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A stiff thin film on a heated compliant substrate may buckle when the system is cooled due to the
thermal expansion mismatch between the film and substrate. Highly ordered and disordered
herringbone patterns (wavy structures) then emerge as the system continues to cool. We have
established an analytic approach to study one-dimensional, checkerboard, and ordered herringbone
buckling patterns. The analytical approach gives the buckle wave length and amplitude in terms of
the thin film and substrate elastic properties, thin film thickness, and the thermal strain. It is shown
that the herringbone mode has the lowest energy, which explains why this mode is frequently
observed in experiments. These classes of materials might be interesting as a route to high
performance electronics with full, two-dimensional stretchability. © 2008 American Institute of

Physics. [DOI: 10.1063/1.2828050]

I. INTRODUCTION

Nonlinear buckling of a stiff thin film on a compliant
substrate can be useful in stretchable electronics, which has
many important applications, including eyelike digital
cameras,’ comformable skin sensors,’ intelligent surgical
gloves,3 and structural health monitoring devices.* Recent
demonstrations”’ involved the use of buckled, one-
dimensional (1D) “wavy” geometries in nanoribbons (thick-
ness between tens and hundreds of nanometers and widths in
micron range) of silicon and gallium arsenide to achieve
uniaxial stretchability in metal oxide semiconductor field ef-
fect transistors, metal semiconductor field effect transistors,
p-n junction diodes, and Schottky diodes.

Choi et al.® produced biaxially stretchable wavy silicon
nanomembranes on elastomeric poly(dimethylsiloxane)
(PDMS) substrate to provide full two-dimensional (2D)
stretchability. As illustrated in Fig. 1, the approach involved
first the delineation of nanomembranes of Si (thickness be-
tween 55 and 320 nm) from silicon-on-insulator (SOI) wa-
fers [top silicon is (100)] by photolithographic processing
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and etching of the top silicon. Next, the buried SiO, layer is
removed by hydrofluoric acid to yield membranes that rest
on, but are not bonded to, the underlying wafer. The lateral
dimensions of these membranes are typically a few millime-
ters by a few millimeters. Casting and curing prepolymers of
PDMS against polished silicon wafers generated flat, elasto-
meric substrates (about 4 mm thick). Heating the substrates
in a convection oven induced a controlled degree of isotropic
thermal expansion. Contacting the prestrained PDMS to the
Si nanomembranes formed strong chemical bonds between
these materials. Peeling back the PDMS and flipping it over
yielded Si/PDMS structures [Fig. 1(a)]. Cooling to room
temperature released the thermally induced prestrain, thereby
causing the PDMS to relax back to its unstrained state [Fig.
1(b)]. This relaxation led to the spontaneous formation of 2D
wavy patterns on the surface. These patterns exhibited differ-
ent behaviors near the edges, where 1D periodic waves
[shown schematically in Fig. 2(a)] predominated, at inner
regions, where 2D herringbone layouts [shown schematically
in Figs. 1(c) and 2(c)] were typically observed, and near the
centers, where disordered herringbone structures often oc-
curred.

Figures 3(a)-3(c) show, respectively, the optical, atomic
force microscope, and scanning electron microscope images
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FIG. 1. (Color online) Schematic illustration of the process for fabricating
two-dimensional wavy Si nanomembranes on a PDMS substrate: (a) Si
membrane is bonded on the stretched PDMS; (b) formation of 2D wavy
patterns when PDMS is relaxed; (c) Herringbone mode; and (d) top-down
view of the herringbone mode. The parameters are illustrated in (c) and (d),
including the short wavelength \, long wavelength \,, and jogs wavelength
N\, the amplitude B of the jogs in the plane of the film, and the jog angle 6.

