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Abstract

Sections

Historic and ongoing efforts in ecology and environmental science
have highlighted the pressing need to monitor the health, sustainability
and productivity of global and local ecosystems. Interest in these areas
reflects aneed both to determine the suitability of environments to
support human activity (settlement, agriculture and industry) and

to evaluate the impacts of such anthropogenic action. Of interest

are chemical, biological and physical factors that reduce ecosystem
viability owing to human intervention. Evaluating these factors

and their impact on global health, ecological stability and resource
availability demands improvements to existing environmental sensing
technologies. Current methods to quantify chemical pollutants,
biological factors and deleterious physical conditions affecting target
ecosystems suffer from lack of automation and narrow spatiotemporal
range. Recent advances in materials science, chemistry, electronics

and robotics offer solutions to this problem. A vision emerges for fully
autonomous, networked and ecoresorbable sensing systems that can
be deployed over large aerial, terrestrial and aquatic environments. This
Review describes ongoing efforts in these areas, focusing on materials
advances supporting the accurate quantification of environmental
factors with apparatus that accommodates full or partial device
resorption. Discussion begins with an overview of hazards affecting
global ecosystems, followed by a description of existing detection
methods to quantify their severity. We proceed with an exploration

of existing and developing technologies affecting sensor dispersion,
motility, communication and power. Finally, we describe exciting recent
effortsin the development of environmentally degradable materials
that could prove beneficial in the realization of massively distributed
(millions of individual sensors) transient sensor networks.
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Introduction

Therapidincrease in global human population and the ever-evolving
landscape of modernindustrialization place amounting burden onthe
availability of natural resources, as well as on the health and stability of
the ecosystems that support them'?. As worldwide demand for critical
agricultural, mineral and petroleum feedstocks continues to rise?, so
does theimpact of anthropogenic agents**. In 2019, atmospheric pol-
lution alone was estimated to be responsible for -9 million premature
deaths®. Tocompound the problems imposed by known environmental
hazards, ongoing efforts in ecology, analytical chemistry and conser-
vation continue to identify new environmental agents with pernicious
impacts on human health. This predicament positions the identifica-
tion, elimination and remediation of environmental hazards as among
the most essential endeavours for modern science.

Asthe starting point for targeted action, the quantitative evalua-
tion of chemical, physical and biological factors impacting ecosystem
viability is essential in characterizing both healthy and impacted envi-
ronments. Generally, such evaluationisaccomplished withthe discrete
collection of environmental samples, followed by standard laboratory
analysis™®. Unfortunately, despite the sophistication and maturity
of laboratory-based methods, the spatial heterogeneity and tempo-
ral evolution of target ecosystems make high-resolution, large-scale
sample collection and analysis non-trivial’.

Spatial variability in environmental samples manifests across
numerous length scales (millimetres to kilometres) and may be the
result of random variance, samplingbias, true environmental patterns or
acombinationofallthree.Inadditionto this spatial uncertainty, environ-
mental samples also change with time (over the span of minutes toyears),
making the temporal characteristics of ssmpled environments equiva-
lently important. These spatiotemporal variances represent serious
concerns for the statistical validity of environmental characterization.
Recommendations from the United States Environmental Protection
Agency supportthe use of probabilistic sampling (characterized by large
numbers of discrete sample collections over abroad area) to guarantee
statistical inference®. Unfortunately, limitations in manpower, sample
throughput, method availability and sampling time often preclude this
approach, necessitating judgement-based sampling as a substitute.

These burdensome aspects of sample collection and analysis, as
well as the accompanying lack of automation, present considerable
barriersto detailed and statistically significant site analysis, especially
over large areas (>1 km?). To address these limitations, investigators
in the fields of ecology, agriculture and environmental science are
developinglarge, distributed networks of sensors for spatiotemporally
resolved analysis of environmental samples’. Although sensor net-
works of this type have already proven useful in monitoring chemical
pollutants'®", weather patterns'?and agricultural site quality (suchas
mineral bioavailability, biological oxygen demand or soil humidity)™",
they generally require direct operator intervention for sensor instal-
lation, maintenance and removal. Similarly, detailed environmen-
tal profiling over a large area (-1 km?) with high spatial resolution
(-1 m?) demands input from potentially millions of individual sensors
whose deployment, communication, recovery and disposal present
technological hurdles that have yet to be overcome.

Developments in materials science, chemistry, electronics
design, microfabrication and data analysis have facilitated sensor

miniaturization, automated deployment, wireless data transmission
and cloud analysis, which could address some of these limitations.
Additionally, physically transient biodegradable electronics could
support temporary sensors capable of timed operation followed by
complete hydrolytic disintegration without harmful effects on target
ecosystems”. By integrating newly developed data acquisition and
transmission protocols, these transient environmental sensors may
prove useful in profiling environmental factors over large terrestrial
and aquaticenvironments or in hazardous areas where post facto sen-
sorretrievalisinfeasible. Similarly, although other non-invasive sensing
modalities, such as satellite-based methods, have been successfully
used to profile environmental factors, they cannot provide the direct
chemicalinformation accessible to on-the-ground sensing elements.

In this Review, we aim to provide a concise picture of recent
(emphasizing the past 5 years) results in the design, assembly, distri-
bution and utilization of miniaturized, and potentially degradable,
environmental sensors with a focus on materials that support the
accurate spatiotemporal profiling of chemical, physical and biologi-
cal hazards. We begin with a short overview of hazards relevant to
modernenvironmental science, followed by an exploration of the most
common analytical methods used for their quantification. Then, we
discuss device platforms capable of sensor dispersal, communication,
power and motility, along with ongoing efforts to realize complete or
partial sensor transience. Throughout this discussion, we highlight
practical considerations on the real-world assembly, performance,
sustainability and systemintegration of these technologies and high-
light the promise and limitations currently influencing the realiza-
tion of massively distributed sensing networks. Similarly, we focus on
emerging challenges presented by aquatic and soil environments. The
short-term and medium-term monitoring of water and soil are critical
for profiling acute instances of accidental hazard release', evaluation
of agricultural and industrial sites for suitability or compliance" and
ecological study of the environmental microbiome’®. These use-cases
present a strong case for temporary monitoring, followed by sensor
collection or dissolution.

Threats to soil and water

The hazardous nature of environmental threats such as heavy metals',
pesticides®, radiation” and increasing temperatures® has long been
recognized, but new contaminants such as microplastics pose a
similarly critical risk to environmental and ecological health. These
threats presentimportantrisks to both ecological systems and human
health. Here, we focus on environmental threats present in soil and
water sources.

Chemicalfactors
Pollutants cover a broad range of chemistries including meso-scale
particulate matter, multifarious organic species, small molecules and
metal ions® (Fig. 1a). Despite the broad range of known chemical pol-
lutants, ongoing work in ecology continues to identify unforeseen
chemistries negatively impacting environmental health.
Aparticularlyimportantrecent developmentinthe understanding
of chemical pollutionis theidentification of persistent organic pollut-
ants (POPs) as nearly ubiquitous constituents of air, water and soil**.
These pollutants, exemplified by per-fluoroalkyl and poly-fluoroalkyl

Fig.1|Sources, types and health impacts of environmental pollutants. a, Overview of common classes of environmental pollutants and their sources. b, Target
body systems impacted by environmental pollution. PCB, polychlorinated biphenyl; PFOS, perfluorooctane sulfonate; PM, particulate matter.
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substances (PFAS), are industrially produced compounds with long
lifetimes in environmental media. The high chemical stability of
C-Fbonds precludes the natural decomposition of these compounds,
thereby promoting their distribution and bioaccumulation®. The
accumulation of PFAS in human tissues has been linked to numerous
pathologies including immune deficiencies, thyroid dysfunction,
insulin dysregulation and cancers® (Fig. 1b).

Another important development is the quantification of micro-
plastics in water, soil and living organisms**%, Microplastics are recog-
nized as among the most pervasive known environmental pollutants,
exhibiting measurable concentrations in every ecosystem on the
planet®. Similarly, microplastics have been measured in the lungs,
circulatory systems and gastrointestinal tracts of human and animal
hosts*” and have demonstrated deleterious impacts on the viability of
soil ecosystems®. The profound spread of microplastics is thought to
contribute to consistent increases in cancer, immune disruption and
neurological issues affecting the developed world®.

In addition to PFAS and microplastics, surfactants® and flame-
retardant compounds®, used extensively in industry, have been
widely detected in the environment and exhibit high biological activity.
These contaminants, together with heavy metals, pesticides, phenols
and volatile organic compounds, are now recognized as important
environmental pollutants, making their detection and remediation
outstanding problems.

Biological and biochemical factors

In addition to synthetic chemical pollutants, bioactive compounds
derived from both artificial and natural sources are of equivalent
interests owingto their large ecologicalimpact even at low concentra-
tions. Pesticides®, pharmaceuticals®® and hormones®” have come under
scrutiny owing to their over-utilization in agriculture and medicine.
Elevated levels of hormones and antibiotics have been measured in
soil and water samples obtained at agricultural sites and in numer-
ous aquatic environments®**’, The capacity of these compounds to
alter local microbiomes represents an important risk to agricultural
productivity and ecosystem viability.

Changesto topsoil microbiotahave been observedinagricultural
sitesworldwide, causing areduction in bioavailability and agricultural
efficacy®. Inaddition to theirimpact on crop production, the evolution
of antibiotic-resistant pathogens within affected soil remains a dire
concern, with recent reports suggesting that many antibiotic-resistant
infections originate from soil microbiota*’. These resistantinfections
preclude treatment by conventional antibiotics and represent a major
contributor of human mortality worldwide*?, making their detection
and elimination a persistent goal for modern medicine and ecology.
Together, these persistent environmental concerns make the detec-
tion and quantification of the water and soil microbiome an equally
important endeavour to chemical monitoring.

