined a network of 2D serpentine structures, referred
to here as the 2D precursor. Dissolving the PMMA by immersion in acetone for
10 min allowed retrieval of the 2D precursor onto the surface of a piece of water-
soluble tape (Water-Soluble Wave Solder 5414, 3M, USA). Selective deposition of
Ti (5 nm)/SiO2(50 nm) by electron beam evaporation through a shadow mask
(free-standing patterned sheet of a photodefinable epoxy with thickness of 0.1 mm;
SU-8, Microchem, USA) defined sites for strong bonding to a silicone elastomer
substrate formed by spin-casting and curing a prepolymer (thickness 1 mm; Ecoflex
00-50A/B, Smooth-on, USA) on a glass plate. A custom mechanical stage allowed
application of precisely controlled levels of biaxial strain to this elastomer, selected
using guidance from computation to achieve the required geometrical transfor-
mation from 2D to 3D. Laminating the 2D precursor onto a prestrained substrate
and heating (10 min, 70 �C in an oven) the system activated formation of strong
siloxane bonds between the patterned SiO2 layer on the 2D precursor and the
surface of the silicone substrate. Dissolving the tape by immersion in DI water and
releasing the prestrain transformed the 2D precursors into an extended network of
3D helical coils via compressive buckling.

Fabrication process for soft wireless electronics. Processes similar to those
described in the previous section, but with additional steps in spin-casting, metal
deposition, photolithography and reactive ion etching yielded networks with
electrically isolated crossing points and contact pads as interfaces to electronic
components. A conductive alloy (In97Ag3, Indalloy 290, Indium Corporation,
USA) enabled bonding of the contacts associated with the components to the
pads in the interconnect network, while still in a 2D geometry on a bi-axially
prestrained elastomer substrate. Partially releasing this prestrain followed by
casting a uniform layer of an ultra-low-modulus elastomer (Silbione 4717A/B,
Bluestar Silicones, France; E¼B3 kPa) encapsulated the entire system while pre-
serving freedom of motion of the helical coils upon application of strain. This layer
physically protected the system from the surroundings during handling and use.

Circuit design for electrophysiological sensing module. The electro-
cardiography (ECG) circuit used an instrumentation amplifier (INA333, Texas
Instruments, common-mode rejection ratio¼ 100 dB) as a pre-amplifier for
differential signal inputs to suppress common-mode noise. A driven ground with
negative feedback allowed further noise reduction, thereby improving the signal-to-
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noise ratio. A high-pass filter (4.8 Hz) and a low-pass filter (54.1 Hz) in a Sallen-
Key topology, defined the passband of the circuit. A non-inverting amplifier
magnified the filtered signal to provide an overall gain of 40 dB. The circuit used
single-ended power at 3.3 V. A DC offset of 1.65 V allows capture of signal in the
range between 0 and 3.3 V. An 8-bit analogue-to-digital converter integrated into

the wireless chip (nRF51822, Nordic Semiconductor) enabled digital acquisition at
a sampling rate of 250 Hz. The same circuit measured electrocardiogram (ECG)
and electroencephalogram (EEG) data. The circuit also can perform electro-
oculography (EOG) and electromyography (EMG) with a gain of 80 dB and a
passband of 10–500 Hz and 0.5–20 Hz, respectively.
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ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15894

8 NATURE COMMUNICATIONS | 8:15894 | DOI: 10.1038/ncomms15894 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


Circuit design for three-axis acceleration sensing module. A digital
accelerometer (ADXL345, Analog Devices) enabled measurements along three
orthogonal axes. The configuration setup involved 13-bit resolution over a range
of ±16 g, clock polarity¼ 1, and clock phase¼ 1 at a SPI clock speed of 2 MHz.
The accelerometer operated at 3 V with bypass capacitors of 10 and 0.1 mF.

Circuit design for wireless powering module. Resonant inductive coupling using
an unshielded wire wound inductor coil (27T103C, Murata Power Solutions Inc.)
served as the basis for a wireless power receiver. A parallel capacitor (12–14 pF)
defined a resonance at 13.56 MHz, as measured using an RF Impedance Analyzer
(4291A, Hewlett Packard). A full-wave rectifier based on Schottky diodes and a
smoothing capacitor rectified the received power. A low-dropout regulator
(MIC5205, Microchip Technology) regulated the power at 3.3 V, to charge
a supercapacitor (CPH3225A, Seiko Instruments) that operated the embedded
system. The transmitter consisted of a circular wire wound coil with a
radius of 3 mm, matched at 13.56 MHz, powered with an amplifier module
(ID ISC.LR(M)2500, Feig Electronics) capable of delivering between 2 and 12 W.
With this system, 60 mW can be transmitted at 2 W and a 1 cm distance, capable of
operating the system, which had a peak power consumption of 30–40 mW
(Supplementary Fig. 38).

