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Abstract

Advances in materials, mechanics, and manufacturing now allow construc-
tion of high-quality electronics and optoelectronics in forms that can readily
integrate with the soft, curvilinear, and time-dynamic surfaces of the human
body. The resulting capabilities create new opportunities for studying disease
states, improving surgical procedures, monitoring health/wellness, establish-
ing human-machine interfaces, and performing other functions. This review
summarizes these technologies and illustrates their use in forms integrated
with the brain, the heart, and the skin.
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1. INTRODUCTION

All established classes of high-performance electronics exploit single-crystal inorganic materials,
such as silicon or gallium arsenide, in forms (i.e., semiconductor wafers) that are fundamentally
rigid and planar (1–6). The human body is, by contrast, soft and curvilinear. This mismatch in
properties hinders the development of devices capable of intimate, conformal integration with
biological tissues, for applications ranging from basic measurement of electrophysiological signals
(7), to delivery of advanced therapies (8), to establishment of human-machine interfaces (9). One
envisioned solution involves the use of organic electronic materials, whose flexible properties have
generated interest in them for potential use in paper-like displays (10–12), solar cells (13–15), and
other types of consumer electronic devices (16–18). Such materials are not, however, stretchable or
capable of wrapping curvilinear surfaces; they also offer only moderate performance, with uncertain
reliability and capacity for integration into complex integrated circuits. Other materials, such as
inorganic semiconductor nanowires (19) and carbon nanotubes (20), offer some promise, but they
remain in early stages of development.

Emerging design strategies and fabrication techniques that exploit conventional inorganic
semiconductor materials in unconventional ways provide compelling alternatives (21, 22), with
several recent examples of use in clinically relevant thin, stretchable tissue-like devices that non-
invasively integrate with various organs of the body (23, 24). This class of technology, which we
describe as biointegrated to reflect its mode of deployment, exploits high-quality monocrystalline
semiconductor nanomaterials (e.g., membranes, ribbons) in mechanically optimized layouts on
soft, elastomeric, or flexible substrates (25, 26). Transfer printing techniques (27) provide the
basis for manufacturing such systems, in forms that allow facile, noninvasive lamination on bio-
logical surfaces, including those of the brain (24, 28), heart (23, 26), and skin (25). Key mechanics
principles, such as neutral mechanical plane configurations (29, 30) and serpentine geometrical
designs (22, 31), minimize strains in the active materials, whereas waterproof encapsulating films
(26, 32) ensure long-term reliability. In advanced versions, bioresorbable substrates (e.g., silk) pro-
vide routes for intimate physical coupling to soft tissues, with negligible mechanical disturbance
(24).
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This review highlights the use of these ideas in diagnostic devices for brain surgery, interfaces
for human-computer control systems (24, 28), skin-based physiological status monitors (25), and
instrumented balloon catheter tools for cardiac ablation therapy (23). These examples demon-
strate the ability of biointegrated devices to (a) map electrical, temperature, mechanical strain
and flow profiles, (b) wirelessly supply power, (c) provide quantitative feedback via tactile sensing,
(d ) electrically or photodynamically stimulate tissues, and (e) ablate with fine spatial resolution. In
all cases, the components for the systems have the high performance and reliability standards of
established integrated circuit technologies. This review begins with a brief overview of the mate-
rials, mechanics, and manufacturing strategies. Discussions of applications separate into devices
that mount on internal organs and on the skin. A concluding section provides some perspectives
on future opportunities.