Physical factors

In addition to chemical and biological profiling, the quantification
of physical environmental characteristics such as temperature and
humidity is also imperative for evaluating changes in microclimates
and macroclimates*®. Global temperature characterizationis typically
accomplished using satellite-based instrumentation in conjunction with
ground recording equipment. However, mapping local temperature
changes in soil or water requires a more granular approach. Tempera-
tureincreases associated with deforestation or soil decline contribute
to substantial reductions in crop yield and biodiversity**. Therefore,

distributed temperature measurement networks can be useful to
identify deficiencies in hydration, vegetation cover and soil quality®.

Humidity is also valuable as anindicator of environmental distress,
finding use asa predictor for agricultural viability, ecosystem habitabil-
ity and local weather patterns*. Further quantification of agricultural
health canlikewise be obtained from direct physical characterization
of soilsamples”. Quantification of soil hydration*®, microbial activity*’,
compaction®® and erosion® have proven invaluable in evaluating the
health, stability and agricultural efficacy of target topsoil.

Ecosystem stability, sustainability and productivity

Although the preceding sections have focused on hazardous conditions
impacting ecosystems owing to anthropogenic action, there remains
a concerted and equivalent interest in characterizing fundamental
parameters related to the native health and sustainability of ecosystems
evenintheabsence of anytruethreat. Considerableinterestliesinthe
characterization of soil and water health in the context of agricultural
productivity and viability®’. Similarly, the evaluation of ecosystem
vulnerability to humanintervention remains an outstanding necessity
considering ongoing global industrialization. In these regards, sens-
ing systems that quantify chemical, physical and biological factors
reflecting baseline ecosystem health, productivity and sustainability
aresorely needed.

Factors of interest include crop yield, crop diversity, microbial
diversity and activity, as well as chemical factors including humidity*?,
soil 0, and pH*, and the concentration of other soil macronutrients
(nitrogen, potassium and phosphorous)* . Regular variations in
these parameters are key informants on the underlying dynamics of
target ecosystems and provide an improved picture of the viability
and robustness of these environments even in the absence of direct
threat. Sensor networks capable of continuously reporting on these
factors offer a wealth of information that could prove invaluable in
agriculture and ecology, including the careful surveillance necessary
to support ongoing efforts in forestry and wet land preservation®”*®,
Importantly, inthe spatiotemporal evaluation of healthy ecosystems,
distributed sensors must be environmentally benign to avoid any
undue burden or influence on the ecosystem under consideration.
Biodegradable sensors are animportant step towards this goal, as they
offer temporary environmental characterization followed by harmless
dissolution at end-of-life.

Principles of detection

Chemical (pollutants, nutrients, minerals and pH), physical (weather,
humidity, pressure and temperature) and biological (microbiota,
organism behaviour and biodiversity) signatures accompanying
environmental action offer numerous avenues to evaluate the health
of target ecosystems. Among these approaches, chemical analyses
represent the most common and widely varied options, focusing on the
detection of harmful atomic or molecular agents with either human or
natural origin. Current ‘gold standard’ techniques for chemical profil-
inginclude atomic spectroscopies and/or X-ray methods for elemental
analysis®, chromatographic and spectrometric methods (gas chroma-
tography, liquid chromatography and mass spectrometry) for organic
species®*“' and spectroscopic techniques (infrared, visible and NMR)
for both organic and inorganic components.

Although some of these standard methods can be miniaturized
to accommodate on-site chemical analysis®*®>, chromatography,
atomic and X-ray spectroscopies and mass spectrometry remain too
large, expensive and/or complicated for the level of mass distribution
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Fig. 2| Sensing modalities. a, Simplified energy (£) diagram depicting the
binding and optical detection of an analyte using chelating ligands leveraging
changes in optical absorbance (left). Detection of trace metals in samples using
optical fluorescence’ (right). b, Schematic depiction of colorimetric approaches
to analyte quantification (left). Application of colorimetric sensors for the

rapid identification of organic species'* (right). ¢, Schematic depictions of
electrochemical sensing modalities relying on potentiometric changes (left),
changes in oxidative or reductive current density (middle), and changes to

the complex electrode impedance to evaluate the concentration of chemical
targets (right). d, Schematic diagram of particle counting apparatus for air
quality monitoring. e, Simplified schematics of resistive and capacitive sensors
for temperature (left) and gas composition (right), in which R and Care resistance

and capacitance, and [G] is the analyte concentration. f, Biological methods
leveraging living cell lines to quantify environmental toxicity wherein loss of
environmental viability changes the metabolic activity (and therefore electrode
current density) of redox-active microorganisms. v, scan rate; ¢, phase shift;

A, electrode area; a;, ion activity; CE, counter electrode; D, diffusion coefficient;
F, Faraday constant; HOMO, highest occupied molecular orbital; i, current;

I, steady-state current; LUMO, lowest unoccupied molecular orbital; n, number of
electrons; OM, organic matter; R, gas constant; RE, reference electrode; ¢, time;
T, temperature; TMB, tetramethylbenzidine; WE, working electrode; Z, real
impedance; Z”,imaginary impedance. Part a reprinted with permission from
ref. 72, Elsevier. Part badapted with permission from ref.104, ACS.

envisioned here. Conversely, sensing modalities with the potential for
miniaturization and simplification could enable mass deployment.
These systems rely on diverse mechanisms for signal transduction,
including spectroscopic, colorimetric, electrochemical, electronicand
biological approaches (Fig. 2). Spectroscopic methods, in particular,
remain closely tied to conventional laboratory-based analyses and

benefit from the relative maturity of the materials and chemistries
used for analyte quantification.

Spectroscopic sensing
Spectroscopic methods leverage the wavelength-dependent absorp-
tionand emission of light by asample to gaininformation about the
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identity, concentration and properties of its constituents®’. Owing
to the chemical complexity of environmental samples, and the low
concentrations of pollutants therein, most environmental spectros-
copiesrely onthe addition of photochemically active probes to bind
and amplify the absorption and/or emission of target analytes®*.
A simple example of this approach is Ni(ll) (target) detection using
dimethylglyoxime as a probe® (Fig. 2a, left), in which probe-target
binding induces rearrangement of frontier molecular orbitals
owing to Ni(ll) d-orbital splitting. This rearrangement reduces the
highest occupied molecular orbital-lowest unoccupied molecu-
lar orbital energy gap and shifts the main absorbance band of the
Ni-dimethylglyoxime complex to visible wavelengths for direct
optical detection®®. This principle of ligand-target binding has been
widely used to detect chemical pollutants at moderate concentra-
tions (>100 nM) including heavy metals, pesticides®” and antibiot-
ics using organic ligands®®, polyaromatic ligands®’, metal organic
frameworks’® and covalent organic frameworks’ as probes. To access
lower concentration ranges, fluorescent methods have also been
explored, replacing the absorbing probe with a fluorophore for the
detection of trace pollutants’ (Fig. 2a, right). These fluorophores
undergo non-radiative relaxation and re-emission upon photoexcita-
tion, resulting in a separation between the absorption and emission
wavelengths. This separation markedly reduces background signal,
resulting in a substantial increase in the sensitivity of the method”.
Fluorescent detection schemes have realized extremely sensitive
(107°M) and selective detection of heavy metals™”, pesticides’,
warfare agents’” and organic species’.

Further improvements in sensitivity have been achieved with
metallic or semiconducting nanomaterials as spectroscopic probes™.
These materials leverage localized surface plasmon resonance (LSPR)
to amplify the spectroscopic cross-section of molecules near the nano-
material surface, with amplification factors as high as 10 (ref. 80).
Thisamplification accommodates the detection of trace (10 >-10"°M)
chemical species, with the addition of biorecognition elements
(antibodies, aptamers, nanobodies and chelating agents) to the nano-
material surface affording high analyte selectivity®. Sensing systems
incorporating plasmonic nanomaterials have enabled the detection
of metals®, pesticides®, antibiotics®*, PFAS®** and pharmaceuticals®
insoil and water samples with limits of detection (LODs) aslow as 1 fM.

Colorimetric sensing

The analytical power of spectroscopic methods comes withareliance
onaccurate spectrometers to facilitate data acquisition. The cost and
bulk of traditional spectrometers have precluded their widespread
distribution as point-of-measurement sensors, despite several impres-
sive demonstrations of portable spectroscopic apparatus®. Toaddress
this limitation, colorimetric chemical detection has been explored
as an alternative technology®®. Colorimetric platforms simplify
spectroscopic detection by sequestering optically active probes
within a porous matrix (typically an absorbent paper) that changes
colour based on analyte concentration. These colour changes can be
immediately detected by the human eye and processed digitally for
quantification (Fig. 2b).

Although a wide range of colorimetric chemistries have been
explored®, they generally fall into three categories: direct chelation,
enzymatic detection and plasmonic methods. Chelation assays operate
following asimilar mechanism to spectroscopic assays, through the for-
mation of aprobe-analyte complex (Fig. 2b, bottom left) whose colour
is dependent on analyte concentration. Such assays are appropriate

for the detection of high concentration analytes and are often used in
the detection of heavy metals” and polyatomic ions®.

