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Abstract

With advances in materials science and medical technology, wearable 
sensors have become crucial tools for the early diagnosis and continuous 
monitoring of numerous cardiovascular diseases, including arrhythmias, 
hypertension and coronary artery disease. These devices employ 
various sensing mechanisms, such as mechanoelectric, optoelectronic, 
ultrasonic and electrophysiological methods, to measure vital 
biosignals, including pulse rate, blood pressure and changes in heart 
rhythm. In this Review, we provide a comprehensive overview of the 
current state of wearable cardiovascular sensors, focusing particularly 
on those that measure blood pressure. We explore biosignal sensing 
principles, discuss blood pressure estimation methods (including 
machine learning algorithms) and summarize the latest advances in 
cuffless wearable blood pressure sensors. Finally, we highlight the 
challenges of and offer insights into potential pathways for the practical 
application of cuffless wearable blood pressure sensors in the medical 
field from both technical and clinical perspectives.
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feature extraction during the BP estimation process37–40. An improve-
ment in both the hardware41–45 and software46–51 for these wearable 
sensors is essential to address these challenges. With regard to the 
hardware, the development of sensors capable of acquiring highly 
sensitive signals under varying conditions, such as in the presence of 
motion artefacts, physiological changes and ambient noise, is crucial 
to improve device accuracy. For the software, the incorporation of 
machine learning (ML) techniques is imperative for automatic feature 
extraction, real-time analysis and continuous improvement in the 
accuracy of BP measurements. Furthermore, integrating artificial 
intelligence with cloud-based analytics platforms allows continuous 
updates and improvements to algorithms based on a wide range of 
collected data, improving the accuracy and reliability of these wearable 
BP sensors.

In this Review, we provide an in-depth understanding of the 
current progress in cuffless wearable BP sensors with regard to biosig-
nal acquisition principles, BP estimation approaches and the latest 
advances in wearable BP sensor systems (Fig. 1). Furthermore, we 
highlight the future directions in the field of wearable BP sensors, focus-
ing on issues such as sensor accuracy, system integration and clini-
cal application to ensure their effectiveness both in daily use and in 
clinical settings.

Principles for biosignal acquisition
Biosignals, such as pulse waves, volumetric changes in blood (PPG), 
ECG traces and ultrasonic signals, are fundamental data sources for 
continuous, indirect BP estimation. Wearable BP sensors acquire these 
biosignals from various body regions using intrinsic properties such as 
mechanoelectric52 (including piezoelectric53 and triboelectic54 pulse 
sensors, piezoresistive sensors55, capacitive sensors56, field effect 
transistors57,58 and electrets59), optoelectronic60, ultrasonic61 and 
electrophysiological62 (Tables 1 and 2). Current research on wearable 
BP sensors focuses on engineering materials with optimally deform-
able structures to ensure conformal attachment to the human body 
and improved sensor sensitivity, aiming to provide more accurate 
measurements of biosignals that are crucial for effective BP monitoring.

Mechanoelectric principles
The integration of mechanoelectric materials into cardiovascular 
monitoring systems in the past decade has enabled non-invasive 
and continuous cardiovascular monitoring. These materials convert 
mechanical energy into electrical energy, allowing the detection of sub-
tle mechanical deformations or vibrations within the arterial system, 
such as pulse waves63. A diverse range of mechanoelectric materials, 
including piezoelectric, triboelectric, piezoresistive and capacitive 
materials, have been utilized in wearable BP sensors to capture pulse 
waves as measurable electrical signals.

Piezoelectric pulse sensors. Piezoelectric materials, which can be 
organic or inorganic, have the ability to sense dynamic pressure by 
converting mechanical force into electricity. In inorganic piezoelec-
tric crystals, the piezoelectric effect is caused by the arrangement of 
ions within the symmetrical structure of the material64–66, whereas in 
organic piezoelectric polymers, the piezoelectric effect is caused by 
the molecular structure and orientation of the polymer67. In the absence 
of an external force, randomly distributed or polarized dipoles have a 
net charge of zero. Conversely, when an external force is applied and 
deformation occurs, the piezoelectric effect causes these dipoles to 
reorient, resulting in a non-zero net charge68 (Fig. 2).

Key points

 • Wearable blood pressure (BP) sensors utilize diverse sensing 
methodologies, including mechanoelectric, optoelectronic, ultrasonic 
and electrophysiologic technologies, that facilitate continuous 
cardiovascular monitoring.

 • Various approaches, including pulse wave analysis, pulse wave 
velocity and arterial wall dynamics, as well as advanced machine 
learning and deep learning algorithms that build on these methods, 
are being explored to improve the accuracy of BP estimation in 
wearable cuffless BP sensors.

 • Cuffless BP sensors still face obstacles in achieving clinical-grade 
reliability due to issues with sensor calibration, motion artefacts and 
placement accuracy.

 • Further improvements in sensor materials and system integration 
are crucial for improving the accuracy and clinical applicability 
of wearable BP sensors.

 • Comprehensive clinical trials are essential to validate the 
performance of wearable BP sensors and ensure compliance with 
established medical standards for broader adoption in health-care 
settings.

Introduction
High blood pressure (BP), also known as hypertension, occurs when 
the force of blood against the walls of the arteries is abnormally high. 
This condition usually has no noticeable symptoms but can suddenly 
lead to cardiovascular diseases, such as myocardial infarction, coronary 
artery disease and stroke1–5. BP is most commonly measured via an 
invasive arterial catheter (the gold standard for acute care) or using a 
non-invasive, cuff-based sphygmomanometer (for hypertension diag-
nosis and management)6. However, both methods are limited by their 
inability to continuously monitor BP levels, which can be influenced by 
factors such as stress, diet and exercise7–14. Continuous, non-invasive BP 
monitoring during daily activities and sleep is essential to provide valu-
able clinical information, including BP variability and cardiovascular 
risk assessment15–17.

In the past decade, wearable biosensors have been developed 
to continuously measure biosignals, such as pulse waves18–23, volu-
metric changes in blood (photoplethysmography (PPG))24–28, ultra-
sonic signals29–32 and electrocardiogram (ECG) data33–36. Taking into 
consideration the mechanical properties of human skin, numerous 
biomaterials have been designed to measure small biomedical signals 
via advanced technologies, including mechanoelectronic, optoelec-
tronic, ultrasonic and electrophysiological devices. On the basis of the 
acquired biosignals, BP can be estimated non-invasively by applying 
established concepts that define the correlation between BP values 
and features related to pulse wave intensity and time domain, as well as 
features related to arterial diameter, such as pulse wave analysis (PWA), 
pulse wave velocity (PWV) and arterial wall dynamics.

Despite these remarkable advances in cuffless wearable BP sensor 
technology, non-invasive wearable BP sensors have not yet been widely 
implemented in clinical practice given their low accuracy and reliability, 
owing to the generation of unrefined pulse waveforms and ambiguous 
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The past 10 years have seen the development of new materials 
and composites for piezoelectric pulse sensors that improve their 
performance and applicability for wearable health monitors. Inor-
ganic piezoelectric materials, such as lead zirconate titanate (PZT) 
and barium titanate (BTO) typically have large piezoelectric constants, 
making them highly sensitive to mechanical stress69. However, these 
materials are brittle and often contain harmful substances such as lead, 

limiting their use in biosignal measurement. To address these issues, 
researchers have developed ultrathin films53 and nanocomposites22 
of these inorganic materials. These ultrathin structures maintain high 
sensitivity while increasing flexibility and reducing brittleness. For 
example, PZT thin films have been successfully transferred onto flexible 
substrates that are highly sensitive and mechanically stable. These thin 
films are fabricated using techniques such as the laser lift-off process, 
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Fig. 1 | Wearable BP sensors for cardiovascular health care. a, Biosignals related 
to blood pressure (BP), including pulse waveforms and electrocardiographic data, 
are essential for monitoring cardiovascular health. Wearable BP sensors employ 
various data acquisition principles. Mechanoelectric methods detect mechanical 
pressure or deformation using piezoelectric, piezoresistive, triboelectric or 
capacitive sensors. Optoelectronic methods utilize photoplethysmography to 
optically measure changes in blood volume. Ultrasonic methods apply ultrasound 
technology to monitor arterial wall motion and blood flow. Electrophysiological 
methods measure electrical activities, such as electrocardiogram signals, to 

