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Feasibility of snapshot testing using
wearable sensors to detect
cardiorespiratory illness (COVID infection
in India)
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Arun Jayaraman1,3

The COVID-19 pandemic has challenged the current paradigm of clinical and community-based
disease detection. We present a multimodal wearable sensor system paired with a two-minute,
movement-based activity sequence that successfully captures a snapshot of physiological data
(including cardiac, respiratory, temperature, and percent oxygen saturation). We conducted a large,
multi-site trial of this technology across India from June 2021 to April 2022 amidst the COVID-19
pandemic (Clinical trial registry name: International Validation of Wearable Sensor to Monitor COVID-
19 Like Signs and Symptoms; NCT05334680; initial release: 04/15/2022). An Extreme Gradient
Boosting algorithm was trained to discriminate between COVID-19 infected individuals (n = 295) and
COVID-19 negative healthy controls (n = 172) and achieved an F1-Score of 0.80 (95% CI = [0.79,
0.81]). SHAP values were mapped to visualize feature importance and directionality, yielding
engineered features from core temperature, cough, and lung sounds as highly important. The results
demonstrated potential for data-drivenwearable sensor technology for remote preliminary screening,
highlighting a fundamental pivot from continuous to snapshot monitoring of cardiorespiratory
illnesses.

Nearly four years after the World Health Organization’s (WHO) first
recognized the emergence of severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), a novel coronavirus causing COVID-19,
individuals around the world are still impacted by its devastating
consequences1. As the virus transitions into an endemic phase2, at which
point the infection rate will persist indefinitely3,4, consistent monitoring of
cases and disease transmission rates is vital to prevent further outbreaks5,6.
Vaccines have demonstrated effectiveness in protecting against severe

disease, hospitalization, and death7, however breakthrough infection cases
are inevitable due to acquired immunity waning over time4. Immunity is
further undermined by viral mutations, as observed in vaccinated indivi-
duals contracting Omicron subvariants of COVID-198. Variants of the
SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2) virus
continue to emerge in countries around the world9 and are becoming
increasingly resistant to neutralization10. Further, because the signs and
symptoms of COVID-19 can affect several organ systems, clinical
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presentation is often heterogeneous and severity of symptoms can vary
greatly2,11. Variable presentations of disease states may hinder current and
future efforts to control transmission if infections are not detected early on.

Large-scale, high volume clinical testing can effectively reduce the
spread of disease and promote earlier, targeted intervention12. To facilitate
and boost testing, advancements can be made in the rapidness, accuracy,
and scalability of testing options. The gold standard for molecular testing
(nasopharyngeal swab (NPS) reverse transcription-quantitative polymerase
chain reaction (RT-qPCR)13) requires specialized instrumentation and is
unable to provide immediate time-sensitive results14–16. Comparatively,
rapid antigen tests (RAT) offer a portable14 and easily scalable17 option for
prompt point-of-care screening18–20 but compensate with lower detection
rates (overall pooled sensitivity of 68.4%) and reliance on additional
resources to confirmadiagnosis17,21,22. The resulting impacts of falsenegative
tests can be drastic. Besides allowing infected people to spread disease, they
can depress testing rates by eroding trust in health care systems23 and dis-
incentivizing potential close contacts from getting tested when they might
have otherwise done so24.

Although both testing options have been well integrated into some
societies, inequitable access is an on-going problem in developing countries.
Despite low- and lower-middle-income countries making up 76.3% of the
global population, only 36.9% of all tests across the world were used in these
countries25. TheWHO’s Access COVID-19 Tools Accelerator (ACT-A) set
its testing target for 1 test per 1000 people per day26, but this target was
underachieved predominantly by low- and lower-middle-income countries
in the past 12 months as of January 6, 202325. These regions have also
particularly struggled with related plastic waste management and envir-
onmental contamination27. RT-PCR testing alone has created an alarming
quantity of plastic waste in the past four years28, much of which is non-
biodegradable29, creating a large and lasting environmental impact.