Incontrastto direct chelation, enzymaticreactions rely on the bio-
chemical activity ofisolated enzymes (or asimilar catalyst) to produce
optically active molecules by consumption of atarget analyte® (Fig. 2b,
bottommiddle). Inthis scheme, the analyte s catalytically consumed
by an appropriate enzyme resulting in the concomitant chemical oxi-
dation of a redox active probe (often tetramethylbenzidine)®*. The
colour change associated with probe oxidation can then be used to
quantify analyte concentration. These assays have been deployed to
quantify biochemically active metabolites® and small molecules’ with
additional work investigating engineered nanozymes or DNAzymes
to detect species for which no naturally occurring enzyme exists”.

Finally, nanomaterial-based colorimetric sensors have been dem-
onstrated, leveraging the high sensitivity of their plasmonic reso-
nance to report on analyte concentration’®. Although a wide range of
mechanisms have been explored®’, one common approach involves
modifying nanomaterials with biorecognition elements that trigger
analyte-dependent flocculation and plasmonic deactivation. These
changesreduce LSPR signal intensity, which canthen be used to quan-
tify analyte concentration'. Other approaches have even coupled
nanomaterial assays with enzymes, using peroxide (generated dur-
ing analyte consumption) to selectively etch the nanomaterial probe
(Fig. 2b, bottom right). This coupling resultsin predictable changes to
the LSPR wavelength and intensity'®".

Together, these approaches canaccommodate the quantification
of heavy metal concentrations in soil and water'* and the on-site evalu-
ation of soil pesticides'®. Similarly, arrays of colorimetric sensors can
be used to differentiate chemically similar species (Fig. 2b, right), ena-
bling analyte identificationinan unknown sample”®'°*, Owing to their
low cost and easy fabrication, colorimetric assays remain an attractive
alternative to existing spectroscopic methods. Unfortunately, the
remote dispersal and analysis of colorimetric assays without human
intervention remain a challenge.

Electrochemical sensing

To address the limitations of spectroscopic and colorimetric sens-
ing (moderate cost, lack of automation and non-continuous sens-
ing), electrochemical approaches have also been explored for
analyte detection'®. Such approaches rely on changes in voltage
(potentiometric), current (amperometric) or impedance (impedi-
metric) of a conductive working electrode to facilitate chemical
quantification (Fig. 2c).

Potentiometric sensing represents the most mature mode of
electrochemical quantification, relying on the voltage difference
between two electrodes to elucidate analyte concentration. Sen-
sors consist of a chemically insensitive reference electrode and an
analyte-sensitive working electrode'. To accommodate the conver-
sion of chemical activity to electrical potential at the working electrode,
atransducing film (porous carbon'”’, molecularly imprinted'*® and/or
conducting polymers'®) is layered with a chemoselective membrane
(ionophore-loaded polymer) (Fig. 2c, bottom left). Together, these
materials permit the exclusive transport of the target analytetotheelec-
trode surface, resultingina Nernstian electrode potential determined
by exogenous analyte concentration (Fig. 2c, top left). This approach
hasbeen used to quantifyionic pollutants (particularly heavy metals)
in environmental matrices including river water and soil™"2,

Despite the widespread use of potentiometric sensors, they suffer
from comparatively high LODs. Submicromolar ion concentrations
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have proven extremely challenging to quantify, evenin controlled labo-
ratory settings. Higher analyte sensitivities have been realized through
amperometric electrochemical platforms, relying on active electrode
polarization to gain additional information about the sample'. Often,
these platformsrequire athird electrode (counter electrode) toaccom-
modate bulk current flow through the sample, where the magnitude
of this current quantifies constituent concentrations. Amperometric
measurements fall into two main categories: sweep methods (Fig. 2c,
middle panel left), wherein the potential at the working electrode is
changed continuously throughout the measurement; and chrono-
amperometric methods, wherein the working electrode is held at a
fixed potential sufficient toinduce an analyte-specific redox transition
inthe sample™.

Although numerous sweep methods have been explored (linear
sweep, staircase, differential pulse and alternating current methods),
cyclic voltammetry remains the most widely implemented owing to
its versatility and reliability’™. Cyclic voltammetry measurements are
accomplished by repeatedly sweeping the working electrode voltage
betweenanupper and lower switching potential at a constantrate (volts
per second). The peak current (oxidative or reductive) drawn by the
workingelectrode canthen be used to determine the concentration of
redox active species using the Randles-Sevcik relation (Fig. 2c, middle
panel upper right). This approach has been used extensively for the
detection of redox-active environmental pollutants, including catecho-
lamines, pesticides and textile dyes, at micromolar concentrations™. It
hasalsobeenusedtodetect Hg (refs. 117,118), Pb (ref. 119), Cu (ref.120)
and phosphate'” in water and/or soil samples.

Inaddition to potential sweep methods, static polarization meth-
ods are also common. These chronoamperometric measurements
apply a time invariant potential to the working electrode to oxidize
or reduce species of interest. During active polarization, the cur-
rent developed at the working electrode obeys a Cottrellian profile
(Fig. 2c, middle panel upper right) with its magnitude depending on
the concentration and diffusion coefficient of the redox-active species.
Measurements of this type have proven successful at elucidating the
concentrations of redox-active pesticides and herbicides'>'?, as well
as of pharmaceuticals'.

Furthermore, when the electrode is modified with an appropri-
ate enzyme or catalyst, static polarization measurements can yield
results similar to colorimetric detection, albeit with much higher
sensitivity'”. Naturally occurring enzymes have been used in the
amperometric detection of pesticides, pharmaceuticals, heavy
metals and hormones*'”, For species without naturally occurring
enzymes, engineered biomolecules with enzymatic functions may
offer similar detection capabilities. Inthis regard, artificial enzymes
and DNAzymes'* can enable electrochemical detection of biologically
inaccessible targets. Beyond biological agents, electrodes modi-
fied with inorganic catalysts including metals, organometallic spe-
cies and nanozymes can be used to measure dissolved oxygen and
nitrogen species as well as pesticides, heavy metals and halogenated
compounds”.

Although amperometric biosensing can exhibit greater sensi-
tivities than those achievable with potentiometric or colorimetric
methodes, itis typically limited to the detection of species in the micro-
molar regime. To achieve even higher sensitivities, electrochemical
methods relying onelectrodeimpedance have been explored. Sensors
relying on electrochemical impedance spectroscopy (Fig. 2c, right)
probe the interfacial properties (resistive and capacitive) of the
working electrode through the application of a small amplitude

(~10 mV) sinusoidal voltage waveform over a range of frequencies
(102-10°Hz)"*. The resulting current is highly sensitive to changes in
both the capacitance and charge transfer dynamics of the interface.
This sensitivity is exploited by decorating the electrode surface witha
biorecognition element (antibody'”’, aptamer™°, nanobody™', DNA or
RNA™?and imprinted polymer®*) whose confirmational changes dur-
ing analyte bindingalter electron transfer at the working electrode®*.
Sensitivity to these subtle interfacial changes gives electrochemical
impedance spectroscopy-based methods exceptionally low LODs
(10"2-107*M) and allows them to detect trace chemical species includ-
ing pesticides'”, antibiotics™°, bacterial contamination'*'*2, PFAS',
microplastics™® and endocrine disruptors'’.

Regardless of the application, the choice of biorecognition ele-
mentis non-trivial. Natural biomolecules have been extensively studied
as binding agents to capture nearby analyte. Native protein species
such as antibodies represent the most heavily investigated class of
recognition element, having proven capable of quantifying bacte-
rial contamination'?’, bisphenol A™®, oestradiol™ and mycotoxins'°,
among others. More recent work aims to increase the catalogue
of biomolecules accessible to impedance-based sensing through
engineered biorecognition elements.

Synthetic peptides and nanobodies are exciting as alternatives to
naturally occurring antibodies as they offer synthetic control over the
binding affinity of target analytes and might provide higher chemical
and/or physical stability than their naturally occurring counterparts'.
Sensors that leverage these elements are promising for the detection
of microalgae™ and pesticides'*'**. Nucleic-acid-based sensing ele-
ments (aptamers) have also been used for the detection of bacterial
species', heavy metals™*, bisphenol A" and endocrine disruptors'®.

Inadditionto biomolecular recognition elements, purely synthetic
recognition elements based on molecularlyimprinted polymers have
alsobeeninvestigated. Inthis approach, electrode surfaces are modi-
fied (often by electrodeposition) with a selectively porous polymer
layer. The pore size of the recognition layer is engineered to accom-
modate the binding of the exogenous analyte, resulting in changes in
electron transfer within the polymer transducing film. Molecularly
imprinted polymer-based sensors have been used for the detection
of pesticides™*'¥, sulfonamides'® and biocides’ in soil and water
samples.