2. MATERIALS, PROCESSING TECHNIQUES,
AND MECHANICS DESIGN

2.1. Semiconductor Nanomaterials

The processes for creating semiconductor nanomembranes/ribbons (which we refer to generally as
NMs) begin with high-quality single-crystal wafers (Figure 1a) of (111) silicon (top) (33–35), (100)
silicon-on-insulator (SOI) (middle) (36–38), or epitaxially grown III–V semiconductors (bottom)
(39, 40). Lithographic patterning procedures and chemical etching techniques define the lateral
dimensions, configurations, and thicknesses (typically tens to hundreds of nanometers) of NMs
that are released from such “source” wafers. The first route (Figure 1a, top) uses anisotropic wet
etching of (111) silicon with potassium hydroxide or tetramethyl ammonium hydroxide, both of
which remove material along the surfaces of the wafers at much higher rates than into their depths
(33–35). Coatings of silicon nitride or metal protect the sidewalls of the NMs from this etching. The
second method (Figure 1a, middle) exploits isotropic elimination of the buried silicon dioxide
of SOI with hydrofluoric acid (HF) to free the top layer of silicon from the supporting wafer
(36–38). The third approach (Figure 1a, bottom) utilizes isotropic etching of sacrificial layers
epitaxially formed in multilayer stacks (39, 40). As an example, thin films of GaAs, grown on
sacrificial layers of AlAs, can be removed by selectively etching away the AlAs with HF. In the first
and third techniques, the processes can be repeated to yield large quantities of high-quality NMs,
in a repetitive manner or in a single, multilayer sequence (40). To prepare defect-free surfaces,
chemical-mechanical planarization procedures and passivation methods, in adapted versions of
steps already used in the semiconductor industry, can in many cases yield electrical properties in
the NMs that are similar to those of unreleased films.

For present purposes, the NMs are useful because their small thicknesses yield extremely low
bending stiffnesses (up to 15 orders of magnitude smaller than those of wafers) (41, 42) and low
interfacial stresses in bonded configurations (up to 5 orders of magnitude) (31, 43). These charac-
teristics allow NMs to be assembled, stacked, and heterogeneously integrated in ways that would
be impossible with bulk materials (44). As a result, straightforward use of NMs enables flexible,
and even stretchable, device designs. Manufacturing with NMs can be challenging, however, due
to their small sizes and associated mechanical fragility. Recently developed techniques of transfer
printing are thus critically important, as described next.

2.2. Transfer Printing

Transfer printing begins with a soft stamp made of an elastomer such as (poly)dimethylsiloxane
(PDMS), designed to allow retrieval of NMs, released from their source wafer but tethered at
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Figure 1
Materials, processing approaches, and layouts that yield stretchable forms of inorganic semiconductors such as silicon and gallium
arsenide. (a) Nanomembranes of these materials, produced from high-quality, single-crystal wafers using lithographic patterning and
etching. (Top) A set of flexible nanomembranes/ribbons (NMs) made of (111) silicon created by anisotropic undercut etching of a
silicon wafer. (Middle) (100) silicon NMs released from a silicon-on-insulator wafer by removal of the buried oxide. (Bottom) A large
collection of GaAs NMs prepared from epitaxial, multilayer stacks of GaAs/AlAs. Selectively etching the sacrificial AlAs layers releases
GaAs NMs. Reproduced with permission from Reference 40. Copyright Nature Publishing Group. (b) Schematic of the process for
transfer printing collections of NMs from their released forms on a source wafer to a target surface. Reproduced with permission from
Reference 39. Copyright American Association for the Advancement of Science. (c) Automatic transfer printing tool. Inset shows a
collection of GaAs NMs printed onto a flexible sheet of polyethylene terephthalate. (d ) Scanning electron microscope images and
(insets) corresponding finite element modeling results for semiconductor NMs bonded to prestrained elastomeric substrates in three
different configurations. Upon releasing the prestrain, controlled buckling processes in the NMs lead to different layouts: (top)
two-dimensional herringbone “wavy” patterns (reproduced with permission from Reference 37, copyright American Chemical Society)
and noncoplanar bridge structures with (middle) straight and (bottom) serpentine (reproduced with permission from Reference 22,
copyright National Academy of Sciences) interconnects. In all cases, strains in the silicon structures themselves are less than ∼0.1%,
even when strains of the overall system exceed 100% in certain configurations.

strategic points (i.e., anchors), simply by the action of generalized adhesion forces to the PDMS,
typically dominated by van der Waals interactions (27, 45) (Figure 1b, top). This transfer
can be performed over large areas of uniform or segmented NMs using flat stamps (27) or
over selected areas using structured stamps (46) (Figure 1b, top). The retrieved collections of
NMs (i.e., solid “inks” in this procedure) are selectively delivered to target substrate surfaces,
at predefined locations with microscale precision (Figure 1b, bottom), by printing (39, 47).
A variety of approaches allow the switching in adhesion needed for efficient operation; these
range from rate-dependent viscoelastic effects (27, 48), to biomimetic strategies (45), to use
of interfacial bonding layers (49). Printing with automated tools that include high-resolution
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cameras for overlay registration and multidimensional stages for positional control enables
submicron-scale capabilities that are fully compatible with NMs and that offer throughputs
of millions of individual NMs per hour (39, 40) (Figure 1c). When used in a step-and-repeat
manner, the process can disperse NMs over large areas in sparse and materials-efficient layouts
matched to system requirements, many of which demand areal coverage that is much larger than
that which can be cost-effectively addressed using conventional integrated circuit technology.
Figure 1c (inset) shows a sparse array of printed GaAs NMs on a bent sheet of plastic (39).