assess cardiac and vascular dynamics. These diverse approaches enable the 
precise capture of biosignals necessary for accurate BP estimation. b, Wearable BP 
sensors using various BP estimation methods. The three images on the right show 
flexible piezoelectric sensors based on pulse wave analysis, flexible ultrasound 
sensors that leverage arterial wall dynamics, and wearable limb sensors that 
employ pulse wave velocity assessment. C, capacitor; LED, light-emitting diode; 
PD, photodetector, R, resistor. Part b adapted with permission from ref. 237, John 
Wiley and Sons; adapted from ref. 141, Springer Nature; and adapted from ref. 175, 
Springer Nature.
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which involves the transfer of high quality piezoelectric thin films 
onto ultrathin plastic substrates53. In addition, the encapsulation of 
thin film PZT sensors in a polymethylsiloxane (PDMS) layer improved 
longevity and stability for continuous health-monitoring applications. 
Furthermore, PZT nanocomposites utilize a nanocomposite matrix 
of PZT nanoparticles dispersed in a PDMS matrix, functionalized with 
3-glycidoxypropyltrimethoxysilane and the non-ionic surfactant Triton 
X-100 to enhance nanoparticle dispersion and reduce aggregation22. 
This composite structure has been shown to improve the uniformity 
and stability of the sensor, facilitating reliable pulse wave monitoring 
without the issues of aggregation and precipitation that are found in 
less advanced composites. In addition, these nanocomposites have 
been engineered to improve vapour permeability, which is crucial for 
long-term skin attachment and reducing skin irritation70.

The development of lead-free piezoelectric materials is a crucial 
area of research due to health and environmental concerns associ-
ated with lead-based materials. Polyvinylidene fluoride (PVDF) and 
its copolymers have emerged as promising alternatives to lead-based 
materials71. Although these polymers show lower piezoelectric coef-
ficients than their lead-based counterparts, they offer substantial 

advantages in terms of flexibility and biocompatibility. Innovations in 
polymer processing techniques, such as electrospinning, have facili-
tated the development of PVDF nanofibres with improved piezoelec-
tric responses by increasing their surface area and achieving aligned 
molecular structures71.

Hybrid materials that combine the benefits of inorganic and 
organic components are also promising. For example, the incorpora-
tion of inorganic nanoparticles, such as BTO or zinc oxide, into a PVDF 
matrix can improve the piezoelectric response while maintaining 
flexibility and biocompatibility22,72. A notable development in this 
area is the creation of hierarchical composites, whereby the piezoelec-
tric nanoparticles are distributed in a controlled manner within the 
polymer matrix to optimize the overall performance of the material73.

Triboelectric pulse sensors. Triboelectric effects occur when two 
dissimilar materials come into close contact, generating electric-
ity through electron transfer between their overlapping electron 
clouds74,75. This process involves two stages: contact and separation. 
In the contact state, the materials neutralize their opposite charges, 
resulting in no current flow. In the separation state, the materials 

Table 1 | Biosignal acquisition principles

Principle Sensing mechanism Materials Fabrication methods Research direction

Mechanoelectric Piezoelectric: materials 
generate an electric charge in 
response to mechanical stress

PVDF–TrFE71, BTO–PVDF22 
and PZT53,58,171,237

Spin-coating (laser 
lift-off)53,237, mechanical 
thinning171 and 
electrospinning72

Improvements in flexibility 
and sensitivity to enhance skin 
conformity and performance in 
wearable applications

Triboelectric: electric charge 
generated through the contact 
and separation of two different 
materials

PDMS81, nylon78,81, PEDOT–PSS83, 
PTFE78,80,87 and Kapton88

Spin-coating83, screen- 
printing82, weaving89, reactive 
ion etching76,80,87,88 and 
self-assembly78

Development of textile-based 
sensors with conductive 
nanomaterial coatings to 
improve sensitivity and 
durability

Piezoresistive: changes in 
electrical resistance in response 
to mechanical strain

PDMS–rGO96, MXene90,93, 
PANI–PDMS98, rGO–PU97 
and PUA94

Solution dip-coating90,96,97, 
bidirectional prestretch 
reaction93, spin-coating98 and 
micromoulding94

Improvement in sensitivity 
through the use of 
micropatterned and porous 
dielectric materials

Capacitive: changes in 
electrical capacitance when a 
dielectric material is deformed

PDMS43,104–106,108 (with CNT, 
AgNW and ITO), PVDF or IL113, 
and PVA or phosphoric acid114

Microfluidic-assisted 
emulsion self-assembly108, 
spin-coating43, 
moulding104–106,114 and 
immersing113

Development of microscale 
and nanoscale sensor 
architectures and iontronics to 
improve sensitivity

Photoplethysmography Light-based technology to 
detect blood volume changes 
in the microvascular bed 
of tissue

TFB121, F8BT121, TBT121, 
TCTA–Ir(ppy)3

119 and 
NPB–Ir(MDQ)2acac–B3PYMPM119

Blade coating121, spin 
coating121,122 and thermal 
evaporation119

Development of organic-based 
LED and signal processing 
techniques to minimize 
external noise and 
motion-related distortions

Ultrasonic Utilizes high-frequency sound 
waves for various diagnostic 
purposes, measuring the 
frequency shift of reflected 
waves in Doppler mode to 
determine tissue motion and 
blood flow

PZT (1–3 composite)99,142,143,146 Multilayered 
microfabrication142,  
welding141 and dicing144

Development of flexible or 
stretchable arrays of ultrasonic 
transducers for advanced 
imaging and efficient power 
sources for the integration of 
compact devices

Electrophysiology Measurement of electrical 
activity of the heart through 
skin contact

Liquid metal159 and CNT 
or AgNW160

Electrospinning159, spray 
coating160 and molding160

Development of dry electrode 
materials to improve signal 
quality and user comfort

AgNW, silver nanowire; B3PYMPM, 4,6-bis(3,5-di(pyridin-3-yl)phenyl)-2-methylpyrimidine; BTO, barium titanate; CNT, carbon nanotube; F8BT, poly((9,9-dioctylfluorene-2,7-diyl)-alt-
(2,1,3-benzothiadiazole-4,8-diyl)); IL, 1-butyl-3-methylimidazolium hexafluorophosphate; Ir(MDQ)2acac, bis(2-methyldibenzo[f,h]quinoxaline); Ir(ppy)3, tris[2-phenylpyridinato-C2,N]; 
ITO, indium tin oxide; LED, light-emitting diode; NPB, N,N′-di(1-naphthyl)-N,N′-diphenyl benzidine; PANI, polyaniline; PDMS, polydimethylsiloxane; PEDOT, poly(3,4-ethylenedioxythiophene);  
PSS, poly(styrenesulfonate); PTFE, polytetrafluoroethylene; PVA, polyvinyl alcohol; PVDF, polyvinylidene fluoride; PZT, lead zirconate titanate; PU, polyurethane; PUA, polyurethane acrylate; 
rGo, reduced graphene oxide; TBT, poly((9,9-dioctylfluorene-2,7-diyl)-alt-(4,7-bis(3-hexylthiophene-5-yl)-2,1,3-benzothiadiazole)-2′,2′-diyl); TCTA, tris(4-carbazoyl-9-ylphenyl) amine; 
TFB, poly(9,9-dioctylfluorene-co-n-(4-butylphenyl)-diphenylamine); TrFE, trifluoroethylene.
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become either negatively or positively charged, creating a current 
flow due to the electron potential difference (Fig. 2a).

Triboelectric sensors for pulse-to-electricity conversion benefit 
from structural simplicity, customizable biocompatibility, and being 
lightweight and low cost. Advances that have allowed the integration 
of nanostructured materials have led to increases in surface area 
and improvements in the triboelectric effect76–79. Furthermore, the 
incorporation of nanograted surfaces on triboelectric layers has also 
improved the charge density and output performance of the sensors. 
These nanostructures provide a larger contact area at the microscopic 
level to increase electron transfer and overall sensitivity.