Inmany of these examples (particularly those relying on potentio-
metric detection), long-term drift represents animportantissue that
must be overcome torealize stable and reliable environmental profil-
ing. Changes at electrode surfaces brought about by the adsorption of
foreign species (referred to herein as fouling) can substantially alter
the signals obtained from both working and reference electrodes™°.
These changes often limit the usable lifetime of these sensors to a few
days at the most. Despite these challenges, recent work hasimproved
the longevity and reliability of electrochemical platforms by adding
protective coatings to mitigate fouling”*® and by using assemblies of
multiple identical sensors to elucidate fouling effects and recover
truesignals™%2,

Particle counting, resistive and capacitive sensing

In addition to spectroscopic, colorimetric and electrochemical
approaches, analytical methods leveraging optical, resistive and
capacitive transduction mechanisms have proven suitable for wide-
spread deploymentin distributed networks of devices. Oneimpressive
example is the air quality monitors used in the detection of particu-
late organic materials by particle counting'®. These sensors, often
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consisting ofalaser light source and photodiode to quantify scattered  fixed installations, miniaturized sensors leveraging alternative sensing
light (Fig. 2d), have been widely deployed to provide vitalinformation ~ methods, including gravimetry™® and capacitive detection**"’, have
onair pollution, particularly in urbansettings™*. To compliment these  been explored.
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Fig.3|Sampling and deployment strategies. a, Map depicting the hypothetical
spread of a hazard to nearby environments following release and illustrating

the broad distribution of networked sensors to track the evolution of hazard
distribution. b, lllustration of emerging strategies for dispersion and sampling.
¢, Drone-based sampling of air quality with a metal oxide gas sensor'”’. d, Release,
descent and landing of solar-powered shape-changing origami microfliers®*.

e, Numerical simulation of the air velocity fields associated with 3D microfliers,
mesofliers and macrofliers inspired by wind-dispersed seeds'®. f, A battery-free
wireless electronic flier capable of wind dispersal and, for comparison, a
dandelion seed"°. g, Biodegradation of a3D flier and its embedded colorimetric
sensors after 3,10 and 16 weeks™’. h, A printed luminescent flier inspired

by plant seeds for physical sensing (inset shows temperature-responsive
photoluminescence)'*’. i, Flexible seaweed-like triboelectric nanogenerator
(S-TENG) as awave energy harvester®. j, Self-powered soft robot driven by a
dielectric elastomeric actuator for exploration of the Mariana Trench®?. 2r, flier
diameter; DE, dielectric elastomer; vy, terminal velocity. Part c reprinted from
ref. 177, CCBY 4.0. Part d reprinted with permission fromref. 200, AAAS. Part e
adapted fromref. 183, Springer Nature Limited. Part freprinted fromref. 196,
Springer Nature Limited. Part g adapted with permission from ref. 186, AAAS.
Parthadapted fromref.192, CCBY 4.0. Partireprinted with permission from
ref.262, ACS. Partjadapted fromref. 223., Springer Nature Limited.

Beyond optical methods, sensors leveraging changes to a trans-
ducer’s resistance or capacitance have long been used to profile envi-
ronmental characteristics. Resistive temperature sensors represent
one of the most common examples, relying on the controlled ther-
moresistive properties of conductors (often carbonaceous materials
or metals) (Fig. 2e, left), to quantify local temperature changes>™’.
The chemoresistive behaviours of certain materials can also be used
to quantify gas composition. Resistive gas sensors, often consisting of
aninterdigitated electrode array surmounted by an appropriate sens-
ing material (Fig. 2e, right), are capable of selective gas detection with
high sensitivity. Sensing materials range from polymers™ to inorganic
oxides'® to metal organic frameworks'** depending on the target ana-
lyte. The same geometry can also be used for the capacitive detection
of gaseous species, exploiting the change in dielectric permittivity of
sensing materials upon interaction with the target gas'®’. Together,
resistive and capacitive sensors have found use in myriad applications
including spatial profiling of microclimates'®*, characterization of pol-
lutant gradients generated by industry'® and contaminant detection
inurban environments'*®,

Biological sensing

Analytical approaches that exploit living biological organisms to detect
chemical, physicaland biological hazards have also been developed'®”*®
and deployed to study water and soil quality’®™’°. These biological
sensors rely on the health of living cell lines to report on the quality
of the environment to which they are exposed. Signal transduction is
thusadirect function of biological activity. The most common sensor
configuration operates by confining an electroactive microorganism
to an electrode surface such that the metabolic by-products gener-
ated by cellular respiration can be continuously monitored. When
exposed to non-hazardous conditions, cells continuously generate
these metabolism-dependent by-products. Upon the introduction of
biologically hazardous agents or conditions, cell lines suffer areduction
or total loss in their metabolic efficacy (Fig. 2f). In addition, ongoing
work aims to improve the stability of immobilized cell lines and to
broaden the range of analytes accessible to these sensors'”’.
Device delivery, power and communication
Considering the potentially large number of individual sensors, the
broad areas affected during hazard release (Fig. 3a) and the extended
recording durations necessary to collect critical environmental
information, the delivery mechanisms, power architectures and
communication protocols applied to networked sensors are critical
considerations for device form and function. Although technologies
existtoaccommodate device automation, power and communication,
the vast distances (kilometres) and long-time scales (months or years)

relevant to environmental phenomena generally necessitate larger
device footprints, masses and costs challenging scalability and envi-
ronmental compatibility. Similarly, although myriad approaches have
been explored for device distribution and motility, active mecha-
nisms (motor-driven or actuator-driven locomotion) demand larger
on-board power circuitry than passive elements (fliers, gliders, drifters
andsoon). These aspects of device construction are crucial to deploy
sensing systems to disparate areas without loss of communication or
device function.

Aerial delivery and dispersion

Unmanned aerial vehicles (UAVs) have emerged as powerful tools for
environmental and agricultural applications, as they can cover large
distances providing access to areas that would prove challenging for
manual field sampling. With remote-sensing capabilities”>'*, UAVs
have been widely explored for applications including agricultural
growth monitoring'”* and forest fire surveillance'”. They canalso carry
chemical sensors, making them useful for precise spatial mapping
of atmospheric gas concentrations”’®"”’, Despite these capabilities,
take-off and landing are energy-intensive and typically require user
intervention, limiting the utility of UAVs for direct-contact sensingin
remote or complex terrain (Fig. 3b-d).

To overcome these limitations, alternative field deployment
strategies have emerged. Nature establishes a sophisticated set of
design principles for aerial dispersal, evolved to passively transport
seeds across great distances under the driving force of wind"*'”°.
Two different seed behaviours are common: gliding or rotating with
wing-shaped appendages and floating with plume-based structures™’.
Inthe case of winged seeds such as maple seeds, leading edge vortices
generated during autorotation allow slow descent times with compara-
tively heavy payloads''. Plumed seeds such as dandelion seeds rely on
drag-enhancing mechanismssuch asaseparated vortex ring, whichare
effective even at low release heights from short plants™2.

These design principles have been applied to artificial 3D micro-
structures, mesostructures and macrostructures, enabling passive
flight when released aerially'® (Fig. 3e). The aerodynamic profile of
these structures arises from the compressive mechanical buckling of
planar precursors®*'®, which are composed of polymeric substrates
patterned through laser etching and photolithography. The addition
of conductive traces and integrated circuits to microfliers imparts
electronic functionality necessary for data acquisition, storage and
communication. Furthermore, modifications to flier geometry pro-
vide control over device dispersal and transport, enabling additional
environmental characterization methods based on flier travel distance.

Regarding device geometry, both wing-based'®*'*¢"* and
plume-based'*"’ (Fig. 3f) designs have been demonstrated. The
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Table 1| Materials enabling autonomous mechanical
actuation in distributed microfliers

Material Driving force Refs.
Liquid crystals Light 195197
Graphene-agar-silk fibroin Light 190
MXene-polyethylene Light 198
PNIPAM-carbon nanotubes Light 187
Polyethylene-gold nanorods Light 199
Superhydrophobic aluminium Rain impact 194
Polyimide origami structure Light 200

PNIPAM, poly(N-isopropylacrylamide).

selection of an appropriate flier design is constrained by several con-
siderationsincluding the desired dispersal distance, payload capacity
and sensor robustness. Although low terminal velocities (V;=1ms™)
are achievable for both plume-based® and wing-based®*'*¢ fliers,
plume-based assemblies are more susceptible to wind transport, mak-
ing them potentially useful in sensor dispersal over large (-100 m)
distances*?°°, As a trade-off for their high dispersibility, plume-based
fliers are generally more fragile than wing-based assemblies owing to
the filamentary structures used to increase drag'”. This design choice
limits their robustness, reusability and payload capacity, making auto-
rotating or gliding fliers potentially beneficial in dispersing heavier
payloadsinadverse conditions. Regardless of the choice of assembly,
however, fliers are inherently limited by the lack of precise control over
their ultimate location.

Arange of sensing modalities have been deployed on passive fliers
suchasintegrated circuits for physical sensing of humidity, temperature,
atmospheric pressure, UV exposure and soil moisture’®*'?®, These inte-
grated circuit-based sensing systems also accommodate data transmis-
sionto proximal recordinginstallations using near-field communication
(range ~ 10 cm)'®, Bluetooth (range ~ 10 m)*°° or radiofrequency back-
scatter (range ~ 1km)'"®. Similarly, integrated circuit-based platforms
could potentially support chemical sensing based on electrochemical
and spectroscopic measurements, increasing the analytical capabili-
ties of these devices”'. Fliers can also carry colorimetric sensors for
pH™, heavy metals'®, air pollutants®®, temperature'*” and humidity™
(Fig.3g,h) and can be constructed from fully ecoresorbable materials'*®.

Beyond purely passive devices, functional materials have enabled
responsive actuationinaerial fliers””. Structural composites constructed
from natural materials, synthetic polymers, liquid crystals and nanoma-
terials have been explored leveraging light, humidity, mechanical force
andwindtoinduce device actuation (Table1). Although not necessarily
biodegradable, these materials support greater control over device
deployment and environmental responsiveness. Even more precise
control over seed delivery can be achieved with UAVs" including arecent
example with self-burying, wood-based carriers for aerial seeding**.