of herringbone waves for the case of a silicon film of 100 nm
thickness (the lateral dimension is 4 X4 mm?) on a PDMS
substrate. The PDMS substrate was first heated in a convec-
tion oven to 150 °C. Contacting the heated PDMS to the
processed SOI wafer and then peeling it off again transferred
the entire nanomembrane to the PDMS. Continued heating in
the convection oven for a few minutes facilitated the forma-
tion of strong adhesive bonds between the membrane and the
PDMS. The nanomembrane/PDMS structure was cooled to
room temperature (25 °C) to release the thermally induced
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FIG. 3. (Color online) (a) Optical, (b) atomic force, and (c) scanning elec-
tron micrographs of a 2D wavy Si nanomembrane on PDMS. The thickness
of the silicon is 100 nm. These images highlight the highly periodic nature
of the wavy patterns. The parameters involved are the short wavelength A,
long wavelength \,, and jogs wavelength \,, the amplitude B of the jogs in
the plane of the film, and the jog angle 6.

strain. The images in Fig. 3 clearly show that the herringbone
patterns are characterized by zigzag structures that define
two characteristic directions, even though the compressive
strain is completely isotropic. The herringbone region is
characterized by the perpendicular distance between adjacent
sinusoidal contours, which we refer as the short wavelength
\, the amplitude of wave out of the plane of the film A, and
a longer distance N\,=2/k, associated with the separation
between adjacent jogs in the herringbone structure, which we
refer to as the long wavelength. Other characteristic lengths
are the jogs wavelength A\;=27/k,, the amplitude B of the
jogs in the plane of the film, and the jog angle 6. Except for
the amplitude A, all parameters are illustrated in Figs.
3(a)-3(c), as well as in Figs. 1(c) and 1(d) where \, and \,;

FIG. 2. Schematic illustrations of different buckling
modes: (a) 1D mode, (b) checkerboard mode from Eq.
(11), and (c) herringbone mode from Eq. (25) with A
=1.0 um, k;=0.309 um™', B=10 um, and k,
=0.139 pm.
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FIG. 4. (Color online) (a) Optical micrographs of a 2D wavy Si nanomem-
brane on PDMS and its different locations [(b)—(d)]. The thickness of the
silicon is 100 nm. These images highlight the large variation of long wave-
length in the same sample.

are along the x, and x; directions, respectively. Further illus-
trations will be provided after Eq. (25). The short wavelength
is 12.6 (£0.37) wm and the amplitude is 0.64 (x0.07) wum for
Figs. 3(a)-3(c). The jog angle 6 is about 90° over a large
area. By contrast, the long wavelength associated with the
herringbone layout exhibits a broad range of values from
40 to 120 um. Figure 4 shows the herringbone pattern at
various locations in a sample. A large variation of the long
wavelength is clearly observed.

There are extensive numerical but not analytical studies
on the buckling of two-dimensional stiff thin films on com-
pliant substrates. Chen and Hutchinson”'® used the finite el-
ement method to study the dependence of energy in the
buckled state on the parameters of the geometry of herring-
bone mode. They obtained the herringbone structures and
showed that the energy is insensitive to the long wavelength
and the jog angle is about 90°. Huang et al'""? developed a
spectral method to study the 2D buckling problem, and iden-
tified different buckling modes such as the checkerboard in
Fig. 2(b) and the herringbone mode in Fig. 2(c). These two
modes occur when the prestrain just exceeds the critical
buckling strain and when the prestrain becomes large, re-
spectively. Disordered herringbone mode occurs as the pre-
strain continues to increase. Huang and Suo' used the finite
difference method to reveal rich dynamics of elastic film/
viscous layer with many unstable equilibrium configurations
for 1D wrinkling. Peterson et al"* compared 1D and 2D
buckling modes in thin silicon-germanium films on boro-
phosphorosilicate glass substrate experimentally and found
that 1D buckling mode exhibits slower buckling and lower
final steady state buckling amplitude. Huang and Im" used
the spectral method to study the two-dimensional wrinkling
of a stiff thin film on a viscoelastic substrate. The herring-
bone structures represent a minimum elastic energy configu-
ration that reduces the overall in-plane stress in the system
and relieves biaxial compression in both directions, and are
therefore preferred over large areas, compared to the 1D
[Fig. 2(a)] and checkerboard modes [Fig. 2(b)].
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The objective of this paper is to perform an analytical
study of these different buckling modes including 1D, check-
erboard, and herringbone. The analytical study gives the
wavelength and amplitude directly in terms of the film and
substrate elastic properties, the thin film thickness, and the
prestrain. They have the advantage over the numerical meth-
ods to isolate each buckling mode and calculate its energy.
The energies for different buckling modes are compared,
which explains why the herringbone mode is often observed
in experiments. The paper is outlined as follows. The method
of energy minimization for buckling analysis is described in
Sec. II. The analytical solution for the checkerboard mode is
obtained in Sec. III. The herringbone and 1D modes are stud-
ied in Secs. IV and V, respectively. The results are presented
in Sec. VL.