In addition to nanostructuring, advances in material design 
strategies have been crucial in improving triboelectric pulse sensors. 
Structures inspired by kirigami, the Japanese art of cutting and fold-
ing paper, have been introduced to improve sensor flexibility and 
adaptability to human skin80. Embedding functional intermediate 
layers into the friction layer can improve inductive charge, electrical 
output and charge retention by using high dielectric materials, or by 
adding charge storage, electron blocking and electron transmission 
layers81,82. High dielectric constant electron blocking layers can improve 
polarization, whereas multilayer structures with electron trapping 
layers made from materials, such as PDMS, can improve output by 
trapping and transferring electrons more efficiently81. Advances in 
interlayer materials, such as multifunctional layered graphene and 
composites of multiwalled carbon nanotube with PVDF copolymer-
ized with trifluoroethylene, have increased triboelectric performance 
compared with devices without interlayers or those using conventional 
single material interlayers82. Organic polymers, with their chemical 
and physical electron trapping sites, can further enhance triboelectric 
performance83,84.

The development of textile-based triboelectric sensors is another 
major advance in material science. By embedding conductive fibres or 
yarns into fabrics, researchers have created wearable sensors that main-
tain breathability, tactility and mechanical robustness, with improved 
sensitivity due to surface roughness85. These textiles are typically made 
from synthetic fibres coated with nanomaterials to boost their triboe-
lectric properties86–88. For example, a machine-knitted washable sensor 
array textile that has high pressure sensitivity and durability has been 
developed for precise epidermal physiological signal monitoring89. 
Importantly, the textile form allows easy integration into clothing to 
facilitate unobtrusive health monitoring.

Piezoresistive pulse sensors. Piezoresistive sensors convert applied 
pressure on their surface into a change in resistance through the pie-
zoresistive effect, thereby generating an electrical signal for pressure 
measurement and monitoring90,91 (Fig. 2a). Advances in piezoresistive 
pulse sensors over the past 10 years have focused on the development 
of materials and structures that can improve their sensitivity and flex-
ibility, including the use of micropatterned structures. By employing 
lithography or template methods, researchers have created microsized 
or nanosized designs, such as pyramids92,93, pillars94, hollow spheres95, 
porous structures90,96,97 and wrinkles98, in the dielectric layer. These 
patterns substantially increase the sensor’s surface area, resulting in 
greater sensitivity to pressure changes due to the large surface area 
changes induced by small forces.

The integration of advanced composite materials has also had a 
crucial role in the development of piezoresistive sensors. The com-
bination of materials, such as MXene90,93 and graphene97,99, known 
for their high conductivity and mechanical strength, with flexible 
substrates can lead to the generation of highly sensitive and durable 
sensors. Fabric-based piezoresistive sensors are gaining attention for 
their potential in wearable applications100–102. By integrating conduc-
tive fibres or yarns into textiles, researchers have created sensors 
that are both breathable and mechanically robust. These textiles can 
detect pulse waves with high sensitivity due to the increased surface 
roughness and the inherent flexibility of the fabric.

Capacitive pulse sensors. A capacitive sensor, consisting of top and 
bottom electrodes, an insulator and a substrate, alters its capacitance 
when pressure is applied perpendicularly, as the deformation of the film 
changes the distance between the electrodes (Fig. 2a). This change is  
governed by the relationship in which the capacitance depends on the 
space permittivity, the relative permittivity of the dielectric material, 
the overlapping area of the electrodes and the separation between the 
electrodes56. Typically, capacitive sensors use a parallel plate design, 
in which any changes in the overlapping area and the separation due to 
applied force result in non-linear capacitance variations103. These sen-
sors are valued for their simple design and production, but have limi-
tations, such as small capacitance variations and reduced sensitivity 
with smaller sizes.

Various design strategies have been employed to improve the 
performance of the material. Micropatterned structures, such as 
micropyramids, micropillars and microhemispheres, have been 

Table 2 | Comparative analysis of sensing principles in wearable BP sensors

Principle Advantages Disadvantages

Mechanoelectric: piezoelectric Low power consumption (self-powered); wide range of 
frequency response; high sensitivity

Limited dynamic pressure; high impedance

Mechanoelectric: triboelectric Low power consumption (self-powered); cost-effective; 
high sensitivity

Limited dynamic pressure; durability issues; noise sensitivity

Mechanoelectric: piezoresistive Dynamic and static measurement; simple methodology High power consumption; sensitive to temperature

Mechanoelectric: capacitive Dynamic and static measurement Sensitive to humidity and temperature; small capacitance variation

Photoplethysmography Simple methodology; cost-effective Influenced by ambient light and skin tone; high power 
consumption; sensitivity to noise

Ultrasonic High depth penetration; high resolution Complex signal processing; high power consumption; high cost

Electrophysiology Accurate heart activity monitoring; direct measurement; 
high temporal resolution

Complex signal processing; limited utility for direct 
blood pressure estimation
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shown to increase sensitivity when integrated into dielectric layers 
due to increased surface area104–107. Porous microstructures introduce 
additional air voids, further increasing sensitivity by allowing greater 
deformation under pressure43,108,109. The main advantage of porous 
layers is the increased compressibility of the dielectric layer due to 
the incorporation of air voids, which have a lower dielectric constant 
and do not resist deformation. Elastomers, foams and sponges, such as 
PDMS and silicone-based elastomers, are often structured as porous or 
sponge-like dielectrics and offer high compressibility and recoverabil-
ity. Wrinkled dielectric materials, such as silver nanowires embedded in 
PDMS, can increase sensitivity through increased deformation under 
pressure110,111. However, sensitivity remains limited by the pressure 
measurement range due to low compressibility, which decreases the 
reliability of sensors and electronic skins after repeated loading and 
unloading cycles. To address this issue, several research groups have 
explored the use of ionic fluids and iontronics112. Fluidic and ionic 
liquids, such as those used in iontronic materials, serve as dielectrics 
to increase flexibility, signal intensity and sensitivity by leveraging 
electric double layer capacitance113,114.

Optoelectronic principles
PPG is a promising non-invasive method for cardiovascular monitor-
ing by determining volumetric changes in circulating blood through 
variations in light intensity caused by the pulsatile movement of blood 
vessels. Optoelectronic devices, such as light emitters and photode-
tectors, have been integrated with PPG devices to transduce light into 
blood vessels and detect scattered photo signals. For effective light 
delivery, light-emitter materials are typically selected within the red 
and near-infrared wavelength ranges, which allows penetration to 
2–3 mm below the skin surface115 (Fig. 2b, left panel). Additionally, green 
light has been found to be highly effective for measuring superficial 
blood flow due to its strong absorption by haemoglobin, providing 
a better signal-to-noise ratio than infrared light116. As a result, green 
light-emitting diodes (LEDs) are increasingly used in commercial PPG 
devices for their high accuracy and reliability in detecting pulse rates.

The scattered photo signals are obtained from photodetectors 
using either the transmission or reflection measurement principle 
(Fig. 2b, central panel). In transmission mode, photodetectors are 
located opposite the light sources, providing clear signals but limit-
ing the detection area to the fingertips, cheeks or nasal septum where 

incident photons can enter the photodetectors60. By contrast, reflec-
tion mode allows measurements in more body regions by arranging 
light sources and photodetectors in parallel, although signal reliability 
is substantially affected by motion artefacts and pressure disturbances.

The PPG waveform can be divided into two components: direct 
current and alternating current. The direct current element contains 
information acquired from reflected or transmitted light that varies 
with tissue structure, blood volume and respiration rate. The alternat-
ing current element depicts fluctuations in blood volume that occur 
between the systolic and diastolic phases of the cardiac cycle. These 
components provide a comprehensive overview of cardiovascular 
function and are crucial for accurate interpretation of PPG signals60 
(Fig. 2b, right panel).

PPG sensors have several advantages compared with mechano-
electric sensors that make them particularly useful for non-invasive 
cardiovascular monitoring. One of the primary benefits is their simplic-
ity and cost-effectiveness, given that they use readily available opto-
electronic components, such as LEDs and photodetectors. PPG sensors 
can measure various cardiovascular parameters, including heart rate, 
heart rate variability, blood oxygen saturation, respiration rate and 
BP via advanced algorithms and signal processing techniques24,116–118.

Over the past decade, optoelectronic devices, such as flexible 
organic LEDs119–121, polymer LEDs122–124 and organic–inorganic hybrid 
devices125, have contributed to improved mechanical durability and 
sensitivity of PPG sensors. Organic materials, valued for their flexibility, 
lightweight nature and cost-effective fabrication methods, have been 
utilized to create skin-compatible sensors that maintain high perfor-
mance under mechanical deformation. Organic–inorganic hybrid 
devices combine the flexibility and lightweight nature of organic mate-
rials with the superior electronic properties of inorganic components, 
such as high charge mobility, stability and efficient light absorption. 
This synergy results in devices with enhanced mechanical robustness, 
high sensitivity and improved operational efficiency, making them 
ideal for applications requiring both performance and adaptability, 
such as wearable sensors125. These advances hold great potential for 
more reliable and efficient wearable health monitoring solutions.