When bonded to thin substrates, inorganic NMs provide routes to high-quality electronics and
sensors capable of bending to small (<1 mm) radii of curvature (21, 28, 50). Nevertheless, even in
these designs, the extreme bending (i.e., folding) and stretching/compressing that occur in many
interfaces with the human body can lead to strains that exceed fracture thresholds in common
inorganic materials (∼1%) (41, 42). For example, electronics integrated on the human skin must
undergo strains of up to 30% or more (51) without constraining natural motions. Sensors and
electrodes on compliant or inflatable balloon catheters for minimally invasive surgical procedures
require even higher levels of deformation, i.e., strains of well over 100% (23). A powerful strategy to
accommodate such strains exploits the controlled physics of nonlinear buckling processes (36, 52).
As a simple example of this idea, transfer printing an NM on a prestretched elastomeric substrate
and then releasing this strain leads to compressive stresses that produce a herringbone pattern
of buckling (37) (Figure 1d, top). When the substrate is subsequently stretched by amounts less
than the prestrain, the amplitudes and wavelengths of the buckled structures change in ways that
maintain small, materials-level strains in the NM, thereby avoiding fracture. The same concepts
can be applied with ultrathin, flexible integrated circuits. Advanced versions of this basic idea
involve structuring the circuits into open mesh layouts and selectively bonding only the device
island regions to the prestretched elastomer. In this case, the interconnects delaminate to adopt
arc-shaped geometries upon release of the prestrain (22, 29, 31) (Figure 1d, middle). When the
system is subjected to deformation, the interconnects move freely in ways that both strain-isolate
the devices and reduce the strains in the interconnect materials by orders of magnitude compared
with those in the elastomer substrate (43). Further improvements are possible by using serpentine-
shaped interconnects (Figure 1d, bottom) in otherwise similar overall constructs.

3. FLEXIBLE AND STRETCHABLE ELECTRONICS
AND OPTOELECTRONICS

3.1. Flexible Devices

One of the most powerful electronic components that can be constructed using the materials
and processes described above is the field-effect transistor. Figure 2a (top inset) shows n-type
(right) and p-type (left) silicon metal oxide semiconductor field-effect transistors (MOSFETs)
(38). Doped NMs of silicon used with gate dielectric layers (SiO2) and metal electrodes can achieve
electrical performance on plastic substrates that is comparable to that of otherwise similar devices
on rigid silicon wafers (38, 53, 54). Connection of n-type and p-type MOSFETs allows integrated
circuits, for which complementary-MOS (CMOS) inverters (Figure 2a, right-hand side) are key
building blocks (38). Arranging CMOS inverters in series or in parallel configurations can yield
various functions, such as that of the ring oscillator shown in Figure 2a (center). In this example,
an ∼25-μm-thick flexible sheet of polyimide serves as the substrate. Transfer printing various
kinds of semiconductor materials in multiple layers enables even more sophisticated devices, in
which active circuit elements in different layers can be interconnected through vias and edge-over
metallization, yielding three-dimensional heterogeneous circuits (44) (Figure 2b).
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Figure 2
Flexible and stretchable electronic and optoelectronic devices. (a) Flexible circuit with transistors that use
silicon nanomembranes/ribbons (NMs) on a 25-μm-thick polyimide substrate: (left and top inset) n-type and
and p-type transistors, (right) complementary metal oxide semiconductor (CMOS) inverters, and (center)
three-stage ring oscillators. (a, bottom inset) A circuit diagram of a ring oscillator. Abbreviations: VIn, input
voltage; VOut, output voltage; VDD, power supply voltage. Reproduced with permission from Reference 38.
Copyright IEEE. (b) Three-dimensional, multilayer circuit on a plastic substrate formed by repeated cycles
of transfer printing and device processing. (c) Stretchable CMOS circuit that uses a “wavy” layout on an
elastomeric substrate shown (top) before and (bottom) during application of normal force with a glass rod.
Reproduced with permission from Reference 21. Copyright American Association for the Advancement of
Science. (d ) Scanning electron microscope images of a (top) deformed and (bottom) undeformed collection of
CMOS inverters that use straight, noncoplanar interconnects. A thin (∼1 mm) elastomer membrane serves
as the substrate. Reproduced with permission from Reference 22. Copyright National Academy of Sciences.
(e) Stretchable array of GaAs microscale inorganic light-emitting diodes with serpentine interconnects in
flat, 360◦ twisted, and 720◦ twisted states. Reproduced with permission from Reference 32. Copyright
Nature Publishing Group.