Il. BUCKLING ANALYSIS
A. The thin film

The thin film is subjected to compressive uniform biaxial
membrane strains, 8(1)1 and 8(2)2, and buckles once 8(1)1 and 8(2)2
exceed a critical value. The thin film is modeled as an elastic
Von Karman plate with finite rotation.'® The membrane
strain &, is related to the in-plane displacements u; (x,x,)
and u, (x,x,) and out-of-plane displacement w(x;,x,) by

1(du, ou 1 ow ow
sa[,:egﬁ+—(—“+—§> +-—, (1)
2\dxg  dx,/) 2dx,0xg

where «,B=1,2.
The Hooke law gives the membrane forces in the thin
film,

Na,B= thf[(l - Vf)sa,B+ Vf(811 + 822)5aﬁ]7 (2)

where «,B=1,2, hf is the film thickness, and Ef=Ef/(1
- VJ%) and vy are the plane-strain modulus and Poisson’s ratio,
respectively. The force equilibrium gives the shear and nor-
mal tractions at the film/substrate interface as

N, oN,
Pk et (3)
o"xl (9X2
where =1,2 and
3=
3= R A S R
12\ ox) OX10x5  0x,
J aw ow J aw aw
+ — N11_+N21_ + — N12_+N22_ .
ox 1 ox 1 (?Xz (9X2 ox 1 (7X2
4)

The strain energy density in the thin film consists of the
bending energy density W, and membrane energy density
W,, given by
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ER| [ Pw)\? Pw\? Pw Pw
W, = |\ o2 +| —> +2Vf(91§2+2(1—11f)

c?x% 8x§
Fw |2
X(&xlaxz) ] (5)
and
W, =5(N1j& 1 + Nigg 1o + Noyeay + Noyey). (6)

B. The substrate

The substrate is modeled as a semi-infinite three-
dimensional elastic solid."” The displacements u; (x;,x5,x3)
(i=1,2,3) in the substrate satisfy the displacement continu-
ity with u, and w in the thin film across the film/substrate
interface. The strains g;; in the substrate are given by

1(du; Ju;
Sij:_(_'*‘—L)» (7)
2 (9)(, &xi

where the substrates i,j=1,2,3. The Hooke law gives the
stress as
ES VSES
E;j +
T A+ v)(1-2v)

o= e +en+en)d;, (8
IT 14, (en1+en+en)dy;, (B)

where the substrates 7,j=1,2,3. The equilibrium equation is

Jdo i Jdo, i Jo, i

ik e P e E B 9)
z?xl t?.XZ (9)('3

where i=1,2,3. The tractions at the film/substrate interface

satisfy the continuity with T, in Eq. (3) and T in Eq. (4).
The strain energy density in the substrate is given by

1
Wy=35(011811 + 012810+ 013813+ 021821 + 0208

+ 093803 + 031831 + Opex + 033833). (10)

C. The total energy

The total energy U, consists of three parts: the bend-
ing energy U, and membrane energy U,, in the thin film, and
the strain energy U, in the substrate, which can be obtained
from the integration of the corresponding energy densities
W,, W,,, and W, in Egs. (5), (6), and (10), respectively. The
minimization of the total energy with respect to the wave-
length and amplitude then gives different buckling modes,
such as the checkerboard in Sec. III, herringbone in Sec. 1V,
and 1D in Sec. V.