Drivenby advancesinrobotics, other delivery strategies are being
explored for applications in which UAVs are not well suited. For example,
miniature fliers capable of powered flight might provide additional
control over sensor dispersal’*>?°°, Miniaturization of electronic sys-
tems has even enabled the development of ‘living robots™”, in which
the electronics is combined, for example, with living systems such as
beetles, moths or fish?**? for the transport of networked, sensorized
payloads. Small-scale terrestrial robots that use soft and flexible func-
tional materials for actuation have been shown to successfully navigate

complexterrains”®?2, Deployed inadistributed manneronalargescale,
these living-based and soft materials-based robots have the potential
toreach locations that would otherwise be thoroughly inaccessible.

Aquaticdelivery and dispersion

Along with microflier-based sensing for soil, parallel efforts aim
to provide similar functionality in aquatic environments. Many
pollutants — although originating in either soil or water — ultimately
affect the ecosystems of both”*"*, making the detailed analysis of seas,
rivers, lakes and other bodies of water essential. To assess water quality,
the Marine Strategy Framework Directive sets out descriptors of good
environmental status, whichinclude biological diversity, seafloor integ-
rity, contaminant concentration and underwater noise*°. Quantifying
these features (and their freshwater analogues) calls for new detection
principles that autonomous systems are well suited to address.

Although similar sensing goals exist across air and water, aquatic
environments present distinct challenges. Autonomous underwater
vehicles (AUVs)?” and unmanned surface vehicles (USVs)”® operate
under a different set of constraints. For example, spatial scalesin a
marine environment are much larger, making power and communica-
tion requirements more demanding. At the same time, natural buoy-
ancy allows efficient movements of comparatively large robotic units
(Fig. 3i). For environmental monitoring, these considerations have led
to strategies including propeller-driven vehicles, underwater gliders
andseafloor crawlers®’. However, these systems often incorporate rigid
mechanical elements, which can limit their performancein challenging
environments?’, such as turbulent surface waters®”.

This limitation has motivated the integration of soft, compli-
ant materials?*?>. Aquatic robots encapsulated with stretchable
materials can absorb much more energy from collisions than those
constructed entirely fromrigid elements. Furthermore, soft materials
leveraging dielectric elastomers®, hydrogels?**,ionic polymer-metal
composites?, liquid crystal polymers?¢, shape-memory polymers?,
magnetic composites®® and even living tissue’*’ have been explored
for actuation and motility. These materials enable electrostatic and
electro-osmotic mechanisms that can outperform conventional
electromagnetic actuators. For example, hydraulically amplified
electrostatic actuators offer high energy density and muscle-like
performance”*', whereas hydrogel turgor actuators, although slower,
can generate huge swelling pressures*. Pneumatic®** and hydraulic
systems®**?* can also transmit mechanical power through networks
of soft compartments, even using combustion to generate thrust®®,
Finally, as in aerial dispersion, passive gliders can be constructed for
aquatic deployment by leveraging hydrodynamic phenomena®”’.

Current applications of AUVs include monitoring geological and
ecological features, as well as assessing the impact of human activity
on marine systems. Acoustic and visual sensing modalities are useful
for studying submarine volcanic activity, mapping benthic habitats,
evaluating seafloor morphological features and surveying areas for
placementof subseainfrastructure. Sensors for temperature®*, chemi-
cal composition” and hydrodynamic properties®*® of water are also
commonly used to quantify the effect of human disturbances, such as
those brought about by oil and gasindustry operations®”. Flexible sen-
sors inspired by seal whiskers provide new mechanisms for detecting
waterborne vortices®, and biohybrid systems using Escherichiacolias a
sensinglayer offer new opportunities for aquatic chemical detection®.

Although these technologies cannot be easily distributed atlarge
scale similar to their terrestrial counterparts, they help in extending
distributed sensing into aquatic environments. Continued advances
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in soft materials and biohybrid systems may eventually enable more
scalable, environmentally compatible underwater sensor networks.

Wireless networks of environmental sensors and actuators
Wireless sensor networks are decentralized systems established to moni-
tor physical conditions over a conceptual region. They have been devel-
oped toserveabroad range of applications®, including medical sensing,
industrial compliance, supply chain oversight and environmental
monitoring®**?***, These networks are built on common communication
protocols — many of which can be found in modern smartphones —
to transmit data across varying distances (Fig. 4). Near-field commu-
nication operates at distances of <10 cm and is useful for interacting
with passive, unpowered devices. Personal area networks, including
Thread, Zigbee and Bluetooth Low-Energy, are designed to interconnect
devices within 1-100 m. Wide-area networks, such as SigFox and
LoRa, extend beyond 1 km. Meanwhile, cellular networks (such as
LTE-Mand NB-loT) offer directinternet connectivity without adedicated
gateway or router. Finally, in regions without terrestrial telecommu-
nications coverage, satellite networks can be used. Aerially dispersed
fliers have previously utilized approaches such as Bluetooth'$%18%290,
radiofrequency backscatter'”® and near-field communication' (Fig. 4b).

Compared with aerial and terrestrial systems, AUVs and USVs face
important challenges in communicating with remote operators and
observers®*, Various communication methods — acoustic’*®, optical**’
and electromagnetic****** — have been used in underwater environ-
ments, each offering different advantages. For instance, electromag-
netic communications such as Bluetooth?*?°°** and Zigbee*° have
been demonstrated in soft underwater devices. Similarly, acoustic
communications have been implemented in a soft robotic fish***. In
addition to communication, GPS-integrated circuits could be used
to facilitate, or even automate, collection and disposal of distributed
sensing elements after a predetermined operating period™".

Powering distributed networks
New strategies for dispersing sensor networksintroduce new challenges
for maintaining persistent remote operation. In systems using passive fli-
ers, sensor data canberetrieved manually using colorimetry or near-field
communications'®*'*¢?°2_ However, for applications requiring powered
movement or capabilities for wireless communication over large dis-
tances, onboard energy sources are essential. Rechargeable batteries
are commonly used®*?*"****3* and supercapacitors — allowing faster
charging and recharging — canalso be used. Alternatively, power canbe
generatedinsitu®2, Photovoltaicsis widely utilized to power Internet-of-
Things systems®”, including passive flier devices”**°°. Meanwhile, soil
microbial fuel cells**>*° and small-scale thermoelectric generators>’>*
are promising for low-light environments. These developments have
enabled new power cells capable of supporting environmental moni-
toring tasks — such as detecting soil moisture®*, heavy metals™® and
atmospheric conditions®’ —while also powering wireless protocols such
asLoRa”*and Bluetooth**. Thermoelectric generators are particularly
effective when alarge temperature gradient is present, whereas micro-
bial fuel cells offer stable power outputs when optimal soil conditions
(pH, moisture, nutrient presence and microbial composition) are met.
In aquatic environments, kinetic energy can be harvested from
waves and currents. Traditional electromagnetic generators, such as
tidal turbines, have been successfully applied for decades. Building
on these principles, newer systems have adapted similar principles
for use in AUVs, USVs, drifters and buoys®”’. Recent approaches have
expanded the range of materials and mechanisms used for energy

harvesting, leveraging piezoelectric materials®*°, ionic polymer-metal
composites®®, triboelectric nanogenerators**?** (Fig. 3i) or dielec-
tric elastomeric generators**?** (Fig. 3j). Kinetic energy harvesters
have demonstrated the ability to power various sensors, enabling the
monitoring of wave dynamics®*°, water quality*®®, electrolyte concen-
tration” and temperature®®. They have also demonstrated capabili-
ties for powering acoustic?®® and radiofrequency®”’ communications.
To enhance system stability, multiple harvesting modalities can be
integrated on one system?*%%,

Environmentally degradable materials

and platforms

Sensors that can controllably degrade in an environmentally benign
manner are particularly well suited for monitoring tasks that demand
the evaluation of large or inaccessible environments, as well as those
where considerable hazards impede direct operator involvement. In
these instances, transient sensors deployed to evaluate ecosystem
health offer distinct advantages over conventional methods in alleviat-
ing the need for device recovery following measurement. Rather, these
systems use degradable materials to assemble functional devices that
slowly dissolve after a predetermined operating duration.

Materials considerations

Despite the utility of current automated sensing systems, operator inter-
ventionis typically required toretrieve recording apparatus following a
period of use. This necessity places a burden on researchers and poses
somerisk to the environmentif recordingequipmentbecomesinacces-
sible. To address some of these concerns, functional electronic materials
(insulators, semiconductors and conductors) capable of timed dissolu-
tion in aqueous media are being explored”° (Table 2). The use of these
bioresorbable and ecoresorbable materialsis attractive for short-termto
medium-term chemical and physical sensing asnowasteis left after deter-
ministic disintegration. Such sensing devices would contain conductive
traces, semiconducting elements and aninsulating encapsulant capable
of full dissolution after apredetermined duration (Fig. 5a). Most transient
materials rely on oxidation and hydrolysis to affect bulk structural disinte-
gration, with three factors constraining material selection: materials must
contain chemical linkages amenable to oxidative or hydrolytic cleavage,
the fragments of this process must be environmentally benign and the
rate of decomposition must be sufficiently low toaccommodate device
function for aknown and controllable recording duration.

Substrates and encapsulation. Abroad range of substrate and encap-
sulating materials have been explored to support orinsulate the func-
tional electronic components comprising transient devices. These
materials are broadly separable into organic and inorganic categories
based on their composition. Inorganic materials, commonly metals,
metalloids and their oxides and nitrides, accommodate resorption
through the slow oxidation and hydrolytic cleavage of M-M, M-O-M
and M-N-Mbonds to M-OH. This bond cleavage is followed by disso-
lution of the resulting inorganic hydroxide?". Silicon”? and its oxides
(Si0,)**and nitrides (Si;N,)*"* are the most commonly used materials for
inorganicsubstratesand encapsulants owing to the extensive microelec-
tronics infrastructure devoted to Si processing. Beyond Si, MgO dielec-
tricshave also been explored to serve as encapsulating materials, albeit
they have much faster dissolution kinetics?”. Although these materials
have been successfully integrated into functional transient devices,
they often suffer stability limitations owing to cracking, pitting and/or
delamination of the brittle inorganic film. Furthermore, the dissolution
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kinetics of inorganic barrier films varies widely depending on the
deposition method, film density and film stoichiometry*°.