Despite these advantages, the accuracy of PPG sensors is limited by 
their susceptibility to motion artefacts126,127, by variations in skin tone 
and thickness128,129 and by environmental interference from ambient 
light130 and temperature131. To address these limitations, researchers 

Fig. 2 | Principles of biosignal data acquisition related to BP. 
a, Mechanoelectric principle for pressure sensors. Piezoelectric sensors convert 
mechanical stress into electrical signals through the piezoelectric effect. These 
sensors use piezoelectric materials that generate voltage when deformed, 
enabling detection of pressure changes. Triboelectric sensors operate by 
transferring charge when two materials make contact and separate, producing 
signals correlated with pressure variations. Piezoresistive sensors detect 
changes in electrical resistance caused by the deformation of a conductive 
material under pressure, providing pressure data. Capacitive sensors function 
by measuring changes in capacitance between two electrodes separated by 
a dielectric layer, with deformation altering capacitance to reflect pressure 
changes. b, Optoelectronic principles for photoplethysmography (PPG) 
sensors. The illustration on the left portrays light with different wavelengths 
penetrating tissues, emphasizing the importance of selecting suitable 
wavelengths for accurate biosignal acquisition. The panel on the right depicts 
the placement of a light-emitting diode (LED) and photodetector (PD) for 
reflective and transmission modes. The PPG signal consists of direct current 

(DC) and alternating current (AC) components, representing baseline tissue 
light absorption and changes in blood volume due to pulsatile flow. c, Acoustic 
principle for ultrasonic sensor. Ultrasonic sensors utilize piezoelectric materials 
to emit high-frequency sound waves, generating an acoustic profile for imaging 
arteries (left panel). Received ultrasound echoes from the anterior and posterior 
vessel walls of the ulnar artery, used to measure arterial dimensions (right panel). 
d, Electrophysiological principle for electrocardiogram (ECG) sensors. The 
left panel depicts the electrical conduction process in the heart, which drives 
cardiac cycles. The right depicts an ECG recording of electrical activity, including 
P waves, QRS complexes and T waves, used for cardiovascular monitoring. 
M, mechanical stress; AV, atrioventricular; SA, sinoatrial; Tx, transducer. Part a  
adapted with permission from ref. 68, John Wiley and Sons; adapted with 
permission from ref. 76, Elsevier; adapted with permission from ref. 90, Elsevier; 
and adapted from ref. 103, CC BY 4.0 (https://creativecommons.org/licenses/
by/4.0/). Part b adapted from ref. 60, CC BY 3.0 (https://creativecommons.org/
licenses/by/3.0/). Part c adapted from ref. 141, Springer Nature.
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have developed advanced algorithms and signal processing techniques 
to filter out artefacts126,132,133. Furthermore, they have assessed adaptive 
calibration and multiwavelength approaches134, and have tested the 
feasibility of combining PPG with other sensing modalities, such as 
accelerometers135 and piezoelectric transducers136, to improve accuracy 
and reliability.

Ultrasonic principles
Ultrasound waves can penetrate deeply into biological tissues to 
allow non-invasive acquisition of numerous cardiovascular param-
eters. Ultrasonic sensors detect deep-tissue signals by measuring the 
reflection or attenuation of incident waves upon transmission into 
the deep skin that is caused by acoustic impedance differences between 
tissue layers. These reflected signals contain embedded anatomical 
and physiological information137–140.

Transducers are used to transmit ultrasound waves into the human 
body and receive the reflected echoes. The number of transducers 
determines the penetration depth of the ultrasound waves, which 
focuses the beam intensity. A single transducer allows a penetration 
depth of up to 40 mm under the skin141 (Fig. 2c, left panel), whereas 
ultrasound waves from a transducer array allow a penetration depth of 
up to 164 mm142. During wave propagation into vessels, acoustic echoes 
are generated at the anterior and posterior walls by reflection (Fig. 2c, 
right panel). These echoes facilitate the precise identification of the 
position, dimensions, morphology and structure of vessels, allowing 
the measurement of BP waveforms by detecting changes in vessel diam-
eter over time141. In addition, ultrasound sensors provide high resolu-
tion images of deep tissue structures, making them ideal for measuring 
numerous functional cardiac parameters, such as stroke volume and 
cardiac output141,143,144. Traditional ultrasound probes require skilled 
operators, thus limiting their usage to clinical settings. However, the 
development of flexible and stretchable ultrasonic transducers opens 
up their potential applicability for wearable technologies, enabling 
continuous, operator-independent monitoring.

One of the key breakthroughs in wearable ultrasound technology is 
the development of stretchable ultrasonic transducers using materials 
such as PDMS and one to three piezoelectric composites137,141,145,146. These 
materials provide low acoustic impedance, which closely matches that 
in human tissues, allowing better signal transmission and reception. 
The incorporation of epoxy resins and PDMS between piezoceramic 
elements increases the flexibility of the composites, enabling them 
to conform to various body shapes and maintain consistent contact 
with the skin during movement. Furthermore, styrene–ethylene–
butylene–styrene (SEBS) has been integrated into transducers to 
improve their performance. SEBS provides exceptional elasticity 
and durability, ensuring that the transducers can withstand repeated 
stretching and bending without compromising their functionality143. 
In addition, the solvent soldering process using SEBS-based materials 
facilitates the secure attachment of the piezoelectric elements to the 
substrate, allowing the maintenance of robust electrical connections 
even under mechanical stress.

Electrophysiological principles
The heart generates electrical signals at the sinoatrial node, which sub-
sequently propagates across the cardiac conduction system. This sys-
tem includes the atrioventricular node, the atrioventricular bundle, the 
right and left bundle branches, and the Purkinje fibres147–149 (Fig. 2d, left 
panel). An ECG records the differences in electrical potential produced 
by heart activity, providing information on heart rhythm and rate. 

The ECG waveform consists of the P wave (atrial depolarization), the 
QRS complex (ventricular depolarization) and the T wave (ventricular 
repolarization). Another important parameter is the R-R interval, which 
denotes the time between successive R waves, and is used to estimate 
heart rate150–153 (Fig. 2d, right panel).

During an ECG recording, electrodes attached to the skin detect 
electrophysiological changes caused by the depolarization and repolar-
ization of heart muscles. Three types of electrodes have been assessed: 
wet, dry and non-contact electrodes154. Wet electrodes, which consist of 
an electrolyte gel, provide clear signal quality by improving conformal 
contact with human skin and minimizing air gaps. Although silver-based 
or silver chloride-based wet electrodes are most commonly used as ref-
erence electrodes, hydrogels are promising materials for wet electrodes 
because they have similar mechanical properties to human tissue155. Wet 
electrodes are limited by short usage time, given that the gel tends to dry 
out over time. To address this issue, dry electrodes that do not require 
electrolyte solution or gel have been developed156–160. Dry electrodes 
are made from metal or conductive polymers, with soft conductive 
polymers preferred for better skin adhesion161. Non-contact electrodes, 
which do not directly contact the skin, offer advantages such as reus-
ability, minimal motion artefacts and reduced risk of electrical issues, 
irritation or allergic reactions162. Non-contact electrodes with elastic 
dielectric layers can further reduce motion artefacts. Silicone-insulated 
gold electrodes are less sensitive to body motion than wet electrodes, 
but still maintain capacitive coupling with the skin, as shown by clearer 
ECG signals compared with conventional gel electrodes163.

BP estimation theories
The cuff-based oscillometric strategy to measure BP was historically 
used owing to its high accuracy164. This method measures three types of 
BP: systolic BP (SBP; the maximum pressure during heart contraction), 
diastolic BP (DBP; the maximum pressure during heart relaxation) 
and mean arterial pressure (the average pressure during one cardiac 
cycle and a major indicator of organ perfusion). However, the need 
for repeated cuff inflation and deflation limits the use of oscillometric 
devices to measuring only intermittent BP readings, and not for con-
tinuous monitoring. To overcome this issue, alternative approaches 
such as PWA, PWV and arterial wall dynamics have been adopted, using 
measurements derived from PPG devices, ECG and ultrasonography. 
These approaches allow continuous, non-invasive BP monitoring and 
real-time cardiovascular health tracking.