lll. CHECKERBOARD BUCKLING MODE

The out-of-plane displacement of generalized checker-
board mode, as shown in Fig. 2(b), is given by

w=A cos(k;x;)cos(kyx,), (11)

where the amplitude A and the wave numbers k; and k, along
the x; and x, directions are to be determined. The checker-
board mode is the mode for k;=k,. The bending energy U, in
the thin film is obtained by integrating the bending energy
density W, in Eq. (5) as
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2k,

b= 277277

2k, En
f Wdx dx, = —9L6f(k% +E0)2A2.

x1=0 »=0
(12)

The shear stress at the film/substrate interface has a neg-
ligible effect on the wavelength and amplitude of the buckled
film/substrate system.]2 The vanishing shear, together with
Eq. (3), gives the governing equations for the in-plane dis-
placement u,, which have the solutions

A2k cos?(kyxy) — vk ]
uy(x1,x,) = : 16k, 2 in(2k;x,),
A[2/3 cos*(kyx,) — vik]
Ur(x1,Xp) = Al (kyx) s L sin(2kyx,). (13)

16k,

0 _ _ .pre 0 __ .pre pre pre
Let &), =—¢€[" and &,,=—¢},, where &} and &}, are the

(positive) prestrains. The membrane energy U,, in the thin
film is obtained by integrating the membrane energy density
W,, in Eq. (6) as

2mlky  (2mlky
U,=—" W, dx,dx
27T ZW,LI JZ_O " ! 2

= —f—f[A‘*(3 — (k] +K3) + dv AR

256
= 32A%(k7 + vyk3) el — 32A4%(k3 + vyky) eby
+128(e87)% + 128(£55)% + 256 e eb5 ). (14)

The substrate is subjected to the normal displacement
w=A cos(k;x;)cos(k,x,) in Eq. (11) and vanishing shear trac-
tion on its top surface (x3=0), and vanishing shear and nor-
mal traction on its bottom surface (x;— ). The displace-
ments in the substrate are obtained analytically,

vy — 1+ Vi + kjxy)k Ae™™3
2(1 = v + I

M](xl,.Xz,X3) =

Xsin(kx;)cos(kyxs),

(v, — 1+ VK2 + Kxy)krAe ™3
2(1 - v+ K

Mz(.x17-x2’x3) =
Xcos(k;x;)sin(k,x,y),
(2 = 2v, + kT + k3x3)Ae ™5

2(1-v,)
X cos(kyx;)cos(kyx,), (15)

u3(x1,x2,x3) =

where v, is the Poisson ratio of the substrate. The strain
energy U, in the substrate is obtained by integrating the
strain energy density W, in Eq. (10) as
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ki k 2mlky  (2mlky (oo
W dv=——= W dx, dxdx
stAUARUAT
27T27T xy=0 x3=0

:—6\/k2+kA2 (16)

where E| is the plane-strain modulus of the substrate.

The minimization of the total energy U, Which is the
sum of film bending energy U, in Eq. (12), the membrane
energy U,, in Eq. (14), and the substrate strain energy U, in
Eq. (16), with respect to the amplitude A and wave numbers
k, and k, gives

U, )
(9—2”31:214{_6\!](24'/(2 _L(k2+k2)2

—f—f[A2(3 - V) (K} + K3) + 4w, A%k 03 — 16(k7

128
+ i)l
— 16(k; + v/k7) by } 0, (17)
aU{otal 2 Es 1 E 2
ol _ o A —_— Efhy K2+ k
k, TR 48 (ki +3)
Tf;—SZ[Azo — vk} + 20,A%3 — 16677
—16vh)] (=0, (18)
W oral JE 1 Ef i .
— %% _2kA ki+k
aky | m2es " (ki +k)
—é—gf[Az(B; — VIS + 20 A% — 16wl
~16e85] [ =0. (19)

Equations (17)—(19) have the following analytical solutions:

—\23
1| 3E;
B+i= ” , (20)
E;
/3
LT (3E ) 3- vy
1~ K=
iy 3+
pre _ _pre
« €11 — €& ’ 21)
el +eby — [(3E‘Y/Ef)2/3/2(1 + vf)]
= \ 173 = 523
_an | Er Ul e, e GEJED™
A—4hf -~ el +en —
3Es 3- Vg 2(1 + Vf)
(22)
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For the equibiaxial prestrains ef}'=g5y=€,., Eq. (21)
gives k;=k,, i.e., the checkerboard mode. The wave number
and amplitude are obtained from Egs. (20) and (22) as

1 1 3E 173
2y E;
8 &
Azh.\/ ( e -1), (24)
f 3- Vf)(l + Vf) szheckerboard

where £5.xerboara=3Es/Ep)*?/4(1+v)) is the critical strain
for the checkerboard buckling mode.”"!