Consequently, there has been a remarkable upsurge in research to
develop novel approaches for COVID-19 testing, some of which address
concerns related to accessibility, implementation, and reliance on single-use
materials. Notably, wearable sensing technology has been proposed as a
viable alternative. Advancements in materials engineering have permitted
low-profile, cost-effective sensing platforms conducive to large-scale use30.
Triaxial accelerometer-based sensors have demonstrated potential to ana-
lyze changes in physiological patterns, specifically cough31,32. Additionally,
wearable sensors interfacing with the skin can capture targeted clinical
measures at high levels of accuracy (e.g., heart rate, respiration rate, body
temperature, and percent oxygen saturation) as well as provide insight into
the quality of health over time (e.g., sleep quality33, physical activity34,35, and
disease diagnosis and treatment36). The ability of consumer-grade wear-
ables, including smartwatches37–39 and smart rings40,41, to detect andmonitor
probable COVID-19 infection and other cardiorespiratory illnesses has
been previously investigated. These systems often operate on continuous
data which can provide important insights related to exposure tracking and
long-term effects of illness39,42–45. While promising, single-user consumer
technologies are not ubiquitous in all societies46 and can limit usability in
point-of-care clinical testing. Furthermore, the robustness of continuous
data collection is still unclear, as continuous collection is known to generate
large sums of noisy, heterogeneous data47,48 and is affected by wear-time
compliance49.

To address these challenges, our teampreviously investigated theuse of
shareable wearable sensor systems to measure physiological symptoms of
illness within a rapid “snapshot” of data50. Our novel methodology paired
clinically meaningful physiological signal features with an activity-based
movement sequence spanning less than two minutes to quantify the
probability of a cardiorespiratory infection. We have since adopted a more
advanced, comprehensive, and compact sensor platform, capable of cap-
turing multimodal measurements including physical activity, cardior-
espiratory function, and percent oxygen saturation. It alsomeasures dermal
temperature, giving it a distinct advantage over other commercial wearable
devices40. The goal of the present study was to evaluate the feasibility of
collecting “snapshot” data with this updated sensor. We demonstrated this

technology’s potential for detecting cardiorespiratory illnesses, in this case
COVID-19, via real-world deployment of this sensor in India during the
COVID-19 pandemic.

The technology shown in this work has the potential to be imple-
mented as a rapid and reusable screening tool, proactively warning users
presenting with cardiorespiratory symptoms of their infection. Shared
diagnostic tools may effectively reduce reliance on single-use testing
materials, offering an alternative option for preliminary screening at scale in
the case of future pandemics or for long-term community-based mon-
itoring of disease states. As an intended outcome of this work, we hope to
provide supporting evidence for future applications ofmultimodalwearable
sensing systems to address gaps in the implementation of current diagnostic
and monitoring technologies, specifically using only a snapshot of physio-
logically relevant data. Innovative applications could become impactful in
addressing global health disparities, especially in remote and under-
resourced communities.

Results
Metadata
Data collection spanned across four different site locations over approxi-
mately nine months (June 2021 to April 2022) including 85 days of active
data collection. We intended to recruit 400 participants and successfully
enrolled 532 individuals in the study.However, some sampleswere dropped
at the initial signal segmentation stage due to poor signal quality (defined by
noise that obstructed identification of individual activities) or incorrect
performance of the activity sequence (both confirmedby visually inspecting
the signal), or download failure. Furthermore, we only considered indivi-
duals in the COVID cohort whowere within 14 days of a positive RT-qPCR
(reverse transcription-quantitative polymerase chain reactions) diagnosis
(to remove confounding longitudinal effects of illness). The remaining
467 subjects (i.e., 295 COVID and 172 NON-COVID) were used in model
development and testing. Each subject contributed one data sample to the
final feature matrix. The corresponding metadata for those samples is
reported in Table 1. Table 2 shows the percentages of feature availability for
each sensor modality.

Hyperparameters
The best hyperparameters resulting from the internal cross-validation
search are summarized over all model splits in Supplementary Table 1. We
provide here the average and standard deviation of each; maximum tree
depth = 6.07 (Std. 2.36); minimum child weight = 4.39 (Std. 2.23); learning
rate = 0.26 (Std. 0.17); gamma = 2.0 (Std. 1.43). Trends on the effect of
hyperparameter value on F1-Score can be visualized in Supplementary
Fig. 1.