To address these concerns, mechanically compliant organic mac-
romolecules have been explored as alternatives to inorganic encapsu-
lating films. Polymers, obtained either synthetically or from natural

products, offer greater flexibility, solution processability and structural
versatility than theirinorganic counterparts. They canalsoaccommodate
more precise control of hydrolytic decomposition. Natural materials
suchascellulose”*”, silk*’®, waxes*”?, shellac®**** and polysaccharides?***
have provensuccessful asbarrier polymers for short-term (hoursto days)
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stimulating and recording devices. In these examples, complete transi-
ence is mediated by the solubilization of individual polymer chains,
followed by slow enzymatic degradation. Similar behaviours have been
obtained fromsynthetic polymers. Polymer chains containing ester®*?%,
ether®®, alcohol’”, amide®® and anhydride subunits demonstrate
controlled dissolution under aqueous action (Fig. 5b,c).

Regardless of material, the functional lifetimes of encapsulating
filmsdictate the overall lifetime of devices assembled from them. Given
the extended recording durations (weeks to months) necessary for
comprehensive environmental characterization, the dissolution rates
of existing degradable encapsulants are often insufficient to guarantee
device function for the entire recording period. To address this chal-
lenge, synthetic modifications to the primary and secondary structures
of polymeric encapsulants have been explored to directly control the
dissolution rate”®’, accommodating device function over the span of
weeks to months®’°. Furthermore, polymer composites assembled
withinorganicfillers (SiO, beads, SiO, flakes and ZnO beads) can extend
device lifetimes by increasing the hydrophobicity of the encapsulant
and by suppressing water diffusion through the barrier film*"*2,

Beyond extending thelifetime of encapsulants, the on-demand deg-
radation of these materials under specific stimuli, such as temperature®”
or light**?*, has also been demonstrated. These approaches offer
greater control over degradation kinetics and may accommodate encap-
sulation with extremely long-lived materials whose decomposition is
induced only under certain predetermined conditions.

Conductors and semiconductors. Similar to their oxides, many metals
support resorption through oxidation and subsequent hydrolysis by
air and water?”’. Oxo-philic metals (Zn, Mg and Al) are the most active
in this regard, exhibiting rapid degradation in water?”****’ (Fig. 5d e).
Other metals and alloys have been explored to extend the lifetime of
transient conductors, although the toxicity of the resulting oxidized
metal species needs to be carefully considered. Alloys of Mg, Zn and
Al exhibit enhanced lifetimes relative to their individual constituents
when immersed in biofluid®**?*°, Similarly, Fe, W and Mo have shown
prolonged operational lifetimes relative to Mg and Zn (Fig. 5f), with
theresulting transition metal ions proving environmentally and physi-
ologically benign®*°*2, This collection of metals canvases alarge range

Table 2 | Overview of biodegradable electronic materials supporting transient sensing platforms

Function Material class Examples Dissolution rate Conditions Degradation mechanism Ref.
(sensor lifetime)
Encapsulationand  Metals and metal Si 4.8nm per day PBS, 37°C Oxidation and hydrolysis 272
insulation oxides Sio, 0.005-10nm perday  PBS,37°C 273
SizN, 1-5nm per day PBS, 37°C 274
MgO 6.3um per day DI water 275
Natural polymers Cellulose 58 days Soil Dissolution, enzymatic 277
Silk 10min DI water decomposition, 278
Wax 10-100 days Soil hydrolysis andjor direct 279
. oxidation
Shellac 10-50 days Soil 281
Polysaccharides ~10min PBS, RT 310
Synthetic polymers Polyesters 7 weeks PBS, 37°C Hydrolytic cleavage, 365
Polyethers 30 days = oxidation 365
Poly-ols 20min PBS, 37°C 287
Amides 10-100 days Seawater 366
Polyanhydrides 1-5 days PBS, 37°C 289
Conductors Metals Mg 480nm per day HBSS, 37 °C Oxidation and 27
Zn 300nm per day HBSS, 37°C subsequent hydrolysis 27
Fe 7nm per day HBSS, 37 °C 367
Mo 0.7nm per day HBSS, 37°C 367
W 20nm per day HBSS, 37 °C 367
Organic PEDOT:PSS 4 weeks Protease solution? Oxidative cleavage, 368
Polyaniline 7-14 days PBS, 37°C enzymatic 369
Polypyrrole 24h pH 8.2 decomposition 370
Carbon-based Activated carbon, - - Biocompatible but not 312
carbon nanotubes, degradable
graphene
Semiconductors Metalloids Si 4.8nm per day PBS, 37°C Oxidation and hydrolysis 272
Ge ~3nm per day PBS, 37°C 371
Metal oxide ZnO 4nm per day PBS, 37°C Oxidation and hydrolysis 372
MgO 6.3pm per day DI water 275
Dichalcogenides Mos, ~75 days PBS, 37°C Oxidation and hydrolysis 878
WS, = = 374
DI, deionized; HBSS, Hanks’ balanced salt solution; PBS, phosphate-buffered saline; RT, room temperature. ®Protease solution: 1Umg™ protease XIV from Streptomyces griseus**®.
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of timescales for bioresorption or ecoresorption, accommodating Similar approaches have been taken to assemble transient semicon-

the fabrication of recording devices that can dissolve within minutes

toweeks.

ductingstructures, typically relying on Si thin films as the base material.

A wide variety of electronic components can be realized in transient
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Fig. 5| Designs and materials for bioresorbable environmental sensors.

a, Schematics of a transient environmental sensing platform, highlighting key
components of the assembly and its eventual hydrolytic decomposition.

b,c, Dissolution patterns of insulating materials used for encapsulation.

b, Poly-(lactic co-glycolic acid) (PLGA) (65:35, M,, = 60,000; 37 °C in phosphate-
buffered saline)*®. ¢, Polyvinyl alcohol (PVA) (200 pm thick, M,, = 31,000; 37 °C
in phosphate-buffered saline)?®. d-f, Dissolution patterns of electrically
conductive materials. d, Mg (50 nm thick; in phosphate-buffered saline at room
temperature (RT))**. e, Zn (400 nm thick; 37 °C in phosphate-buffered saline)*”.
f, W (50 um diameter wire)**2. g-i, Examples of ecoresorbable chemical sensors.
g, Left: exploded view of a doped silicon nanoribbon (Si NR) pH sensor. Right:
measurement of conductance as a function of surrounding pH for P-doped

silicon nanoribbons®®. h, Schematic illustration of a resistive temperature
sensor and capacitive humidity sensor constructed from conducting carbon
electrodes on ashellac substrate(left). Resistive temperature coefficient (TCR) of
the temperature sensor (middle). Capacitive response of the humidity sensor®”
(right). i, Exploded view of a silicon nanomembrane (SiNM) NO, sensor with
integrated gas, temperature and humidity sensor on a PLGA substrate (left).
Resistive response of NO, (ref. 318) (right). Part b adapted with permission from
ref. 285, ACS. Part c adapted with permission from ref. 287, ACS. Part d adapted
with permission fromref. 296, ACS. Part e adapted fromref. 297, Springer Nature
Limited. Part fadapted from ref. 302, CC BY 4.0. Part g adapted with permission
fromref. 316, ACS. Part hadapted fromref. 317, CC BY 4.0. Parti adapted with
permission from ref. 318, Springer Nature Limited.

forms, including resistors, diodes, transistors and light-emitting
diodes?°. Access to these conventional electronic components in
transient devices advances the dataacquisition and processing modali-
tiesachievable with suchrecording platforms. Likewise, theincorpora-
tion of semiconducting materials such as Ge (ref.303), ZnO (ref.304),
MgO (ref.305) and Si;N, (ref. 306) presents new prospects for transient,
functional systems.

Material sustainability and cost. Given the potentially massive scale of
sensor fabrication and distribution, the availability and sustainability
of component materials become real concerns for system-levelimple-
mentation. Inthisregard, materials that canbe sourced and processed
economically en masse present adistinct advantage. The importance
of sustainable device assembly has motivated efforts to establish
materials strategies relying on readily available chemical feedstocks
with low processing costs.

Sensor assembly from agricultural and natural sources represents
apromising approach to sustainable environmental sensing. Advances
in paper-based sensors have demonstrated the feasibility of fabri-
cating electrochemical®”” and colorimetric devices**® from cellulose
precursors. Flexible and bioresorbable sensing systems have also
been assembled from agricultural by-products such as polysaccha-
rides extracted from starchy crops®**'°. As with synthetic polymers,
polysaccharide degradation kinetics can be controlled by chemically
modifying amylose and amylopectin chains®".

The conductive components of transient sensors are an impor-
tant source of material cost. In this regard, carbon-based materials
present a promising alternative to metals as they can be produced at
low cost from diverse precursors®? Patterning can also be accommo-
dated by screen or inkjet printing or by direct laser writing*>~'*. Con-
ducting polymer composites have also been explored as conductive
materials for sensing systems. Unfortunately, the synthesis and puri-
fication of these materials generally impose a substantial cost over-
head, reducing their competitiveness compared with carbon-based
alternatives®”.