3.2. Stretchable Devices

Electronic systems can also be achieved on stretchable substrates. Figure 2c shows CMOS circuits
on PDMS, capable of reversible elastic responses to significant mechanical deformations, by virtue
of the buckling mechanics described previously (21). This type of system forms when an ultrathin
(less than ∼3 μm) CMOS silicon circuit, transferred onto a biaxially prestretched PDMS, buckles
as a result of releasing the prestrain (Figure 1d ) to adopt generalized versions of the herringbone
layouts shown in Figure 1d (top). The circuits in this case lie between two identical polyimide layers
in the neutral mechanical plane to minimize bending-induced strains. When mildly stretched, the
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devices and interconnects gradually flatten in a way that avoids significant strains in the active
materials or associated changes in performance.

As an example of a device of more advanced design, Figure 2d shows an array of CMOS invert-
ers with noncoplanar, arc-shaped interconnects under deformation (22). Similar interconnects,
but with serpentine shapes, further increase the stretchability. Figure 2e shows twisting defor-
mations (by up to 720◦) in an interconnected array of microscale inorganic light-emitting diodes
(μ-ILEDs) built using these ideas (32). This type of mechanical response suggests an ability to wrap
complex curvilinear and time-dynamic surfaces, such as those found in biology. The remaining
sections highlight some examples; each begins with an overview of the existing state of the art.

4. BIOINTEGRATED DEVICES ON INTERNAL ORGANS

4.1. Integrating with the Brain

High-resolution neural interface devices have played important roles in brain and central nervous
system research over the past decades (55). Electrical recordings performed with penetrating (56)
or surface-contacting electrodes (57) have dramatically improved our understanding of the basic
science of neural activity; they have also been exploited for clinical usage in epilepsy surgery (58–
60), prosthetic control (9), and other applications (61). Extensive reviews of electrode arrays used
in surgical procedures to treat epilepsy appear elsewhere (62, 63). Briefly, such devices often consist
of a relatively small number of large electrodes (e.g., ∼6-mm diameters and ∼1-cm spacings) on
flexible sheets that contact the surface of the brain to collect neural signals generated by clusters
of neurons (57). Although the large area coverage provided by such technologies is attractive in
terms of gaining valuable information about precise brain activity and foci triggers of disease states,
such as epilepsy, the spatial density of electrodes should be as high as possible, with spacings of
∼400 μm or less (64). Electrode arrays positioned underneath the dura membrane and in direct
contact with cortical surfaces can combine macroelectrodes with microwires (58–60) to achieve this
improved resolution. The number of wire connections required in these types of passive systems,
however, imposes practical constraints that preclude the possibility of simultaneous large-area and
high-resolution operation (28).

Multiplexing circuits provide a solution that reduces the number of required connections for
n electrodes, from n to sqrt(n). For example, a 16 × 16 array of electrodes requires ∼30 wires
with multiplexers, compared with ∼260 wires in passive configurations. The significance of this
reduction increases rapidly with electrode count. The challenge with multiplexing is that the re-
quired electronics, in conventional forms, are rigid and flat, thereby rendering them incompatible
with the soft, curved textures of the brain (65). One widely used approach bypasses this constraint
by use of penetrating electrode pins that terminate on flat platforms, suitable for mounting of
conventional silicon integrated circuits (64, 66, 67). The Utah array represents a prominent and
successful example of this strategy (64, 66), where the pins provide access to clusters of neurons in
a way that also overcomes the mismatches in geometry. An important disadvantage is that tissue
damage caused by electrode insertion and continued irritation during long-term implantation (due
to micromovement of brain tissue) can trigger adverse effects, including astrocyte proliferation
and inflammation, both of which lead to signal degradation over time (68).