IV. HERRINGBONE BUCKLING MODE

The out-of-plane displacement w of the herringbone
mode, as shown in Fig. 2(c), is periodic in both long wave-
length direction x, and its perpendicular direction x; [also
see Figs. 1(c) and 1(d)]. The contour line of constant w is
sinusoidal in the x;—x, plane [Figs. 1(c) and 1(d)], and there-
fore can be represented by x; + B cos(k,x,) =const, where B is
the amplitude of the sinusoidal line, and k,=27/\, is the
corresponding wave number. The displacement of the her-
ringbone mode is also sinusoidal in the x; direction (\ direc-
tion in Fig. 1), and therefore can be represented by8

w =A cos{k,[x, + B cos(kyx,) 1}, (25)

where A is the amplitude and k;=27/\; is the wave number,
as shown in Figs. 1(c) and 1(d). Such a function is periodic
in both x; and x, directions, and have the contour line x;
+ B cos(k,x,)=const. The bending energy U, in the thin film
is obtained by integrating the bending energy density W, in

Eq. (5) as
2mlky  (27lky
f Wbdxlde

x1=0 2=0

Ub___2
272

En}
= ﬁszz(Skzszz +4Kk3B% + 35K BY + 8k7).  (26)

Similar to Sec. III, the vanishing shear at the film/
substrate interface, together with Eq. (3), gives the governing
equations for the in-plane displacements u; and u,,

) Gin(2koxy)

1 1 a
up+ 5(1 = VU 5+ 5(1 +V)uy 1o+

1(2 *) cos(2kx;) — (1 - v)A*KIBIG
Xcos(kyx,) =0, (27a)

1 1 )
Uz 2 + 5(1 + Vf)ul,IZ + 5(1 Vf)M2 11 + Sln(zklxl)

b 1
% cos(2k,x;) + ZAZk%BZkg sin(2kyx,) =0,

(27b)

where a;(x,), bi(x,), a,(x,), and b,(x,) are the following
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periodic functions of x,, which can be expanded in Fourier
series as

a,(x,) = A%k} cos[ 2k, B cos(kyx,) |[1 + B3 sin?(kyx,)]

1
- E(l - Vf)Azk%Bk% cos(kyx,)

o

X sin[2k,B cos(krxy)] = 2, ay, cos(nkyx,),
n=0

(28a)

by(xy) = A%k sin[2k, B cos(kyx,)[1 + B3 sin®(kyx,)]

1
+ 5(1 - vf)Azk%Bké cos(kyx,)cos[2k,B

oo

Xcos(kyxy)] = 2 by, cos(nkyx,),
n=0

(28Db)

a5(x) = — A%k Bk, sin(kax,)cos[ 2k, B cos(kyx,)]

1
X[1 + szg sin®(kyx,) ] + EAzkazk; sin(2k,x,)

)

Xsin[2k,B cos(krxy)] = >, ay, sin(nksx,),

n=1

(28¢)

bz(}Cz) = —Azk?Bkz Sin(kz.xz)sin[zk]B COS(kzXz)]

1
X[1 + B%3 sin®(kyxy)] — EAzk%BZkg sin(2k»x,)

o

X cos[2k,B cos(kyxy)] = > by, sin(nksx,).

n=1

(28d)

Here a,,, by,, a,, and b,, are the Fourier coefficients of
ay(xy), by(xy), ax(x,), and by(x,), respectively. Equation (27)
has the following analytical solutions:

©

uy(x1,%) = 2 1, cos(nkyx,)sin(2k,xy)
n=0

)