Overall, great progress has been made in the identification of
active (conductors and semiconductors) and passive (encapsulants
and substrates) materials from which transient assemblies can be
fabricated. To date, however, these assemblies still present limitations
associated with long-term stability and operational efficacy when
compared with their non-transient counterparts. In this regard, the
development of transient but long-lived structural components that
can guarantee prolonged sensor function represents a prime area
for future investigation. Likewise, further research is necessary to
tailor active materials (possibly through alloying, doping or synthetic

modification) to realize operating characteristics equivalent to those
achievable in non-transient electronic assemblies.

Device-level components

At the device level, sensors and power sources must perform reliably
within arequired operational lifetime, while still accommodating
biodegradable materials.

Chemical and electronic sensors. Some examples of functional
environmental sensors integrating transient materials include a fully
transient sensing array of Si nanoribbon transistors to quantify local
pH over several days® (Fig. 5g), sensors assembled from serpen-
tine or interdigitated carbon electrodes encapsulated with shellac
(Fig. 5h) for week-long temperature or humidity measurements®”, and
electrochemical gas-sensing systems for the quantitative detection
of atmospheric nitrogen pollutants®® (Fig. 5i). The efficacy of fully
transient sensors for soil health and microbial activity has also been
demonstrated***”. Although widespread deployment of these devices
is limited at present, the exceptional functionality and controlled
lifetime of these recording platforms could prove impactful for the
distributed characterization of environmental factors.

Power sources. To support untethered operation and eliminate the
need for retrieval, sensor platforms rely on onboard power sources
that should themselves be biodegradable. Presently, a wide range of
solutions exist for creating power units from transient, ecoresorbable
materials. Transient batteries**°*?? and supercapacitors®*>*have been
demonstrated, providing ameans of storing energy. Numerous battery
chemistries are capable of hydrolytic decomposition, with the most
prominent examples leveraging reducing metal anodes (Mg, Zn)****
and water-soluble cathodes based on metals®°, metal oxides®”, organic
species®”® or small molecules®***??, Biodegradable supercapacitors
leveraging carbon-based®”’, metal composite***** and metal oxide or
sulfide®” electrodes have also shown promise.

Beyond power storage, in situ power generation has been demon-
strated with ecoresorbable materials. Recent work has shown power
harvesting with fully degradable microbial fuel cells**°, relying on enzy-
matic activity to convert local chemical fuels into usable power. Other
efforts have demonstrated physically transient photovoltaic assemblies
using both silicon®"**? and perovskite®* electrodes displaying per-
formance (specific power: >250 W m, power conversion efficiency
(PCE):17.51%)** comparable with conventional photovoltaics (specific
power: >250 W m2, PCE: 31%)*°° under AM1.5 illumination. However, it is
importantto note that some components of these cells (principally silver
nanowire conductors) remain largely non-transient. Likewise, the use of
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Box 1| Sensor manufacturing and platform-level integration

With the possibility of deploying thousands to millions of
individual sensors, the cost-effective and scalable manufacturing
of these devices becomes a non-trivial concern. Although
fabrication methods vary considerably depending on the specific
application, desired operating duration and technological
maturity, many of the materials and assemblies described in
preceding sections are amenable to manufacturing at scale using
existing technologies?”®.

Photolithographic patterning and wet or dry etching techniques
represent the most common approaches for assembling arrays
of both transient and conventional sensors. Devices comprising
silicon-based materials are already well suited for assembly with
conventional lithographic techniques using standard mask aligners,
chemical or plasma etching and vapour deposition®*. Assembling
these structures on silicon-on-insulator substrates facilitates their
subsequent removal from the parent wafer using transfer printing®*’.
In this fashion, arrays of sensing elements can be combined with
biodegradable substrate materials and/or encapsulants to produce
batches of tens to hundreds of individual devices. In some cases,
simpler patterning methods may also be available in the form of vapour
deposition of metal components through shadow masks*®. Although
this approach limits the feature sizes of metal components (~10 um),
it avoids much of the complexity of conventional lithography.

In addition to lithographic methods, additive printing
methods have been used to fabricate devices. Screen printing®**,
laser printing®”’, stencil printing®®°’®, inkjet printing®*>**',
electrohydrodynamic printing®***®* and aerosol printing®** are
all capable of patterning sensing elements onto biodegradable
substrates with feature sizes as small as 40 pm. These approaches
are powerful for the mass production of sensors at low cost as they
require less equipment than analogous lithographic methods,
increasing their accessibility. Similarly, ink formulations incorporating
environmentally benign and sustainable components including
ecofriendly solvents®®*=¥, binders®™***° and solid components®°*,
are well matched — both in cost and in sustainability — for the
fabrication of large numbers of individual sensors.

Pb-based perovskitesimposes apotential hazard to target environments
owing to the introduction of soluble Pb ions. This problem may be cir-
cumvented with Pb-free perovskites as the photoactive layer, although
challenges remain in the efficiency and stability of these materials®*.

Thermal energy has also been effectively captured using
cellulose-based thermoelectric films impregnated with Cul (out-
put power density: 10 uW m)**>**_ Finally, mechanical energy
has been harvested using triboelectric nanogenerators assembled
from microcrystalline cellulose composites (output power den-
sity: 1W m™)*” or agar and carrageenan composites (output power
density: 150 pW m™2)**%, Although the specific power produced by
non-photovoltaic generators is substantially lower than solar-based
methods, they may act as supporting supplies under dark conditions
where solar energy is insufficient for device function. Similarly, the
variable lighting conditions involved in aquatic monitoring may
demand alternative power sources such astriboelectric or piezoelectric
generators toaccommodate extended device operation.

As a compromise between the high spatial resolution of
photolithography and the approachability of additive methods, laser
ablation is also used in the fabrication of sensing devices. Existing
laser writing systems offer high alignment accuracy (2-3 um) and
can achieve feature sizes as low as 5um (ref. 392). Similarly, through
careful control of laser power, scan speed, frequency, number of
repetitions and ablation grid density, the material can either be
completely removed or deterministically thinned depending on the
specific assembly needs.

In addition to processing considerations, integrating soft and
biodegradable sensing components with their associated recording
circuitry poses a challenge. Although soldered connections
remain the standard approach for rigid electronics assembly, the
necessary use of high temperatures makes this connection strategy
incompatible with many sensor materials. Numerous efforts have
aimed to address these issues through alternative interconnect
strategies®®. Electrically conductive adhesives and epoxies®,
anisotropic conducting film adhesives®*® and various mechanical
fittings**® have all shown promise in reliably forming electrical
contacts with critical sensing components. Similarly, the availability
of biodegradable substrates, adhesives and conductors make
the assembly of transient connectors a possibility, supporting the
programmed separation of sensing components from readout
circuitry at end-of-life.

Outside interconnect formulations, the manipulation, transport
and placement of sensing elements post-assembly is imperative
in the construction of large sensing arrays. To date, automated
pick-and-place assemblers are promising, as they can accommodate
the transfer of individual sensors from substrate to system rapidly
and reliably*?. Likewise, laser-based material transfer methods
offer additional control over the patterning and assembly of small
components®®, Together, these approaches facilitate the accurate
and high-throughput assembly of conventional and transient
devices to meet the needs imposed by large-scale environmental
monitoring.

Platform integration and environmental deployment
Successful deployment at scale is strongly dependent on both the
manufacturing of sensing platforms and the mechanisms used to
accomplish their dispersal. Even though manufacturing practices for
non-transient devices are already well established, new and emerging
technologies are necessary to support the efficient fabrication and
integration of transient sensing platforms. Manufacturing approaches
that can accommodate the precise manipulation of soft or delicate
sensing components are essential in thisregard. Fortunately, numerous
options exist toaccomplish these manipulations atindustrially relevant
scales (Box 1). Following manufacturing, several practical constraints
must be considered regarding device deployment, communication
and recovery.

Dispersal and motility. The incorporation of transient components
to delivery systems could prove valuable in reducing operator inter-
vention and alleviating inadvertent burdens on target ecosystems.
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Aerial dispersal structures have leveraged transient materials such as
PLGA®%?%? cellulose-nanofibre-gelatin composite films' and cellu-
lose acetate with lignin'” to realize complete system disintegration
when in prolonged contact with aqueous media. Similarly, partially
transient systems have been explored for monitoring in aquatic
environments, including a surface drifter with a transient hull and
non-transient electronics®’. Soft, ecoresorbable actuators for device
motility have also been demonstrated®*°**°, but they have not been
paired with equally transient communication modules capable of
controlling them.

Long-range communication. Implementing a wireless sensor network
with ecoresorbable materials is challenging as protocols such as Blue-
tooth, LoRa, Sigfox, Thread, Zigbee and LTE require computational ele-
ments that only existinintegrated circuits. Simple transient antennas
have been demonstrated for receiving power®**** and transmitting
sensor data®**>*¢ over short distances (-1 m), but they cannot sup-
portlonger range data transmission protocols. Although challenging,
the incorporation of transient materials into foundry-level assembly
could enable fully degradable integrated circuits supporting data
acquisition, storage and transmission>¥. A polymer-based circuit with
1,000 stretchable transistors has also been recently demonstrated**® —
albeit in a non-transient form — illustrating the feasibility of pattern-
ing computational elements on non-conventional substrates and
supports. Soon, analogous principles could enable flexible, ecore-
sorbable, large-scale integrated circuits capable of digital wireless
communication.