An alternative involves collections of diced silicon chips, each of which supports planar elec-
trodes with hemispherical bumps and multiplexing electronics, bonded to plastic sheets (69). This
approach can be effective, but there are significant challenges due to the inflexibility and relatively
large sizes of the chips. Reduction of stiffness is crucial for achieving systems that not only are
safe but also provide high-fidelity data streams (24). Flexible electronics using the NM concepts
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Figure 3
High-density, conformal electrode array for brain surface recording. (a) High-density device with
multiplexers based on silicon nanomembranes/ribbons. Inset shows a similar array folded around a thin
(∼700 μm) elastomer sheet and inserted into an interhemispheric fissure. (b) Images (left) before and (right)
after insertion. (c) Local administration of picrotoxin into the visual cortex causes spiral wave fronts that can
be seen clearly in recordings from the high-density array. Reproduced with permission from Reference 28.
Copyright Nature Publishing Group. (d ) (left) Image and (right) mapping results of an ultrathin (∼2.5 μm)
mesh electrode array laminated onto the surface of the brain following dissolution of a temporary silk
substrate. The mesh design enables exceptionally good conformal contact, and thus higher quality in the
measured signals compared with that possible with conventional flexible arrays. Reproduced with permission
from Reference 24. Copyright Nature Publishing Group.

described previously permit high-speed multiplexing, high temporal resolution, as well as confor-
mal electrode-tissue interfaces over large areas (28) (Figure 3a). The thin form factor and low stiff-
ness even offer direct mechanical access to the hemispherical fissure area of the brain (Figure 3a,
inset). Folded electrode arrays enable simultaneous mapping from both sides of the hemispheres
(Figure 3b). Furthermore, high-density systems with submillimeter spacing between the elec-
trodes yield insights into new neural mechanisms, whereby unusual clockwise and counterclock-
wise spiral patterns of excitation propagate in a manner correlated to signs of microseizures
(28, 70) (Figure 3c).

Even fully flexible electrode arrays such as these may not, however, make complete conformal
contact with the most topologically demanding regions of the human brain (24) (Figure 3d ).
Reducing thicknesses to less than ∼10 μm, and structuring the sheets into open mesh geometries,
can improve the coupling (Figure 3d ). To enable mechanical manipulation for mounting such
systems, which themselves are difficult to handle due to their extremely low bending stiffnesses,
sacrificial substrates of materials (e.g., silk) that readily dissolve in biofluids can be useful. Once
deployed on soft tissue, the silk dissolves leaving behind an ultrathin mesh of electrodes in intimate
mechanical contact with even the most strongly curved/textured regions of the brain surface (24).

4.2. Integrating with the Heart

As with the brain, mapping electrical activity across the surface of the heart is important not
only for developing a fundamental understanding of disease states but also for diagnosing local
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a b c 

Figure 4
Multielectrode catheters for cardiac mapping and ablation. (a) Multielectrode mapping and ablation catheter
(HD Mesh AblatorTM, Bard; Lowell, MA) consists of 36 electrodes in mesh geometry, which optimizes
contact with the pulmonary veins. (b) Multielectrode basket catheter (ConstellationTM, Boston Scientific;
Boston, MA) provides high-density mapping of electrical activity within the atria. (c) Multielectrode
mapping and ablation catheter (MAACTM, Medtronic; Minneapolis, MN) targets complex fractionated
atrial electrograms for both mapping and ablation of the atrial body.

tissue behavior during certain surgical operations. Existing approaches use single-point electrical
mapping catheters; newer systems exploit arrays of electrodes integrated on catheter-type delivery
systems (8, 71). In both cases, clinical use in the context of treating certain types of arrhythmias
often involves measurement of electrical potentials, in a point-by-point, manual fashion from
locations within the ostium of the pulmonary veins (PVs) (where the PV is conjoined with the
atria) (Figure 4a) and within the atria (Figure 4b,c). Positioning the catheters requires signifi-
cant time and dexterity, often leading to inconsistent outcomes across multiple patients (71, 72).
Furthermore, several sequential therapeutic procedures, such as ablation, followed by cycles of
electrical mapping are required to produce a representation of electrical activity over a large re-
gion of interest (8, 71). This serial approach requires highly skilled operators to minimize risk of
stroke and other clinical complications. In addition to atrial fibrillation treatment (73), catheters
are used as tools for ablation in minimally invasive strategies for treating various forms of other
cardiac arrhythmias, including ventricular fibrillation (74) and ventricular tachycardia (75). Linear
lesions generated by radiofrequency energy applied in a point-by-point manner are among the
most common means to correct these abnormal rhythms (71, 76).