Although these strategies are promising, the measurement of sin-
gle peripheral waveforms alone might make it difficult to differentiate 
between changes in stroke volume and peripheral resistance, leading to 
inaccuracies in BP estimation. Single peripheral waveforms can change 
due to various cardiovascular factors and are usually coupled with 
alternating currents, but measuring constant pressure levels requires 
coupling with direct currents, which peripheral waveforms typically do 
not provide165. Nonetheless, emerging studies continue to show correla-
tions between single peripheral waveforms measured from peripheral 
arteries and key cardiovascular indicators, such as BP and variations in 
stroke volume166–168. As a result, advances in sensor materials, coupled 
with improvements in signal processing and calibration technologies, 
will help to overcome these limitations.

PWA theory
PWA assesses the characteristics of arterial pulse waveforms to estimate 
cardiac output and other haemodynamic variables, such as augmenta-
tion index and BP. This technique analyses two distinct waves within 

http://www.nature.com/nrcardio


Nature Reviews Cardiology | Volume 22 | September 2025 | 629–648 637

Review article

the arterial pulse: the initial forward wave, generated by ventricular 
contraction, and the reflected wave, which originates from the periph-
eral circulation and travels back towards the heart. PWA focuses on 
specific features of these waves, such as the timing and amplitude of 
systolic and diastolic peaks, which are highly correlated with BP and 
are used to estimate BP through linear regression169 (Fig. 3a, left panel). 
ML algorithms have also been used to improve the accuracy of BP esti-
mation by considering a broader range of features and patterns within 
the pulse waveform170. One important advantage of PWA over other 
modalities is that it can potentially allow accurate BP estimation using 
just a single sensor, increasing portability and ease of use.

In addition, studies in PWA have established correlations between 
piezoelectric pulse waves and BP waves to further refine BP estimation 
methods (Fig. 3a, right panel). Piezoelectric arterial pulse wave dynam-
ics are traditionally considered similar to typical BP waves. However, 
achieving accurate continuous BP monitoring on the basis of arterial 
pulse waves remains challenging owing to unclear correlations between 
piezoelectric pulse waves and BP waves. Although piezoelectric pulse 
waves resemble typical BP waves, the exact relationship between the 
two remains unclear owing to the complex nature of how these waves 
interact with arterial dynamics. To address this issue, the correlation 
between piezoelectric pulse waves and BP waves has been elucidated 
through theoretical, simulation and experimental analysis171.

PWV theory
PWV refers to the speed at which the pressure wave propagates along 
the circulatory system85, and serves as an indicator of arterial stiffness. 
An increase in PWV implies progressive stiffening and reduced elasticity 
of blood vessels, and has been associated with cardiovascular condi-
tions, such as hypertension and atherosclerosis172. PWV is determined by 
recording pulse waves at two sites, then dividing the distance between 
the measuring points by the time it takes for the pulse wave to travel 
between them173–175. Depending on the measurement location, the time 
differences of pulse waves are classified into two categories: pulse arrival 
time176–178 and pulse transit time178–182. Pulse arrival time depicts the time 
it takes for a pulse wave to travel from the heart to a peripheral site, 
whereas pulse transit time depicts the time it takes for a pulse wave to 
travel between two arterial locations183 (Fig. 3b). These values are utilized 
as independent variables to establish a relationship with BP estimation.

One of the distinctive advantages of PWV over PWA is its ability to 
provide additional information on cardiovascular parameters beyond 
BP. PWV can help measure the risk of atherosclerosis and arterial stiff-
ness, as well as overall cardiovascular risk. By assessing the speed of 
pressure waves through the arteries, PWV gives a clearer picture of arte-
rial health than PWA, making it useful for the early diagnosis and 
management of cardiovascular diseases184,185.

Arterial wall dynamics theory
Wearable ultrasound sensors have enabled intuitive BP prediction by 
analysing real-time images of vein dynamics, particularly changes in 
blood vessel diameter (Fig. 3c). The time-dependent variations in vessel 
diameter correlate with BP using the following equation:
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In this equation, pd is the diastolic pressure, A(t) is the arterial 
cross-section at any given moment, Ad is the diastolic arterial 
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where by d(t) is the diameter waveform of the target artery.
On the basis of this theory, central BP monitoring technology 

was introduced using wearable ultrasound sensors made with one to 
three piezoelectric composites as soft structural components. These 
sensors can continuously and accurately monitor BP from various body 
locations, such as the carotid, brachial, radial and pedal arteries, by 
measuring vessel diameter changes using the equation above141. Addi-
tionally, an epidermal patch with customized PZT ultrasound sensor 
transducers has been developed to track the carotid artery walls and 
calculate arterial BP waveforms based on vessel distension. This patch 
reliably measures BP during physical activity and has been validated 
against commercial cuff BP monitors144.

Compared with PWA and PWV methods, the ultrasound approach 
offers several advantages. Ultrasound sensors can directly measure 
changes in arterial diameter to provide more accurate and immedi-
ate insights into BP variations. Whereas PWA and PWV rely on indirect 
assessments and are susceptible to motion artefacts and signal noise, 
the ultrasound approach is more precise and reliable, particularly 
during physical activity141.

ML algorithms for BP estimation
ML techniques for measuring BP, renowned for their data-driven nature, 
have substantially improved the accuracy of BP estimation by adeptly 
interpreting distinct waveform patterns present in biosignals186–192. 
These techniques analyse biosignals to identify features crucial for BP 
estimation, such as time domain characteristics, ECG peaks and mark-
ers indicative of systolic and diastolic phases. This approach highlights 
the complex biological factors that work together to influence BP, 
and captures both linear and non-linear relationships inherent in the 
data. However, models that do not incorporate pulse waveforms often 
struggle to accurately estimate BP, particularly in individuals with high 
variability, such as during physical activity or stress. Baseline models 
that rely solely on calibration values or other parameters might perform 
adequately in certain subgroups, such as in younger or normotensive 
individuals, but they might not be as accurate in capturing the physi-
ological changes that occur in other populations, such as in older indi-
viduals or those with hypertension and comorbidities193. Models that 
include pulse waveform data are better suited for extracting accurate 
signals that reflect dynamic changes, such as those induced by physical 
activity, stress or underlying cardiovascular conditions. This capability 
improves the robustness and adaptability of the model across a wider 
range of physiological states.

In general, ML methodologies for BP estimation can be catego-
rized into two main subtypes: traditional ML and advanced deep 
learning (DL) approaches. Conventional ML techniques require 
meticulous manual extraction of features, a process that can be 
labour-intensive. By contrast, DL approaches eliminate the need for 
manual feature engineering due to its capability to autonomously 
learn intricate representations and relationships directly from raw 
data. This capability facilitates comprehensive end-to-end training 
for BP estimation, providing a unified and integrated methodology 
for estimating BP.

Traditional ML-based methods
Traditional ML-based algorithms depend on the utilization of 
information-rich features that require manual extraction and 
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meticulous engineering, making data preprocessing a pivotal step194. 
Key preprocessing tasks often involve signal de-noising to improve data 
quality195,196, followed by normalization to ensure consistency across 

the dataset194,197. The extracted features are subsequently input into 
ML models, which aim to make predictions or estimations based on 
the processed feature input.