New capabilities toincrease communication range with transient
materials may be achievable by leveraging chip-less radiofrequency
identification (RFID) systems. Using temporal and frequency domain
modulation, passive RF communication can enable operating dis-
tances of <1 m (ref.349).Suchanapproach hasbeen demonstrated for
printed humidity and temperature sensors constructed froma com-
bination of cellulose paper and Zn microparticles and encapsulated
using wax*°. Despite their utility in close proximity, however, small
antennas yield weak return signals that are challenging to subtract
fromthe background without sophisticated encoding and decoding
schemes®"**, Longer distances are achievable by integrating piezo-
electric materials and surface acoustic wave (SAW) phenomena®>,
For example, an ecoresorbable piezoelectric antenna made from
PHBV/PLLA/KNN was recently demonstrated®*, and further devel-
opment could present a building block for a transient SAW-based
RFID device.

Long-range readout may also be possible using passive return of
optical signals. Retroreflectors, combined with colorimetric dyes, can
detect chemical contaminants from distances of 150 m (refs. 355,356).
Transient retroreflectors constructed fromagar and silk have also been
demonstrated®**¥, Microfliers leveraging these materials could be
dispersed over large areas and interrogated remotely using drones.
Then, they could be allowed to dissolve safely into the environment.

Sensor network operation, end-of-life management and appli-
cation space. Transient sensing assemblies complement ongoing
efforts in automation and robotics, as a parsimonious collection of
aerial, terrestrial or aquatic drones caninterface with many individual
sensors to accommodate data collection and transmission*®, Such
approaches have been explored with RFID-based soil sensors probed
by aroving and autonomous recording station*’. Individual units, each
containing an RF resonating antenna, can readout chemical or physical

information to the rover, allowing data acquisition from potentially
thousands of individual sensing agents with a single recording robot.
Aerial approaches have also been used, deploying UAVs to image fluo-
rescent and optical sensing components distributed across terrestrial
environments'™. In these instances, transient sensing elements are
preferred as complications and power consumption associated with
dronetake-off and landing makes physical placement and recovery of
sensors unrealistic. Within this paradigm, the simplicity of the sensing
elements themselves accommodates transience without sacrificing
accuracy or facile sensor distribution.

Beyond robotic data collection, sensors relying on either RF back-
scatter or SAWs may prove useful. Inboth instances, high fidelity data
may be collected and transmitted over comparatively large distances,
using a central data collection installation to facilitate indexing and
storage. The utility of such a fully integrated system has notably been
demonstrated for the profiling of environmental parameters over
reasonable distances (-100 m)*°° albeit without the integration of
transient components. Despite this promise, however, the necessary
inclusion of integrated circuits facilitating RF data transmission over
these distances frustrates total sensor transience, making ultimate
devicerecoveryimperative.

Regarding semi-transient or non-transient systems, the recovery
of permanent components remains amajor considerationinrealizing
massive environmental sensing networks. Fortunately, options are
available to accommodate the location of these components using low
power GPS circuitry® or by the inclusion of fluorescent, reflective or
magnetictagsto allow for theirlocation and ultimate retrieval. Similar
developments in autonomous terrestrial, aquatic and aerial vehicles
may accommodate device retrieval from challenging or hazardous
environments®®.

Concluding remarks, recommendations

and outlook

The detection of known chemical, physical and biological hazards in
an ever-broadening collection of ecological niches, coupled with the
persistent discovery of new, potentially harmful, environmental agents,
highlights the pressing need to identify, quantify, sequester and remove
hazards from affected ecosystems. Given the severity of anthropogenic
actionontarget ecosystems, the exploration of materials that support
selective and sensitive detection of environmental hazards isimpera-
tive to address these pressing concerns. Similarly, material technolo-
gies affecting the distribution, protection and collection (or ultimate
dissolution) of sensing architectures are sorely needed.

Fortunately, the potential severity of these environmental chal-
lenges has been met with concerted efforts from both academic and
industrial sectors. An enormous catalogue of analytical technologies
has been developed to quantify environmental characteristics and
to evaluate their effects in myriad environments. Sensors leverage
abroad collection of transduction methods to accommodate quan-
tification, including spectroscopic, colorimetric, electrochemical,
resistive, capacitive and biological modalities. Importantly, the success
of these sensors has been demonstrated for target quantificationina
distributed fashion even when analysing complex samples. Despite this
promise, however, continued exploration of new analytical methods
and improvements to the stability, longevity and controllability of
existing measurement platforms areimperative in providing accurate
environmental data to guide conservation and remediation efforts.

Although the development of new materials supporting chemical
detectionislargely keeping pace with ongoing developmentsin pollutant
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discovery, theimplementation of these materialsinto widely distributed
sensing systems remains comparatively nascent. In this regard, colori-
metricand electronic methods are among the most promising technolo-
giesformassively distributed sensor networks. Beyond these methods,
electrochemical methods are promising in supporting the detection of
low-concentrationspecies, having already proven useful in conventional
environmental sensing applications. However, the long-term stability of
most electrochemical biosensorsisinsufficient, at present, to meet the
needs of environmental characterization over the span of days to weeks.
The development of material strategies that mitigate electrode fouling
andimprove sensor longevity will prove importantin bringing advanced
electrochemical sensors to a greater level of feasibility. In either case,
the field deployment of these sensing technologies to evaluate their
utility in real-world applications is necessary to advance autonomous
and widespread environmental characterization.

In addition to the limitations of existing sensing technologies,
their sparse incorporation into routine environmental monitoring
reflects disconnects between the technological development of chemi-
cal and biological sensors and the platforms necessary to deploy and
automate them. Given the broad range of device technologies capable
of supporting sensor distribution, modern environmental scienceisin
aunique position to combine advancements fromanalytical chemistry
and materials science with those of robotics and distributed networks.
Indeed, ground-based, aquatic and aerial dispersal systems have shown
great promise in characterizing wide expanses of diverse terrain. Aerial
dispersal could prove crucial in the chemical and physical profiling of
broadland areas for agricultural applications, or for targeted actionin
response to accidental hazard release. Likewise, the large streams of
data collected from distributed networks could be paired withemerg-
ing machine-learning approaches for advanced, real-time data analysis
to guide subsequent intervention®' >,

Despite the promise of these systems, several limitations must
be addressed to realize their full functionality. Owing to the large
spatial and temporal scales of environmental phenomena, sensor
networks would ideally facilitate coverage over broad areas without
direct human intervention. This extended deployment makes the
collection and streaming of data a challenge. Similarly, long recording
durations present limitations onbattery life and power management.
Although theseissues canbe addressed by solar, thermal, mechanical
or chemical power harvesting, they remainimportant considerations
in device development and deployment. New materials supporting
thermoelectric, piezoelectric and biofuel cell generators may prove
crucialin powering devicesin low-light conditions (aquatic or heavily
forested environments) in which photovoltaics are insufficient. Finally,
the demand for direct user intervention to collect distributed sensors
post facto further reduces their utility.

Transient materials offer animportant contribution to the latter
challenge, as they relieve the burden of device collection after sensor
lifetime has elapsed. Although progress has been made in the use
of transient colorimetric, electrical and bacterial sensing elements,
current transientenvironmental sensors are extremely simplein their
construction, generally consisting of resistive or capacitive sensing ele-
ments to characterize environmental factors. Realizing more complex
detection schemes in transient forms is non-trivial, and much work
remains inthe exploration of active (conductors and semiconductors)
and passive (substrates, encapsulants and insulators) materials that
can ensure the stable operation of these devices. A persistent prob-
leminthisareaisalack of control over the hydrolytic decomposition
of sensing elements. To accommodate medium-term to long-term

environmental monitoring, such devices must degrade in a deter-
ministic fashion without deleterious effects from premature water
infiltration. Addressing these considerations demands greater focus
onthestability and synthetic modification of degradable encapsulants
torealize extended operating lifetimes. Likewise, investigations into
stimuli-responsive materials that only degrade under certain condi-
tions (temperature, irradiation and voltage) will prove important in
achieving the level of control necessary for extended environmental
monitoring. Finally, there remains a lack of real-world examples of
transient sensing.

Unfortunately, evenif new sensing modalities become tractable,
current transient systems only support simple circuit elements (resis-
tors, capacitors, diodes and transistors), making the development of
circuitry capable of data collection, storage and transmission a distant
goal. At present, the greatest utility for transient materials in distrib-
uted environmental characterization is in the consumables, sensing
components and structural aspects of devices, with data acquisition
and transmission architectures retaining their non-transient assem-
blies. Given these limitations, greater attention must be devoted to
system-level integration if fully functional transient sensing networks
aretobecomeareality. Inparticular, the development of autonomous
sensing systems that can maximize the benefits of transient sensing ele-
ments (biocompatibility, widespread deployability and cost economy)
should be regarded as a high priority.

Given the comparative maturity of environmental sensing tech-
nologies and autonomous robotic assemblies, coherent efforts to
bridge the gap between these areas are needed to address global issues
in ecology, human health and environmental remediation. Efforts to
deploy networks of chemical sensors to monitor new classes of water
and soil pollutants represent a profound, yet uninvestigated, area
of study. Similarly, the adoption of widespread networks of aquatic
(for both fresh water and sea water) devices supporting advanced
chemical, physical and biological sensing will be extremely important
inassessing water quality, ecosystem health and environmental stabil-
ity. Finally, theintegration, wherever possible, of transient components
(sensors, encapsulants and device assemblies) to minimize device
impactontarget environments and assist in terminal device collection
will prove beneficial in the wider adoption of these technologies.

Published online: 19 September 2025
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