Another way to enhance the performance of cardiac ablation solutions is to develop contact-
sensing feedback and multielectrode catheter systems, which can improve electrical mapping
of complex arrhythmias and provide real-time force feedback during lesion formation (77).
Emerging balloon catheter–based systems also under development and in clinical trials rely on
balloon substrates to conform to the anatomical structure of the PV ostium (8, 71, 78–83). These
balloons inflate within the left atrium and create a continuous ring of conformal contact between
the balloon and the tissue, followed by delivery of cryoenergy, high-intensity focused ultrasound
(HIFU)–, or laser-based ablation therapies. Although conceptually straightforward, such balloon
ablation catheters do not provide sensory feedback about mechanical contact with soft tissue or
information on the electrical state of intracardiac surfaces.

Advances in stretchable electronics enable integration of contact sensors, multielectrode
arrays, and balloon substrates into a single, multifunctional instrumented catheter platform
(23). A representative example of a device of this type appears in Figure 5. Electrodes for
electrical mapping integrate on the balloon surface with classes of serpentine interconnects
described previously (Figure 5a,b). Figure 5c shows temperature sensors and stretchable arrays
of μ-ILEDs. Electrogram recordings from an inflated balloon substrate positioned in direct
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Figure 5
Multifunctional balloon catheter. (a) Stretchable sensors mounted on a catheter balloon and (b) magnified view showing stretched
(∼120%) serpentine interconnects after inflation. (c) Device in the deflated and inflated states, showing several different functionalities,
ranging from electrodes for electrophysiological measurement and radiofrequency (RF) ablation to temperature sensors, contact force
gauges, and arrays of microscale inorganic light-emitting diodes (μ-ILEDs). (d ) Electrical recordings from the right ventricle of a
rabbit heart, measured with an instrumented balloon catheter. (e) Lesions created by RF ablation electrodes on a similar device. Yellow
line denotes the location of a temperature sensor. The inset provides a corresponding image of RF ablation electrodes and temperature
sensors on the balloon catheter. Reproduced with permission from Reference 23. Copyright Nature Publishing Group.

mechanical contact with a live porcine heart are presented in Figure 5d. This mode of operation
is particularly useful for balloon ablation catheters, where assessment of ablation can be achieved
quickly without the need for separate diagnostic devices. In addition to electrical and temperature
sensors, contact sensors and stimulation electrodes (Figure 5e) are also supported on this
platform. Contact sensors can report the moment when the balloon skin and endocardial tissue
touch, thereby providing important feedback (without X-ray imaging) on how to adjust and
maneuver inflated balloons to achieve optimal occlusion of the PVs during ablation procedures.

More advanced biointegrated mapping systems have been demonstrated in epicardial sheets,
designed in ultrathin formats described previously to allow conformal contact to and adhesion
with the surface of the heart (26). Here, high-density electrodes, each with local amplifiers and
multiplexing circuitry based on silicon NMs, enable measurements with both high spatial and
temporal resolution. Figure 6a shows an image of a flexible mapping array with multiplexed
electrodes, adherent on a section of cardiac tissue through surface tension forces alone without
penetrating pins or separate adhesives. Electrograms collected at high sampling rates (12.5 kHz per
electrode) and combined spatiotemporally across 288 electrodes yield isochronal activation maps,
demonstrating the natural electrophysiology of the heart (Figure 6b) in a noninvasive manner.
These high-density arrays map activation patterns across entire regions of the heart, without
manual operation or repositioning, in a single beat cycle. Furthermore, their thin form factor
and mechanical reliability permit packaging in medical instruments, like the sorts of catheters
described previously, for endocardial purposes.