Features of the pulse waveform
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Fig. 3 | Biosignal analysis theories for BP estimation. a, Pulse wave analysis 
for blood pressure (BP) estimation. The left panel depicts the extraction of 
various feature points from radial pulse waveforms for pulse wave analysis. 
The right panel illustrates the piezoelectric dynamic response to arterial pulse 
using a piezo-MEMS sensor, which measures pulses by detecting mechanical 
deformations. The typical arterial pulse waveform shows an idealized pattern 
with three gradually weakening positive peaks, reflecting arterial pressure 
changes over time under optimal conditions and serving as a standard for 
analysing arterial pulse dynamics and BP estimation. By contrast, the common 
arterial pulse waveform features a strong reverse peak following the initial 

positive peak, representing real-world measurements often influenced by 
physiological variations, sensor placement or motion artefacts, highlighting the 
challenges of achieving consistent and artefact-free arterial pulse signals. b, Pulse 
wave velocity method for BP estimation. The difference between pulse arrival 
time (PAT) and pulse transit time (PTT) is shown. c, Arterial wall dynamics for BP 
estimation. The panel on the left depicts the principle underlying the recording of 
a pulsating blood vessel, which can be translated into localized BP waveforms. The 
middle and right panels depict the measurement of central BP on the human neck 
using an ultrasonic device. Ultrasound devices use a highly directed ultrasound 
beam to locate the dynamic anterior and posterior walls of blood vessels.
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Linear regression is one of the most widely utilized ML algorithms 
for establishing the latent stochastic linear relationship between input 
variables and a target predictor. In BP estimation, physiological param-
eters such as pulse transit time, pulse arrival time and PWV are adopted 
with the assumption of a linear correlation with BP values198. Support 
vector machines are widely utilized in ML for tasks including regression, 
for which they aim to determine the optimal fitting line or hyperplane 
in multidimensional spaces that can minimize the discrepancy between 
predicted outcomes and actual data points within the feature space. 
For example, support vector machine regression has been applied 
to PPG signals, including those transformed using Shannon discrete 
wavelet, a method that decomposes signals into different frequency 
components while preserving their time information, allowing analysis 
of signals at multiple resolutions186, as well as to features extracted 
from both PPG and ECG signals to estimate BP199. Random forest is an 
ensemble learning approach that generates a collection of decision 
trees during the training phase and aggregates their predictions using 
the mode for classification tasks or the average for regression tasks to 
increase predictive accuracy while mitigating the risk of overfitting. 
Random forest has been employed to explore the relationship between 
PPG signals, ECG signals and BP measurements187.

Boosting is a ML technique that improves model accuracy by 
combining multiple weak learners, which are models that perform 
slightly better than random guessing. This method involves training 
a series of models sequentially, with each model focusing on correct-
ing the errors made by the previous model. Adaptive boosting (also 
known as AdaBoost) iteratively adjusts the weights of misclassified 
instances, thus improving their subsequent classification188. This 
sequential approach ensures each learner focuses on correcting the 
mistakes of its predecessors. An AdaBoost multiclassifier has been 
applied to PPG signals, using it as an error correcting output coding 
technique188. Furthermore, other algorithms such as those based on 
k-nearest neighbours200 and regression trees201 have also been used 
for BP estimation.

DL-based methods
DL methods employ multilayered artificial neural networks that 
can autonomously learn from vast datasets, and thus excels in pat-
tern recognition and comprehension beyond what shallow learning 
models can achieve. This proficiency has been demonstrated across 
various domains, including computer vision202–207, natural language 
processing208–211 and speech recognition212–215, in which DL substantially 
outperforms traditional ML algorithms in handling complex analytical 
tasks216,217.

The recurrent neural network (RNN) is a foremost DL algorithm for 
processing time series data218,219, including biosignals such as BP220,221. 
This network is adept at retaining a memory of past input sequences 
within its hidden states, effectively capturing the underlying patterns of 
the data. A major challenge for RNNs is the vanishing gradient problem 
(whereby the gradients that are used to update the network become 
extremely small or ‘vanish’ as they are back-propagated from the output 
layers to the earlier layers), which impedes learning long-range depend-
encies. Long short-term memory (LSTM) networks, a prominent variant 
of RNNs, are specifically designed to overcome this limitation through 
an input-dependent gating mechanism. This advanced architecture 
enhances the model’s ability to retain and utilize information from 
earlier inputs over extended periods, thereby improving its capability 
in processing and predicting outcomes from time-dependent data. 
A personalized LSTM network approach for continuous BP monitoring 

has been introduced, whereby features are directly learned from PPG 
signals within deep neural networks189. In addition, a calibration-free 
BP estimation method using a bidirectional LSTM (BiLSTM) network on 
ECG and PPG signals and a multilayer residual BiLSTM (Fig. 4a) network 
on PPG and ECG signals has also shown promising results in accurately 
predicting BP without the need for calibration220,222.

The convolutional neural network (CNN), noted for its effective-
ness in processing large-sized, multidimensional data, has also been 
utilized for BP estimation. By utilizing the locality property of convolu-
tional kernels, CNNs excel at handling continuous data streams such as 
images202–205 and speech212,213,223, enabling precise and efficient feature 
extraction and analysis. Moreover, CNNs benefit from strong parallel 
computing capabilities, which substantially reduce both computa-
tional time and costs. Advanced variants such as dilated convolutions 
and temporal convolutional networks further enhance the utility of 
CNNs by improving their ability to capture causal and temporal infor-
mation, thus supporting more effective time-dependent modelling. 
For example, CNNs have been used to directly generate latent features 
from PPG pulse waves, with the aim of facilitating a more continuous 
and streamlined BP estimation process224–226. Additionally, a deep CNN 
network that processes raw signals without the need for PWV feature 
extraction has been developed, allowing end-to-end BP estimation 
without calibration190 (Fig. 4b).

The convolutional RNN, which integrates the strengths of CNN 
and RNN, has been used to analyse multidimensional time-series 
data. Its hybrid architecture design capitalizes on the local feature 
extraction capabilities of CNNs and the sequential data processing 
power of RNNs227–229. This synergy allows an efficient extraction and 
thorough analysis of hidden features within complex sequential data. 
For example, a CNN–LSTM model was implemented on the ECG–PPG 
difference signal, enabling simultaneous predictions of SBP and DBP 
from shared layers191.

A new DL architecture, known as the transformer, utilizes an atten-
tion mechanism that adeptly discerns semantic correlations among 
sequence elements, substantially enhancing its ability to understand 
complex data230. This advanced capability enables transformer models 
to excel in tasks that demand a deep comprehension of intricate data 
and their interconnections, outperforming previous models across 
various domains, including computer vision206,207, natural language 
processing208–211 and generation, and speech recognition214,215. Despite 
its effectiveness, the main challenge with the transformer model 
is its high computational demand, which complicates deployment in 
resource-constrained environments, such as small wearable devices 
for local BP estimation. To address this issue, a transformer-based BP 
estimation model was proposed that incorporates knowledge distil-
lation and transfer learning to facilitate efficient BP estimation with a 
lightweight architecture192 (Fig. 4c).

Generative model-based methods
Although the methods described above focus on understanding the 
relationship between input data and corresponding output values to 
enable accurate classification and regression predictions, another 
category of ML known as generative models aims to understand the 
underlying distribution of data and to generate new samples from 
the estimated training data distribution215. Traditional generative ML 
models include Gaussian mixture models (GMM) and hidden Markov 
models (HMM), which are foundational techniques for modelling the 
distribution of data. GMMs represent data as a mixture of several Gauss-
ian distributions, facilitating the parametric modelling of complex 
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datasets with diverse probability densities. Conversely, HMMs are 
tailored for sequential data by assuming an underlying Markov process 
with hidden states, making them especially useful for tasks requiring 
an understanding of temporal dynamics. For example, a combined 
GMM–HMM model has been employed to automatically discern and 
learn the latent structure within auscultatory waveform signals231.

Advances in deep generative architectures over the past 20 years 
include autoencoders, U-Net and generative adversarial networks 
(GANs). Although autoencoders and U-Net are not generative models 
in the strictest sense, we include them in this category since their adap-
tations have been effectively used to model the distribution of input 
data. This usage aligns them with the broader definition of generative 
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models. Autoencoders employ a neural network with an hourglass-like 
structure to extract latent features from input data, facilitating the 
reconstruction of the original input215. While these features might be 
random, generative modelling utilizing autoencoders aims to sys-
tematically model the latent distribution of the input. A prominent 
variant (variational autoencoders) not only captures the structure of 
the original data distribution but also enables the generation of new, 
data-like samples from random points within this distribution232.

U-Net can further improve the autoencoder structure by integrat-
ing symmetrical skip connections within its hourglass-like structure, 
which improves the model’s capacity to produce outputs that closely 
mirror the original data233. This design effectively connects deeper 
and shallower layers, optimizing the flow of information and refining 
the precision of reconstructions. A U-Net-based architecture has been 
adapted for translating PPG signals to arterial BP waveform signals, and 
achieved highly accurate waveform predictions that closely correlate 
with reference waveforms234 (Fig. 4d). Furthermore, a shallow 1D U-Net 
architecture has also been employed for continuous BP monitoring 
from PPG and ECG signals235.