+ E g1, cos(nkyxy)cos(2k x;)
n=0

1
- EAzk%B cos(kyx,),

J. Appl. Phys. 103, 014303 (2008)

oo

Uy(x1,%2) = 2 fa sin(nkyx,)sin(2k,x,)

n=1

o]

+ > go, sin(nkyx,)cos(2k,x,)

n=1

1
+ Esz%%BZ sin(2k,x,), (29)

where fln’ 81n f2n’ and 8op are

- (1 + Vf)nklkzbzn + 2(1 - Vf)k%al,, + nzkgaln
(1 - v) 4k} + n?k3)*

In= s

(1 + Vf)nk kzazn + 2(1 - Vf)kzbln +n k2bln

8= (1= v) (4K + nk2)? :
_ 8kjay, + 2(1 + v)nkiksby, + (1 = v)n’kias,
" 21— v)(4k3 + n?k3)? ’
2y, = Sk%bzn - 2(1 + Vf)nklkzaln + (1 - Vf)n2k%b2n (30)
n 2(1 = v (4K3 + n*k3)? ‘
Let ), =—¢P and &), =—&b¥, where &}’ and b are the

(positive) prestrains. The membrane energy U,, in the thin
film is obtained by integrating the membrane energy density
W,, in Eq. (6) as

2m/ky 27/ky
w dxldxz
Un= 277277,[ f -0 "
1= Xp=

= Eh U (kA kyB kB, €V, €85), (31)

where U° is a nondimensional function that can be obtained
analytically.

The substrate is subjected to, on its top surface (x;=0),
the vanishing shear traction and the normal displacement w
in Eq. (25), which can be expanded in Fourier series as

o0

w= 2 [A,, cos(kx;)cos(nk,x,)

n=0
+ Bln Sin(kIX])COS(nkz)CZ)], (32)
where A,, and B,, are the Fourier coefficients of

A cos[k;B cos(k,x,)] and —A sin[k,B cos(k,x,)], respectively.
The term A, cos(k,x;) + B sin(k,x;) for n=0 corresponds to
the 1D buckling mode, while the terms for n=1 correspond
to the generalized checkerboard mode in the previous sec-
tion. Using the linear superposition, we obtain the displace-
ments in the substrate from the generalized checkerboard so-
lution in Eq. (15) as

( )= E QQv,—1+ wkz + n2k§x3)k1
uy(x1,%9,X
1(X1,%0, %3 = 2(1—V)\rk2+n2k§

X[A, sin(kyx;) — By, cos(kyx;)]

I nix
Xcos(nkyx,)e™ Vit s,
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( ) i vy — 1+ Vi2 + n*kxs)nk,
Uy (x1,X5,X3) =
R n=0 2(1 - VA.)\/k% + nzk%

X[A, cos(kx;) + By, sin(kx;)]
. [12, 2,2
X sin(nk,x,)e” kit ks,

o

s
2-2v,+ \"k% + n2k%x3

u3(x1,20,x3) = [A}, cos(kx;)
TS 20— I COSAY
+ Bln Sin(k]xl)]COS(nk2X2)e_ v’k%*—”zk%x:;.

(33)

The strain energy U in the substrate is obtained by integrat-
ing the strain energy density W, in Eq. (10) as

- o

E<w 3 E,
U= Téz kG +n?k3 (AT, + BY,) + g‘kl(AfO +Bi,)
n=1

= E,A2U°(k,B), (34)

where U? is a nondimensional function of k;B that can be
obtained analytically.

The total energy is the sum of the film bending energy
U, in Eq. (26), the membrane energy U,, in Eq. (31), and the
substrate strain energy U, in Eq. (34). The minimization of
U,orar With respect to A, B, k;, and k, gives their governing
equations, which are solved by the quasi-Newton and finite
difference gradient method given in the IMSL program.18
For each given k,, there are multiple local minima for the
large range of initial values of A (from 0 to 10 um), B (from
0 to 100 um), and k; (from 0 to 10 wm™"). The global mini-
mum (with respect to A, B, and k) is obtained by comparing
all local minima in the range.