5. BIOINTEGRATED DEVICES ON THE SKIN

Although biointegrated electronics on internal tissues provide important functions, the skin rep-
resents a mounting location that is applicable outside of hospital settings to allow much broader
modes of use (84). Traditional technologies use small numbers of point-contact electrodes that
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Figure 6
High-density, conformal electrode array for cardiac surface recording. (a) Sensor array with embedded
multiplexing circuits and amplifiers based on silicon nanomembranes/ribbons conformally laminated on the
epicardial surface of a live porcine heart. Inset shows a magnified view. (b) Activation patterns of
depolarization mapped at four different time frames. The recorded electrical potential is converted into
isochronal maps of activation patterns. Reproduced with permission from Reference 26. Copyright
American Association for the Advancement of Science.

strap onto or penetrate through the surface of the skin (85, 86). For example, commercial de-
vices for recording electroencephalograms (EEGs) from the scalp use tight caps embedded with
electrodes, each of which attaches to external electronics via bulk wires (87). In this case and in
others for measurement of ECG or electromyography (EMG), the skin is often prepared by light
abrasion and application of conductive gel or paste as a means to reduce the contact impedance
(88). Such procedures are time-consuming and also unsuitable for long-term recording. As a re-
sult, dry electrodes are of interest. Examples include micromachined pins (89) or arrays of carbon
nanotubes (90) that allow penetration through the stratum corneum. This mode of integration
has certain advantages over gels, but it can cause inflammation and discomfort (91). Capacitive
coupling provides an attractive option that eliminates contact entirely (92). To minimize signal
attenuation and channel gain mismatch, the input capacitance of each sensor must be actively
neutralized using positive feedback and bootstrapping.

These systems have many important capabilities, but in general they are poorly suited for prac-
tical application outside of clinical research due to their bulky size and difficulties in establishing
robust, nonirritating electrical contacts (93). Recently developed stretchable device technologies,
referred to as epidermal electronic systems (EES), allow electrophysiological measurements with
ultrathin and low-modulus, skin-like sheets that conformally laminate onto the surface of the
skin in a manner that is mechanically invisible to the user, much like a temporary transfer tattoo
(25) (Figure 7a). The EES attaches intimately and physically couples to rough skin surfaces, via
van der Waals forces alone, as shown in the cross-sectional confocal micrographs in Figure 7b.
Because attachment does not require separate adhesives or conductive gels, these systems can
function for prolonged periods. EEG measurements using an EES mounted on the forehead are
shown in Figure 7c: The bottom frame presents a spectrogram showing an alpha rhythm; the
top left frame shows a plot of discrete Fourier transform coefficients at ∼10 Hz. The patterns
correspond to periods with the eyes closed and opened. The responses at ∼10 s and ∼14 s result
from eye opening and blinking, respectively. The top right frame reveals Stroop effects (94), as
an additional illustration of functionality of this technology. These and other electrophysiological
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Figure 7
Epidermal electronic system (EES). (a) Images of an EES mounted on the forehead (left) without deformation and (right) under
compression. (b) Cross-sectional confocal micrographs of the contacting interface between an EES and a piece of pig skin. (c) (Top left)
Spectrogram of an electroencephalogram measured from the forehead and (bottom) corresponding frequency-versus-time plot. Expected
alpha rhythms, with frequencies of ∼10 Hz, appear for the first 10 s with the eyes closed. This response disappears after opening the
eyes. (Top right) Evidence of the Stroop effect, which corresponds to a pattern of cognition delay during display of incongruent words
and colors. Reproduced with permission from Reference 25. Copyright American Association for the Advancement of Science.

measurements (e.g., EMG, ECG) suggest utility not only in health/wellness monitoring but also
in brain-machine interfaces, consumer and gaming applications, and other areas.

6. CONCLUSIONS

The advances summarized in this review offer immediate opportunities in many branches of
biomedical science and engineering, with important end applications in clinical, research, and
consumer domains. These directions emerge directly from the unique ability of these technolo-
gies to intimately and noninvasively integrate with the soft, curvilinear tissues of the body in ways
that are impossible with conventional, wafer-based forms of electronics. Although the functions
achieved thus far rely on diverse, physical modes of interaction with tissue, future systems might
also incorporate biochemical coupling, for which new sensors and microelectromechanical and
microfluidic components in flexible/stretchable formats will be required. Innovative ideas in ma-
terials and device engineering will be required, as will an improved fundamental understanding
of the physical chemistry of the biotic/abiotic interface. Other areas for research include devel-
opment of components for mechanical, thermal, or chemical energy scavenging and of systems
for wireless communications. These engineering goals, the foundational science that underpins
them, and their relevance to improvements in human health will drive interest in this emerging
field for many years to come.
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