Programming the wireless embedded system. Commercial packages including
Keil mVision5 (ARM), Bluetooth Low Energy (BLE) at 2.4 GHz, S110 SoftDevice by
Nordic Semiconductor served as tools for building software for the overall system.
Wireless transmission of outputs from the ECG circuit and the accelerometer
occurred in data packets with sizes of 6 bytes each. A custom Android-based
application receives and processes signals from the transmitter. AChartEngine
v1.1.0 (The4ViewSoftCompany) defined a graphical user interface with data
logging function for further signal processing.

Data availability. The data that support the findings of this study are available
from the corresponding authors on reasonable request.
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Supplementary Discussion: Discussions on the scheme of two-stage encapsulation 

       

The scheme of two-stage encapsulation can yield significant improvements in the elastic stretchability, 

compared to the usual method of introducing the encapsulation at the final stage of fabrication and assembly.  

For the device layout in Fig. 2a (Esubstrate = 20 kPa and Eencapsulation = 3 kPa), considerable enhancements in 

elastic stretchability (120% vs 50% for X-axis, 123% vs 51% for Y-axis, and 84% vs 26% for radial 

stretching, respectively) can be achieved for an encapsulation strain (εencap) close to 39%.  In particular, the 

elastic stretchability for uniaxial stretching approaches that of the unencapsulated counterpart (e.g., 120% 

vs 144% for X-axis and 123% vs 146% for Y-axis).  The radial stretchability (~ 84%) in this condition is, 

however, smaller than the uniaxial stretchabilities (120% for X-axis and 123% for Y-axis), due to the 

different degrees of mechanical interaction between encapsulation and 3D coils.  Specifically, the 

encapsulation material experiences more significant deformations under radial than uniaxial stretching, 

thereby leading to a stronger mechanical interaction with 3D coils.  Taking 50% uniaxial stretching as an 

example, the Poisson effect induces only ~18% compressive strain in the encapsulation along the thickness 

(i.e., out-of-plane) direction.  For 50% radial stretching, the Poisson effect induces ~ 56% compressive 

strain in the encapsulation along the thickness direction, which is much higher than uniaxial stretching.  The 

different levels of compressive strain in encapsulation then induce different levels of strain increase in the 

3D coils via the mechanical interaction. 
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Supplementary Figure 1.  SEM images and corresponding FEA results for 3D helical interconnects 
formed from 2D serpentine microstructures with different arc angles: (a) 120o, (b) 150o, (c) 180o, 
(d) 210o and (e) 240o. 



Supplementary Figure 2. Schematic illustration of configuration for 3D helical and 2D serpentine 
interconnects and results of elastic stretchability. (a) Configuration and Mises stress distribution 
of 3D helical interconnect and 2D serpentine interconnect, with prestrain 0% (precursor), 50%, 
100%, 150%, 200%, 250%, 300%, respectively. Illustration of geometric parameters is shown in 2D 
precursor (prestrain=0%). (b) Elastic stretchability of the 3D helical coils in (a) and 2D serpentine 
with similar geometric parameters as a function of prestrain used in the assembly. 
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Supplementary Figure 3. Mechanics of 3D helical interconnects in comparison to end‐bonded 2D 
serpentine and fractal interconnects in the unencapsulated condition. (a) Elastic stretchability 
versus metal (Cu) thickness (tmetal) in the unencapsulated condition, for 2D serpentine, 2D fractal 
and 3D helical interconnects. For the purpose of comparison, the key geometric parameters (width, 
thickness, span, and amplitude) are approximately the same for the three interconnects. The 
interconnects are all made of single‐layer copper. (b) FEA results on the configurations of 3D 
helical, 2D fractal and serpentine interconnects before and after stretched to the corresponding 
elastic limit, from a top‐view perspective. (c) Similar results from a 3D‐view perspective. The color 
represents the magnitude of Mises stress.
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Supplementary Figure 4. Mechanics of 3D helical interconnects in comparison to fully‐bonded 2D 
serpentine interconnects in the encapsulated condition. (a) Elastic stretchability versus the prestrain 
of substrate, for the 3D helical and 2D serpentine interconnects encapsulated by a low‐modulus (~ 3 
kPa) silicone. The metal (Ni) thickness is tmetal=0.6 μm for both the helical interconnects and the 2D 
serpentine interconnects with local wrinkling, and tmetal=50 μm for the 2D serpentine interconnect 
with global buckling. (b) Elastic stretchability of helical and serpentine interconnects versus the metal 
thickness for a fixed prestrain (εpre=200%). (c ‐ e) Optical images and FEA predictions on the un‐
stretched and stretched configurations of three interconnects, including a helical interconnect with 
tmetal=0.6 μm and εprestrain=200%, and two serpentine interconnects with tmetal=0.6 μm and 50 μm. (f) 
Contour graph of elastic stretchability among various thicknesses of metal and PI layers for the 3D 
helical interconnects. (g) Similar results for the 2D serpentine interconnects. 
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Supplementary Figure 5. Effect of prestrain on the deformations of encapsulated 3D helical 
interconnects. Deformed configurations of three helical interconnects (Ni, tmetal=0.6 μm, tPI=6.0 
μm, Eencapsulation=3 kPa, Esubstrate=20 kPa) formed with different prestrains (100%, 150% and 250%), 
when stretched to the corresponding elastic limit. The color represents the magnitude of Mises
stress.