V. ONE-DIMENSIONAL BUCKLING MODE

The 1D buckling mode w=A cos(k;x;) shown in Fig.
2(a) is the special case of the herringbone buckling mode in
Eq. (25) with B=0. For the 1D mode the film bending en-
ergy, the membrane energy, and the substrate strain energy
are obtained analytically as

Eh’

U, = —Lf48 kA2, (35)
E 1 e

U, = 0 {(41(%/42— b )

1
+(e55)% - 2Vf<zk§A2 - slfrf>s§;e} , (36)
E.
= ?klA? (37)

The minimization of total energy U, with respect to A and
k, gives their analytical solutions,

1 SE 1/3
kl = _< _ S) s (38)
he\ E,
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A=h~\/M—l. (39)
(1/4)(3E/E)*?

The wave number k; (and therefore the wavelength \;
=21/k,) does not depend on the prestrain, but the amplitude
A does. For plane-strain buckling €55 =0, the wavelength and
amplitude are the same as those given by prior 1D buckling
models.”*'*'* For equibiaxial prestrains efl=8eby =€, the

amplitude becomes

A=hpy 2o, (40)
€1p

where 8§D=(3Es/Ef)2/3/4(1+ vy) is the critical strain for the
1D buckling mode, and is the same as that for the checker-
board buckling mode given near the end of Sec. III.

It is important to point out that the 1D mode cannot be
obtained from the generalized checkerboard mode in Sec. III.
Even though the displacement in Eq. (11) degenerates to the
1D buckling mode when k,=0, the bending energy in Eq.
(12) does not, and is different from its counterpart for 1D
buckling mode by a factor of 2. This is because the bending
energy in  Eq. (12) involves the  average
ky 12k, 1 275 571 [57%2 cos?(kyxy)cos®(kyx,)dx dx,,  which
equals 1/4 for k,#0 (generalized checkerboard mode) but
equals 1/2 for k,=0 (1D mode).

VI. RESULTS AND DISCUSSION

The three different buckling modes (1D, checkerboard,
and herringbone) are studied for the Si film/PDMS substrate.
The mechanical properties of Si (Ref. 19) and PDMS (Ref.
20) are E;=130 GPa, E;=1.8 MPa, v;=0.27, and v,=0.48.
The critical buckling strain is 0.0267% for the 1D and check-
erboard modes, and the numerical results give the same
(0.0267%) for the herringbone mode. The prestrain is intro-
duced by thermal expansion, which gives equibiaxial com-
pression (e}'=e5y =€) in Si. The 1D and checkerboard
modes have analytical solutions, but only numerical results
are obtained for herringbone mode.

For the 100 nm thick Si thin film, the wavelengths \;
=2m/k; are 24.11 um from Eq. (23) for the checkerboard
mode, and 17.05 um from Eq. (38) for the 1D mode. The
total energy for the herringbone mode has minimum with
respect to the amplitude of the herringbone A, wave number
k,, and amplitude of jogs B for each given long wavelength
N,=2m/k,, but it has no minimum with respect to \,. Figure
5 shows the ratio of total energy U, in the buckled state to

that in the unbuckled state U0=thf(1+vf)s§re versus the
long wavelength N\, for herringbone mode under 2.4% pre-
strain. The curve clearly does not have a minimum, and be-
comes essentially a constant for \, exceeding 110 wm. This
lack of energy minimum with respect to the long wavelength
has also been observed in the finite element analysis.10 It is
also consistent with the experimental results® shown in Fig.
4, which gives a wide range of long wavelengths in a domain
subjected to the same prestrain.

Figure 6(a) shows the amplitude of jogs B versus the
long wavelength N, for three different prestrains, 0.5%,
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FIG. 5. Ratio of total energy in the buckled state to its counterpart in the
unbuckled state U,y /U, vs the long wavelength N, for herringbone mode
under 2.4% prestrain. The film thickness is 100 nm.