GANs are composed of two key modules: a generator and a dis-
criminator. The generator aims to produce real data-like samples 
from a randomly sampled vector, whereas the discriminator aims to 
differentiate fake generated data from real data. This setup forms a 
minimax algorithm, whereby the generator continually improves its 
ability to produce data indistinguishable from actual data, and the 
discriminator increases its ability to detect fake data. This competi-
tive dynamic results in the creation of highly realistic data that closely 
mirrors actual data. However, this dynamic can also lead to unstable 
training and mode collapse, whereby the generator fails to produce a 
diverse and realistic data distribution, a key challenge in GANs. A cycle 
GAN, renowned for its capability in domain translation, has been used 
to convert clean PPG signals to ambulatory BP236 (Fig. 4e).

Advances in wearable BP sensors
Research in the field of wearable BP sensors aims to address the limita-
tions of traditional BP monitoring methods, which often rely on bulky, 

stationary equipment. These technologies focus on facilitating continu-
ous, real-time monitoring to provide more accurate and accessible BP 
measurements in different environments. Clinical validation studies 
have demonstrated the potential of these sensors to achieve reliable 
performance237,238. In particular, much research has been dedicated 
towards improving the materials used in wearable BP sensors, focusing 
on increasing sensitivity, flexibility and conformal adhesion to the skin. 
Notable advances include the development of wearable piezoelectric 
BP sensors (WPBPS) and ultrasonic sensor systems. WPBPS utilize a flex-
ible inorganic piezoelectric PZT film of thickness 2 µm transferred onto 
a plastic substrate237 (Fig. 5a). This sensor has shown a linear response 
with a sensitivity of 0.062 kPa−1 for pressures <10 kPa, significantly 
outperforming conventional flexible piezoelectric sensors237 (Fig. 5b). 
The sensor captured pulse waveforms with the maximum and minimum 
peaks of voltage correlating with SBP and DBP as measured by an oscil-
lometric BP monitor. Based on this correlation, initial calibration was 
performed by matching the maximum and minimum voltage peaks 
from the waveforms to the SBP and DBP values from a commercial 
oscillometric BP monitor through three measurements, and linear 
regression was used to estimate the BP readings. To verify the accuracy 
of the WPBPS, a clinical validation study was performed in 35 partici-
pants (both healthy individuals and those with hypertension). The mean 
difference between the WPBPS and a commercial sphygmomanometer 
was found to be −0.89 ± 6.19 mmHg for SBP and −0.32 ± 5.28 mmHg 
for DBP, highlighting the accuracy of the WPBPS (Fig. 5c). This WPBPS 
system, integrated into a wristwatch with a wireless communication 
circuit, can potentially be used for accurate, convenient and portable 
BP monitoring237 (Fig. 5d).

Similarly, advances in wearable ultrasound technology have led 
to the development of the wearable ultrasound system on a patch 
(USoP). The USoP integrates a miniaturized, flexible ultrasound probe 
with control electronics in a wireless format, capturing arterial pulse 
waveforms and calculating BP using the relationship between arterial 
diameter changes142 (Fig. 5e). In the case of wearable ultrasound sen-
sors, BP can be derived by detecting changes in vascular diameter based 
on the principle outlined in the equation above. However, calibration is 

Fig. 4 | Deep learning algorithms for advanced BP estimation. a, Architecture 
of a recurrent neural network (RNN) comprising long short-term memory 
(LSTM) layers. The bidirectional LSTM layer (blue dashed border) integrates 
forward (red boxes) and backward (green boxes) LSTM cells to capture both 
past and future temporal dependencies in the input temporal signal x, such as 
electrocardiogram (ECG) and photoplethysmography (PPG). This process is 
followed by a unidirectional LSTM layer (yellow dashed border), stacked across 
multiple layers, to predict the corresponding output signal y. b, A convolutional 
neural network (CNN)-based model for blood pressure (BP) estimation. The time 
flow branch (upper path, Xt) extracts temporal features from the raw signal and 
the frequency flow branch (lower path, Xf) extracts frequency domain features 
from the spectral information. Each branch consists of stacked convolution 
layers: dilated convolution layers for multiscale temporal relation extraction 
(Ext.) and strided convolution layers (Conv.) for downsampled concentration. 
Extracted features (zt, zf) are fused to predict systolic BP (SBP) and diastolic 
BP (DBP) through convolutional layers and global average pooling (GAP), with 
auxiliary predictors (f) optimizing branch-specific temporal and frequency 
characteristics. The encoders (ht, hf) extract features from time and frequency 
inputs, and the total loss function (L) is designed to enhance model performance 
by incorporating auxiliary losses. c, Architecture of the transformer-based 
method with knowledge distillation (KD-Informer). The transformer encoder 
consists of stacked layers comprising input embeddings, attention modules and 

self-attention distillation. SE-ResNet modules and morphological concatenation 
are used for refined feature extraction. The KD-Informer decoder reconstructs 
BP waveforms from the encoded representations. d, Architecture of the 
modified U-Net deep learning model that predicts the non-invasively measured 
arterial BP signal using the PPG signal. U-Net uses a symmetrical encoder–
decoder structure with skip connections, featuring progressive dimensionality 
reduction followed by upsampling, with intermediate feature maps of specified 
dimensions, enabling efficient feature extraction and signal reconstruction. 
e, The BP estimation pipeline based on the Cycle Generative Adversarial Network 
(CycleGAN), which enables unpaired signal-to-signal translation learning. The 
model learns bidirectional mappings between PPG and arterial blood pressure 
(ABP) waveforms through dual generator–discriminator pairs, whereby 
generators produce paired signals from input signals, while the discriminators 
differentiate between real and generated signals. The framework is optimized 
with a cycle consistency loss to preserve the underlying structure of the input 
signals during translation. MAP, mean arterial pressure; MHSA, multihead 
self-attention. Part a adapted with permission from ref. 220, IEEE. Part b adapted 
from ref. 190, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Part c 
adapted with permission from ref. 192, IEEE. Part d adapted with permission 
from ref. 234, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Part e 
adapted with permission from ref. 236, IEEE.
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required using a commercial BP cuff. Specifically, the constant α in the 
equation above is calibrated by inputting the actual SBP and DBP values 
obtained from the cuff, as described in the equation below, allowing 
the initial calibration and continuous monitoring of BP:

( )
α

A

A A
=

ln

−

p
pd

s d

s

d

In this equation, As is the systolic arterial cross-section, Ad is the diastolic 
arterial cross-section, ps is the systolic pressure and pd is the diastolic 
pressure that can be measured using a commercial BP cuff. A 4-MHz 
32-channel linear array probe autonomously tracks the position of 
the carotid artery and senses its pulsations (Fig. 5f). The VGG13 model 
classifies M-mode images to detect pulsation patterns with precision, 
recall and accuracy exceeding 98.4%, outperforming other models142. 
This model predicts probability scores for each of the 32 channels, 
determining the position of the artery by identifying the channel with 
the highest probability, which is then used to generate pulse waveforms. 
This system addresses the mobility limitations of traditional ultrasound 
sensors by enabling real-time monitoring during dynamic activities, 
such as cycling. ML algorithms are employed to track tissue move-
ments and interpret the data continuously. Validation studies have 
further demonstrated that the USoP can effectively track physiologi-
cal signals from tissues as deep as 164 mm and monitor BP, heart rate 
and cardiac output for up to 12 h in moving individuals142 (Fig. 5g). This 
innovation is particularly relevant for clinical settings, given that it can 
provide reliable data during high-risk activities and offer hands-free, 
continuous monitoring that extends the capabilities of traditional 
ultrasound systems142.

Future directions
The development of cuffless wearable BP sensors has made continu-
ous and non-invasive monitoring possible, but current technology 
might not yet provide clinically reliable BP measurements, limiting 
its clinical applicability in routine hypertension management. In acute 
care settings, such as shock, surgery or intensive care, in which BP 
fluctuations must be rapidly measured, wearable BP sensors can pro-
vide immediate insights for timely intervention. However, further 
research is needed to improve the reliability of wearable BP sensors, 
including their ability to accurately infer BP and cardiovascular indica-
tors from waveform signals and ensure effective system integration 
for reliable data measurement and transmission when attached in 
wearable form.

Reliability of wearable BP sensors
Several challenges need to be addressed to improve the reliability of cuf-
fless wearable BP sensors, including calibration, motion artefacts and 
sensor placement, all of which affect BP and cardiovascular indicator 
accuracy. Overcoming these challenges requires advances in hardware 
and software, as well as thorough clinical validation.