Model performance
The results of the trained XGBoost algorithm to classify COVID from
NON-COVID individuals in the held-out test set are shown in Fig. 1. The
average confusionmatrix for a given test set and the distributions of the F1-
score, recall, and precision are shown for the 100model iterations in Fig. 1a.
The mean F1-score was 0.80 (95% CI = [0.79, 0.81]), with the best per-
formingmodel run achieving anF1-Score of 0.88 (see decision tree structure
in Supplementary Fig. 2). The predicted probability of COVID-19 can be
visualized in the distributions in Fig. 1b. Predicted values near one have
highermodel certainty for being classified as COVID, and lower values near
zero havemore certainty for being labeled asNON-COVID.As shown, true
positive and true negative predictions were classified with higher certainty
than false positive and false negative classifications, which were distributed
more centrally around predictive values of 0.5, i.e., low certainty. Figure 1c
displays themodelperformance (AUC)of the full set of physiological signals
compared to each physiological signal used independently, used in identical
model pipelines, and evaluated on the same test splits. A full report of the
pairwise ROC curve comparisons for statistically significant differences
(using methodology as reported in DeLong et al.51) is given in Supple-
mentary Table 2. Important to note, the model using all physiological
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features has statistically significant higher ROC than models using any
physiological signals alone.

Feature Importance
XGBoost feature importance and SHAP (SHapley Additive exPlanation)
valueswere obtained to examine the feature importance during training and
model classification, respectively (Fig. 2). XGBoost assigns higher feature
importance to features which heavily contributed to the construction of
model decision trees during training. SHAP values are calculated by con-
sidering all possible combinations of features and how each particular fea-
ture contributes to the prediction52. Visually, SHAP values can elucidate the
relative value of features (i.e., high or low values) that the model considered
important when classifying each sample as COVID or NON-COVID. In
both cases, the ranking was obtained by calculating the absolute mean of
each feature’s importance value across the 100 validation tests. All sensor
modalities had at least one feature considered important, with the top three
most important features stemming from temperature, cough, and lung
sounds.Notably, features fromthephotoplethysmography (PPG)datawere
found to not be critical tomodel performance, likely due to the inconsistent
availability of this signal in the extracted data. SupplementaryTable 3 shows
the percentage of data available for the 467 samples used in each of the
feature deemed as important by the model.

Discussion
This study was a first step in determining if physiological changes of car-
diorespiratory infection can be detected by a commercial-grade wearable
sensor using only a snapshot of data. Real-world deployment of this tech-
nology while detecting probable COVID-19 in India advances our team’s
preliminary research50, demonstrating the feasibility and potential clinical
implications of translating snapshot data into a rapid screening tool for
cardiorespiratory illnesses. Our results demonstrated the primary model
encompassing all sensor modalities and activities performed more accu-
rately than any single sensor modality feature set used alone. Thus, multi-
modal sensor fusion across a variety of movement-based activities may be
beneficial to observing broad physiological manifestations of cardior-
espiratory illness, which in turn canbe quantified and classified by advanced
machine-learning algorithms. In this proof-of-concept implementation, we
were able to use XGBoost to classify a diverse set of individuals with or
without COVID-19 infection with an average F1-score of 0.80 (recall,
precision = 80%) and an AUC of 0.81.

We calculated SHAP values to reveal the underlying significance of
physiological features during model classification. With the exception of
percent oxygen saturation, all sensingmodalities appeared among themost
important ranked features during both training and classification. The top
three features were chest temperature range, the spread (IQR) of cough
accelerometer signals, and the regularity of the lung sounds (entropy) in the
frequency domain. Specifically, greater change in temperature, lower cough
signal variability, and less regularity in the lung sound frequency domain

Table 2 | Feature availability

Sensor modality % data available
(standard deviation)

Total count of features
per modality

Heart Rate 76.2% (6.3) 57

Respiration 91.5% (1.6) 32

Gait 92.8% (0.1) 36

Lung Sounds 91.9% (1.1) 30

Cough 84.4% (0.0) 52

Temperature 88.1% (6.4) 12

SpO2 65.0% (23.1) 54

Percentage of features available from 467 samples and the count of how many features were
extracted per sensormodality. The standard deviation represents the variability between percent of
features available within each modality.

Table 1 | Metadata table

Covid+ (n = 295) Covid - (n = 172)

Age Percent Available 100.0% 97.09%

Mean ± Std 42.45 ± 12.44 42.56 ± 15.44

Median 42.0 42.0

Range (18.0, 76.0) (19.0, 73.0)

Sex Percent Available 100.0% 98.84%

Male 190 98

Female 105 72

Days Since
Positive Test

Percent Available 100.0% —

Mean ± Std 4.48 ± 3.6 —

Median 3.0 —

Range (0.0, 14.0) —

Height Percent Available 99.32% 95.35%

Mean ± Std 1.64 ± 0.08 1.66 ± 0.07

Median 1.65 1.7

Range (1.42, 1.83) (1.45, 1.85)