1.5%, and 2.4%. B is not only linearly proportional to \,, it
is also independent of the prestrain since all three straight
lines coincide. This suggests that the contour line of the her-
ringbone, x;+B cos(27x,/\,)=const, remains self-similar
for different \, and prestrain. Figure 6(b) shows the jog
angle 6=m—2 tan~!(k,Bm/4) versus the long wavelength \,,
where 6 is obtained by using B cos(k,x,) as the first term of
the Fourier series of the zigzag function. Except for \, less
than 20 um, the jog angle is essentially a constant close to
90°, and is independent of the prestrain. This once again
confirms the self-similarity of the herringbone contour. Fig-
ures 6(c) and 6(d) show the short wavelength A and ampli-
tude of herringbone A versus the long wavelength \,, respec-
tively, where N=21r/[k\/1+(k,B7/4)?] is also obtained by
using B cos(k,x,) as the first term of the Fourier series of the
zigzag function. For large \,, both \ and A have asymptotes.
The asymptote for A\ is independent of the prestrain, but that

J. Appl. Phys. 103, 014303 (2008)

for A depends on the prestrain. These prestrain-independent
wavelength and prestrain-dependent amplitude are consistent
with the prior model for 1D buckling at small prestrain.s’lz’18
The above observations in Fig. 6 also agree with the prior
finite element analysis.g’lo

The short wavelength N measured in experiments8 is
about 13.0 um at the prestrain 2.4%, which is much smaller
than that of 1D buckling mode. For this N and &,,.=2.4%, the
long wavelength \,=21r/k, obtained from Fig. 6(c) is about
40 pum, and the corresponding amplitude of jog B obtained
from Fig. 6(a) is about 9 um. These values all fall into the
range reported in the experiments.8

As seen from Fig. 5, the energy of herringbone mode
becomes unchanged with the long wavelength A, for A,
larger than 110 wm. Figure 7(a) shows the ratio of the total
energy U, (for N, larger than 110 um) to U, versus the
prestrain for three different buckling modes: 1D, checker-
board, and herringbone. The herringbone mode gives the
lowest energy, and is therefore energetically favorable mode
in 2D buckling. Figures 7(b)-7(d) provide an explanation by
giving the ratios of substrate strain energy U, thin film bend-
ing energy U,, and membrane energy U,, to U,. The film
membrane energy of the herringbone mode is much lower
than other two modes [see Fig. 7(d)] although its substrate
strain energy and film bending energy are slightly higher
than their counterparts [Figs. 7(b) and 7(c)]. The herringbone
mode significantly reduces the thin film membrane energy at
the expense of slight increase of the thin film bending energy
and substrate strain energy. This conclusion holds for the
buckling of stiff thin film/compliant substrate system at all
strain levels.

The above observation of herringbone being the ener-
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getically favorable buckling mode, however, holds for the
equibiaxial prestrain. For other strains, herringbone may not
always be the favorable mode. For example, the 1D mode
predominates at the free edges, while 2D herringbone mode
is typically observed in the inner region.8 This is because the
stress (or strain) state changes from the equibiaxial in the
inner region to 1D near the free edge.

Strictly speaking Si is not elastically isotropic but has
cubic symmetry. The material properties of anisotropy Si are
C1=165.7 GPa, C,=63.9 GPa, and C,=79.6 GPa. We
have calculated the amplitude A and short wavelength \; for
the Si thin film with cubic symmetry. They are all within 5%
of their elastically isotropic counterparts, under 2.4% pre-
strain, i.e., the cubic symmetry has little effect on the ampli-
tude and short wavelength.

VIl. CONCLUDING REMARKS

We have established an analytic approach to study the
1D, checkerboard, and herringbone buckling patterns in a
stiff thin film on a compliant substrate system. The herring-
bone mode energy gives the lowest energy for the film/
substrate system subjected to equibiaxial prestrain, which ex-
plains why herringbone mode is frequently observed in
experiments with thermally induced prestrain. As compared
to the 1D or checkerboard modes, the herringbone mode sig-
nificantly reduces the thin film membrane energy at the ex-
pense of slight increase of the thin film bending energy and
substrate strain energy. The 1D mode, however, may appear
near the thin film free edge.
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