x

y

Unstretched

Unstretched

Stretched

Stretched

Ni thickness = 0.2 m

Ni thickness =1.8 m

Stretched 114%

Stretched 87%

600MPa0

Supplementary Figure 6. Effect of metal thickness on the Mises‐stress distribution of 
encapsulated 3D helical interconnects. Deformed configurations of helical interconnects (Ni, 
εpre=200%, Eencapsulation=3kPa, Esubstrate=20kPa) with two different thicknesses (0.2 μm and 1.8 μm), 
when stretched to the corresponding elastic limit. The color represents the magnitude of Mises
stress.
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Supplementary Figure 7. Mechanics of 3D helical interconnects in comparison to fully‐bonded 
2D serpentine and fractal interconnects in the encapsulated condition. (a) Elastic stretchability 
versus metal (Cu) thickness (tmetal) in the encapsulated condition (Eencapsulation=3 kPa), for 2D 
serpentine, 2D fractal and 3D helical interconnects. For the purpose of comparison, the key 
geometric parameters (width, thickness, span, and amplitude) are approximately the same for the 
three interconnects. (b) FEA results on the configurations of 3D helical, 2D fractal and serpentine 
interconnects before and after stretched to the corresponding elastic limit, from a top‐view 
perspective. (c) Similar results from a 3D‐view perspective. The color represents the magnitude of 
Mises stress in the metal layer.



Supplementary Figure 8. Fabricated 3D coil array
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Supplementary Figure 9. Fabricated 3D coil array



Supplementary Figure 10. Commercial LED chips connected by 3D conductive coils
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Supplementary Figure 11. Thin film InGaAs LED components connected by 3D 
conductive coils: (a) SEM and OM images of the fabricated stretchable LED system with 
coil, (b) I-V curve of the LED system, (c) Mechanical fatigue test up to 10,000cycles



Supplementary Figure 12. Mask design of 3D coil fabrication for basic element 
of electrical topology
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Supplementary Figure 13. 3D coil fabrication for basic element of electrical topology
Scale bar is 3 mm.
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Supplementary Figure 14. FEA predictions on the 3D configurations of basic elements of 
electrical topology shown in Supplementary Figure 13.



Supplementary Figure 15. FEA results for basic circuits

199MPa0



Supplementary Figure 16. Schematics of material integration for 3D coil based circuit
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Supplementary Figure 17. Schematic illustration of the 2D precursor for the electronic device 
system constructed with helical interconnect networks.
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Supplementary Figure 18. FEA prediction on the 3D configuration of the electronic device system 
constructed with 3D helical interconnect networks. The 3D perspective is the same as the optical 
image in Figure 2a. The color represents the magnitude of Mises stress in the metal layer.  



Supplementary Figure 19. Potential delamination at the chip/substrate interface after release of 
prestrain: (a) fully laminated, (b) partially delaminated, to a slight degree, (c) partially delaminated 
to a large degree.  Even for the case of slight delamination, the electrical interconnection remains 
stable.