Weight Percent Available 99.32% 95.35%

Mean ± Std 66.95 ± 8.89 63.59 ± 10.89

Median 68.0 67.5

Range (39.0, 89.0) (39.0, 85.0)

BMI Percent Available 99.32% 95.35%

Mean ± Std 25.0 ± 3.06 22.83 ± 2.78

Median 24.69 23.8

Range (15.62, 34.24) (15.62, 28.4)

Symptoms Percent Available 100.0% —

Fever 73.22% —

Cough 48.14% —

Body Aches 42.03% —

Sore Throat 35.25% —

Headache 33.9% —

Fatigue 22.71% —

Nasal Congestion 15.59% —

Nausea/Vomiting 11.19% —

Loss Taste/Smell 9.83% —

Diarrhea 9.15% —

Rash 8.14% —

Difficulty
Breathing

5.08% —

Loss Appetite 0.0% —

Comorbidities Percent Available 100.0% 95.35%

None 263 142

Hypertension 17 9

Diabetes 12 9

Asthma 3 4

Joint pain 2 4

Tuberculosis 2 0

COPD 1 0

Hypothyroidism 1 0

OCD 1 0

Applicablemetadata available for subjects used inmodel development and testing, including age (in
years), sex, number of days since positive test, symptoms, and comorbidities. COPD Chronic
obstructive pulmonary disease. OCD Obsessive-compulsive disorder.
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Fig. 1 | XGBoost to Classify COVID and NON-COVID. a Average confusion
matrix over the 100 model iterations, as well as the mean and standard deviation of
performance metrics (f1-score, recall, and precision). b Predicted probability con-
fidence of COVID, where values near 1 correspond to high confidence of COVID
classification, are color mapped to the model predictions; FP = False positive; FN =
False negative; TP = True positive; FN = False negative. c ROC curves displayed for

subsets of physiological signal features. The label “All” corresponds to the full model
compromising all physiological sensor features. Faded lines represent the standard
deviation of model performance. * indicates that this model was statistically sig-
nificantly different from all othermodels usingDeLong’smethod. Boxplot shows the
interquartile range (IQR) of the AUC scores obtained from the cross validation, with
whiskers extending to 1.5 times the IQR.
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pushed the models towards a positive prediction of COVID. A possible
reason for the trend identified in temperature is that infections can alter the
natural fluctuations in temperature53 that might occur during and after a
short aerobic exercise54. Immune responses in infected individuals increase
metabolic rate, making these responses energetically costly55 and limiting
the body’s ability to regulate temperature efficiently during periods of acute
illness. Additionally, Mason et al. (2022) reported the inclusion of tem-
perature as a feature increasing their AUC score by 4.9% when using con-
tinuous monitoring of Oura rings for COVID detection40. It may also be
understood why COVID-19 positive cases show less variability while
coughing. In our dataset, nearly 50% of participants reported cough as a
symptom. Thus, in this group, it is more likely that natural cough was
triggered by central pattern generators which elicit rhythmic vibrations,
versus in individuals forcing a cough56. Regarding the power spectral
entropy of lung sounds, it can be noted that lower spectral entropy is
associated with a more irregular distribution of power across observed
frequencies, as opposed to higher values which are characteristic of a flat or
consistent distribution of power57. High-frequency lung sound activity was
observed in individuals with respiratory illness as compared to healthy
individuals with less high frequency respiratory content (thus resulting in a
flat signal), which is consistent with literature on this topic58. In all SHAP
value cases, results should be cautiously inferred as the trends observed to
support classification does not necessarily mean the prediction was correct.

To further evaluate the effectiveness of the model, we re-ran it using
only the top 10 features identified by SHAP values, which yielded a superior
AUC (0.85) and a similar F1 score of 0.81 compared to the full feature set
model. This underscores the importance of feature selection in improving
model efficacy and suggests that a well-chosen set of features can robustly
classify respiratory illnesses, potentially simplifying the model without
sacrificing accuracy. This information provides valuable insights for future
studies, especially in exploring these features across a more diverse popu-
lation of cardiorespiratory illnesses.