The reliability of BP sensors can be improved through the use of 
calibrated pulse waveforms. Continuous monitoring of BP through 
these calibrated signals offers valuable insights into cardiovascular 
variables, such as heart rhythm, and enables real-time tracking of BP 
fluctuations throughout the day. Several studies have explored the rela-
tionship between high-precision pulse wave signals from wearable sen-
sors and cardiovascular parameters, such as cardiac output and stroke 
volume170,239,240. Another limitation of current BP sensors is the pres-
ence of motion artefacts, which introduce noise into pulsatile signals. 
Advances in sensor technology and signal processing, such as adap-
tive filters and ML models, have helped to reduce noise and improve 
accuracy during movement241. In addition, accelerometers assist by 
filtering out unstable data, ensuring that stable signals are used for 
BP computation. This combination of motion detection and advanced 
signal processing is vital for reliable continuous monitoring in dynamic, 
real-world conditions. Sensor placement also has a crucial role in the 
reliability of wearable BP sensors. BP sensors are commonly worn on 
the wrist, and a study has shown that wrist-based BP measurements cor-
relate well with cardiovascular health and can provide valuable insights 
into arterial health242. However, the positioning of sensors in more 
central locations, such as the carotid artery, might more accurately 
depict central BP, which is closely linked to cardiovascular outcomes243. 
However, these placements often reduce comfort and wearability, mak-
ing them less practical for everyday use. Future research should focus 
on balancing accuracy and comfort by optimizing sensor placement 
and developing flexible, unobtrusive sensors.

System integration
Effective system integration of wearable BP sensors, which involves 
integrating sensors, hardware, power supply and wireless communica-
tion for accurate real-time data, is essential for their functionality and 
user acceptance for continuous health monitoring. Furthermore, to 
increase practicality for daily use and in hospitals, design prototypes 
should be tailored to specific medical scenarios.

Reliable power sources are crucial for the long-term monitor-
ing capabilities of wearable BP sensors. The latest innovations in 
power sources for wearable devices include flexible, biocompat-
ible lithium-ion batteries244,245 and energy harvesting technologies 

Fig. 5 | Advances in wearable BP sensors. Parts a–d provide a schematic 
overview of a wearable piezoelectric blood pressure (BP) sensor. The sensor 
adheres to the user’s skin (part a) to accurately detect arterial pulse signals, 
which are then continuously converted into BP values. The upper insets present 
the overall layout of the flexible piezoelectric BP sensor and a conceptual image 
illustrating its clinical validation against a commercial sphygmomanometer. 
The normalized output voltage (in arbitrary units (a.u.)) as a function of pressure 
(part b), with the sensitivity (S) represented as the slope of the output voltage 
curve, and the rapid response time (23 ms) of the pressure sensor (inset). Bland–
Altman plots (part c) to validate the accuracy of the wearable piezoelectric 
BP sensor for systolic BP (SBP) and diastolic BP (DBP) compared with the 
oscillometric sphygmomanometer in 35 participants. The pulse waveforms 
(part d) are sent from the wristwatch to the portable device via the wireless 

communication circuit. Parts e–g provide an overview of a wearable ultrasonic 
sensor. Photograph of the encapsulated ultrasonic system on patch laminated 
to the chest (part e) for measurement of cardiac activity via the parasternal 
window. Cross-sectional view of a linear array sensor targeting the carotid artery 
(CA) (part f, left panel). Representative M-mode images illustrating channels 
where the beam either penetrates or does not penetrate the CA, categorized 
as CA images or non-CA (nCA) images, respectively. Head movements, BP and 
heart rate (HR) (part g) recorded simultaneously with the ultrasonic system on 
patch. The carotid DBP measured by the ultrasonic system on patch is in good 
agreement with the brachial pressures measured by the cuff. IDEs, interdigitated 
electrodes; PDMS, polydimethylsiloxane; PET, polyethylene terephthalate; 
PZT, lead zirconate titanate. Parts a–d adapted with permission from ref. 237, 
John Wiley and Sons. Parts e–g adapted from ref. 142, Springer Nature.
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such as piezoelectric246,247, triboelectric74,248 and thermoelectric 
generators249,250. These technologies aim to balance battery size 
with portability, ensuring continuous use of wearable BP sensors with 
minimal recharging.

Low-power wireless communication is also crucial for the reli-
able transmission of data in wearable devices, and includes near-field 
communication251,252, Bluetooth technology253,254 and WiFi255,256. 
Near-field communication is ideal for short-range data transfers with 
minimal power consumption, whereas Bluetooth Low Energy, which 
uses identical technology to standard Bluetooth but requires much less 
energy, provides a balance between power usage and range, making 
real-time updates possible over moderate distances175,257,258. WiFi, par-
ticularly newer iterations including WiFi HaLow, offers longer range 
communication with low power consumption, making it well-suited 
for medical wearable devices256. Advances in radiofrequency power 
harvesting259 and wireless power transfer260,261, such as inductive and 
resonant inductive coupling, further improve power management 
for these devices.

Specific design adaptations are required for practical use in daily 
activities and hospitals262. Sensors can be customized for different 
scenarios, such as 24-h monitoring or for monitoring a hospitalized 
patient. Each application requires unique features, such as increased 
durability for continuous use or specialized algorithms for patients 
with specific physiological conditions. Ensuring efficacy and safety 
through rigorous clinical trials tailored to specific hospital scenarios 
is crucial.

Clinical application
The successful clinical integration of wearable BP devices hinges 
on overcoming key challenges, including ensuring their accuracy 
and reliability across diverse populations, as well as validating their 
performance against standard BP measurement techniques. Clinical 
validation against traditional methods such as auscultatory and 
oscillometric techniques is crucial. The International Organization 
for Standardization, the Association for the Advancement of Medical 
Instrumentation and the British Hypertension Society have established 
accuracy benchmarks for cuff-based monitors263, which wearable sen-
sors must not only meet but also exceed, considering their unique 
characteristics. Diverse participant inclusion in clinical trials is essen-
tial to ensure that sensor performance can be tested across different 
demographics with varying BP conditions. The calibration of these 
sensors against cuff-based devices and the use of real-time metrics 
such as 24-h averages and diurnal variations are also key to ensuring 
accuracy in continuous monitoring.

Conclusions
Wearable BP sensors represent a transformative step in continuous 
cardiovascular monitoring, leveraging advanced materials and sensing 
technologies to provide non-invasive, real-time BP estimation. This 
Review explores the core biosignal acquisition principles underlying 
these sensors, including mechanoelectric, optoelectronic, ultrasonic 
and electrophysiological methods. Among these approaches, mecha-
noelectric sensors, such as piezoelectric and triboelectric devices, 
offer high sensitivity and flexibility, whereas optoelectronic systems 
such as PPG provide cost-effective and versatile solutions. Ultrasonic 
and electrophysiological approaches can enhance precision and 
extend functionality, particularly for deep-tissue measurements 
and heart rhythm analysis. BP estimation theories, including PWA, 
PWV and arterial wall dynamics, highlight the close interplay between 

cardiovascular mechanics and BP changes, providing robust frame-
works for BP monitoring. The integration of ML algorithms further 
increases accuracy and reliability. ML models, ranging from traditional 
regression techniques to advanced DL architectures, such as CNN and 
LSTM networks, have demonstrated their capability to adaptively pro-
cess complex biosignals, mitigating challenges such as motion artefacts 
and individual variability.

Advances in wearable BP sensor development from the past 
decade include innovative material designs, such as flexible piezo-
electric sensors and flexible ultrasonic transducers, which improve 
sensor sensitivity, durability and conformability. System integration 
has also progressed with the incorporation of wireless communica-
tion, ensuring uninterrupted monitoring in diverse settings. Despite 
these achievements, current wearable BP sensors still face limitations, 
including calibration challenges, motion artefacts and variability in 
sensor placement.

To gain widespread acceptance in clinical practice, wearable BP 
sensors need to be rigorously tested across different populations and 
conditions. Unlike traditional monitors, these sensors estimate BP 
through waveform analysis, using pulse waveforms to derive meas-
urements. Factors such as age, skin tone and body composition, and 
medical conditions such as peripheral vascular disease or arrhythmias, 
can influence accuracy. However, ML and big data analytics offer solu-
tions by enabling personalized calibration, allowing the sensors to 
adapt to individual characteristics for more precise readings.
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