Supplementary Figure 20. Schematic of EP signal measuring Circuit



Supplementary Figure 21. Frequency response of EP circuit
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Supplementary Figure 22. Wireless power transfer receiver circuit



Supplementary Figure 23. Wireless power transfer receiver circuit
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Supplementary Figure 24. Optical images of 3D coil after encapsulation with ultra‐soft 
elastomeric materials (Silbione 4717 A/B, Bluestar Silicones). The 3D structure keeps their 
original structures well. Scale bars of (a) and (b) are 1mm and 100um, respectively.
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Supplementary Figure 25. Computational studies of the mechanics in an unencapsulated
electronic device system with 3D helical interconnect networks. (a) System‐level FEA results for 
the undeformed and deformed configurations of the electronic device under equal biaxial 
stretching. Two levels (150% and 159%) of applied strain are adopted, corresponding to the 
prestrain used in the 3D assembly and the elastic stretchability of device system. (b) System‐level 
FEA results for the undeformed and deformed configurations of the electronic device when 
uniaxially stretched to the elastic limit (144% for X‐axis and 146% for Y‐axis). Images with two 
different view perspectives are shown. The color represents the magnitude of Mises stress in the 
metal layer. 



Supplementary Figure 26. Effect of the modulus of the encapsulation material on the 
elastic stretchability of 3D helical interconnects. Elastic stretchability versus the prestrain 
for materials with a range of modulus values (from 0 to 20 kPa). The parameters adopted in 
the simulations are (θ0=180

o, w=50 μm, tmetal=0.6 μm, tPI=6.0 μm, Esubstrate=20 kPa, Emetal=200 
GPa).
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Supplementary Figure 27. Design of circuit system to increase the areal density. (a) FEA 
result for the deformed configuration of a system with prestrain εpre (200%). (b) Uniaxial and 
radial elastic stretchability for two prestrains (150% and 200%), and the same encapsulation 
strain (30%). The color in (a) denotes the Mises stress.
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Supplementary Figure 28. A stretchable test structure consisting of a pair of LEDs 
electrically connected by a 3D helical coil encapsulated in and supported by an elastomer 
(a). Compressive loads applied with the tip of a pen (b), the end of a pair of tweezers (c) and 
an index finger (d). The I‐V curves under different conditions are in (e).



Supplementary Figure 29. FEA results of the pressure needed to compress the 3D helical 
interconnects such that the out‐of‐plane dimensions reach 30% of the original values as a 
function of prestrain used to form the coils.  
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Supplementary Figure 30. Comparison of experiment images and FEA results for the electronic 
device system with 3D helical interconnect networks under stretching. Optical images overlaid by 
FEA results for the electronic device system under (a) radial stretching, and uniaxial stretching 
along (b) X‐axis and (c) Y‐axis.
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Supplementary Figure 31. Comparison of experiment images and FEA results for a local area of 
the electronic device system, with results on Structure Similarity (SSIM). Optical image of a local 
area of the device (marked by red in Supplementary Fig. 24) overlaid by FEA results for the 
electronic device system under (a) radial stretching, and uniaxial stretching along (b) X‐axis and (c) 

Y‐axis. The SSIM index is calculated using ܵܵܯܫ ,ݔ ݕ ൌ
௦ೣାయ
௦ೣ௦ାయ

ఊ
, where ݏ௫ and ݏ௬ are variance 

of x and y, and ݏ௫௬ is the covariance of ݔ and ܥ ;ݕଷ ൌ
ଵ

ଶ
݇ଶܮ ଶ is a variable to stabilize the division 

with weak denominator, in which ݇ଶ is by default taken as 0.03, and ܮ ൌ 255 is the dynamic range 
of the pixel value for the images; 0.5=ߛ is a weight used in the calculation.
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Supplementary Figure 32. Sensitivity of Structure Similarity (SSIM). (a) Optical image of a local 
area of the device, overlaid by the same image with two different levels of offset along X‐axis to 
yield SSIM of 0.81 and 0.75. (b) Similar results with two different levels of offset along Y‐axis. (c) 
Similar results with two different levels of rotation with regard to the center. 
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Supplementary Figure 33. Encapsulated electronic device system with 3D helical interconnect 
networks under bending deformations. (a) System‐level FEA result for the deformed configuration 
of the encapsulated electronic device when wrapped onto a rigid cylinder (radius 25 mm). The 
right image features the distribution of Mises stress in the metal layer. (b) Similar results for the 
encapsulated electronic device wrapped onto a rigid cylinder (radius 15 mm). 



Supplementary Figure 34. Magnified view of the 3D coil based circuit: (a) 
before and (b) after strain release



Supplementary Figure 35. Freely deformed 3D coil based circuit
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Supplementary Figure 36. Wireless, multimodal monitoring of body activity, 
through simultaneous measurements: movements of the chest by accelerometry
during (a) standing, (b) running, ECG from the chest by electrophysiology electrode 
during (c) standing, (b) rubbing.
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Supplementary Figure 37. Collected ECG signal from the chest: (a) undeformed
and (b) radially 50% stretched states
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Supplementary Figure 38. Experimental setup for wireless power transfer
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