AsCOVID-19 continues to evolve, rapid testingmethods are necessary
to reduce transmission rates, especially in institutions with high-risk indi-
viduals and/or high transmission rates that require repeatable and proactive
monitoring. Previous research has shown the practicality of using wearable
sensors in this context. Radin et al. (2020) tracked infection via consumer
wearable technology in real-time at the population level while predicting
future cases59. Work from Mishra et al. (2020) as well as from Bogu and
Snyder (2021) similarly demonstrated the use of smartwatch data to detect
COVID-19 before the onset of symptoms60,61. In both instances, models

relied on continuous, individual level changes in heart rate and step count.
While longitudinal data is useful for tracking alterations in physiology, it
often requires several days of recorded baseline activity on a personal device,
which can be limiting in certain applications. Thus, we designed our activity
sequence to capture a quick snapshot of physiological data during a brief
baseline activity (i.e., seated rest) and after a period of exertion (i.e., fast
walking) to elicit observable physiological change and extract innovative
features to use for model training. Our study design’s novelty can be
observedwhencompared toWalter et al. (2024)which achieved a sensitivity
of 0.47 using continuous data and the given features of the ANNETM One
sensor system for early detection of COVID in home environments62. Our
relatively greater performance emphasizes the potential for rapid, snapshot
testing and engineered, physiologically relevant features. Similar to the
comparisons made in longitudinal data, we normalized several features by
individual-level baseline measures to account for relative changes in signal
characteristics. By doing so, we can illuminate some level of individuality
within a general usemodel.While we evaluated participants at a single time
point, the same sensor approach could be applied to track cardiorespiratory
illness at scale over time, simply by repeating the sequence at the desired
number of time points per individual to render new model outcomes and
insights.

When using this technology in practice, it is important to consider the
consequential tradeoff between prioritizing sensitivity or specificity in
testing for the presence of COVID-19. As sensitivity and specificity are
inversely proportional63, one must evaluate the consequences of false posi-
tives compared to those of false negatives when designing or choosing tests.
These considerations may change as the disease spreads over time. At the
beginning of the COVID-19 outbreak, testing methods with a higher sen-
sitivity at the cost of lower specificity were more desirable to encourage
isolation and prevent the spread of disease64,65. False negatives were a greater
risk from a public health perspective, whereas false positives would merely
lead to unnecessary testing and quarantine66. As COVID-19 reaches an
endemic stage, false positive results have become a proportionally greater
concern67. The costs of quarantining, including further isolation, mental
anguish, and accidental viral exposure have become more significant. False
positives amongst healthcareworkers especially create additional burden on
already strained healthcare systems68. Thus, it has become acceptable to
utilize testing tools that sacrifice sensitivity but are less invasive and
encourage testing. In the context of wearable technology, noninvasive
screening tools could promote even greater testing rates and reduce trans-
mission. For the scope of thismanuscript, we treated false positives and false

Fig. 2 | Feature Importance Separating COVID and NON-COVID. a Average
feature importance across the 100 model runs, ranked in descending order based on
the XGBoost decision tree model during training. Larger values on the x-axis cor-
respond to a higher feature importance. bTop 10 features defined by SHAP values in
descending order for model prediction. The SHAP values represent the marginal
contribution of the feature for the model prediction. Larger SHAP values along the
x-axis push the prediction towards a classification of the positive case (i.e., COVID).

Smaller SHAP values rather push the prediction towards a classification of the
negative case (i.e., NON-COVID). Each dot represents a single data sample from the
100 test sets, with the color corresponding to feature value (i.e., dark purple dots for
the top feature corresponds to a high temperature range). In both (a) and (b),
features are color-coded to highlight the different sensor modalities and arrows
represent the period in the activity segmentation of those features. Supplementary
Table 3 shows the percentage of data availability for each of these features.

https://doi.org/10.1038/s41746-024-01287-2 Article

npj Digital Medicine |           (2024) 7:289 5

www.nature.com/npjdigitalmed


negatives equally using the balanced F1-score. In future iterations of this
technology, the practical consequences of each should be considered. Per-
haps the algorithm could even be re-trained to favor one over the other,
depending upon the context of sensor use and the user preference.

Although the methodological approach is promising, there are several
limitations in diagnostic reliability. First, the current iteration of this
methodology does not directly measure viral material and cannot offer a
definitive diagnosis. Second, amajor limitation to the study is thatwe cannot
confirm the level to which our model can separate COVID-19 from similar
cardiorespiratory illnesses, due to a lack of metadata available to the clinical
team and challenges in recruiting individuals with other symptoms or
cardiorespiratory illnesses. Future work should evaluate large datasets dif-
ferentiating between other types of cardiorespiratory illnesses, such as
COVID-19versus influenza, and should include presentations of illness that
are more representative of what is observed in the community (i.e.,
asymptomatic infected individuals).

Furthermore, despite balancing positive and negative cases in the
training data, the model still had slight preference in classifying samples as
COVID-19 positive. This may be due to the internal cross-validation
method retaining the original ratio of more positive cases in the test group.
Thus, the internal hyperparameter values selectedmayhavebeen influenced
by classifying correctly for this ratio. This method is standard for practical
applications of machine-learned models, which learn to classify positive
cases with respect to the true prevalence in the community, however our
dataset was not representative of the true community prevalence.

COVID-19 is currently transitioning into endemic stability, but despite
this shift, widespread infection and associated complications persist.
Therefore, researchers must continue developing and enhancing envir-
onmentally friendly, large scale screening tools, including wearable sensors.
The expansion and adoptionof this technology remains crucial, especially in
light of warnings that pandemics are likely to occur more frequently in the
future69,70. Our study demonstrated the potential of wearable sensors, par-
ticularly when using snapshot sensor data. If appropriately improved upon,
this technology will facilitate early screening and communitymonitoring in
inevitable future pandemics. In this proof-of-concept study, we trained on
data collected during different viral dominance periods, however it is
unknownwhether this was an advantage to themodel or perhaps a limiting
factor in themodel’s ability to learnvarious strains.Transfer learningmaybe
promising for future iterations of this work.

In summary, we have demonstrated the potential use of wearable
sensing technology to screen for and monitor cardiorespiratory illnesses,
specifically COVID-19. Current conventional testing methods have draw-
backs concerning accessibility, implementation, and reliance on single-use
materials. The alternative methodology proposed here is easily implemen-
table for use in remote and under-resourced communities and could make
early diagnostic testing more accessible. Rapid, reusable, and easy-to-scale
diagnostic technologies may additionally lower environmental impact. As
COVID-19 continues to evolve and global pandemics become increasingly
common, innovative alternatives for testing are necessary to limit the spread

of disease around the world.We see this work as providing evidence for the
feasibility of wearable sensor systems in screening for and monitoring
cardiorespiratory illnesses, especially as this formof technology continues to
advance. Furthermore, future iterations of this work should attempt to
include individuals infected with other cardiorespiratory disease in accor-
dance with the prevalence of the infection of interest to further demonstrate
the potential of this technology.

Methods
Sensing device
The ANNETM One sensor system (Sibel Health; Niles, IL, USA) is a United
States Food andDrugAdministration (FDA) cleared, clinical-grade sensing
platform capable of monitoring both full-body motion signals and phy-
siological measures30. The system consists of two soft, flexible sensors: one
anatomically positioned at the chest to measure tri-axial acceleration,
electrocardiography (ECG), heart rate, respiratory rate, and proximal skin
temperature, and the other positioned on the finger to measure photo
plethysmography (PPG) for SpO2 and distal skin temperature (Fig. 3). The
sensors are time-synchronized and connect to a tablet via Bluetooth for
guided use and data storage. Acceleration was collected at 200Hz in the
direction of the x- and y- axes and 1600Hz in the direction of the z-axis
(sagittal plane). ECG, PPG, and skin temperature were recorded at 512 Hz,
128Hz, and 1Hz, respectively. The resulting sensor data was pre-processed
with respect to the physiological signal of interest (see Feature Genera-
tion below).

Participants
This research was made possible in collaboration between Shirley Ryan
AbilityLab (USA) and Bionic Yantra (India) through the United States-
India Science and Technology Endowment Fund (USISTEF), supporting
research for innovative solutions toaddress challengesposed byCOVID-19.
According to the FIND SARS-CoV-2 test tracker, India has been amongst
the list of countries short of reaching the ACT-A testing target25. Thus, this
collaboration was realized as an opportunity to implement novel testing
technology in a region which may practically benefit from its use.

Characteristics of participants can be found in Table 1 (see Results).
Individuals between 18 and 85 years of age were recruited from a sample of
convenience across heterogeneous test sites as either experiencing (COVID)
or not experiencing (NON-COVID) COVID-19 infection, confirmed via a
RAT and/or RT-qPCR test. The COVID cohort consisted of COVID-19
positive individuals at COVID-19 inpatient or outpatient facilities at the
time of data recording. The NON-COVID cohort consisted of members of
the community who did not test positive for COVID-19. Individuals with
implanted pacemakers or defibrillators and individuals pregnant at the time
of consent and study involvement were excluded from this study.

All participants provided written and/or verbal consent prior to their
participation in this research study. The study was approved by the Insti-
tutional Ethics Committee (IEC) of the Indian Institute of Public Health-
Delhi (IIPH-D) and the S2J Independent Ethics Committee (S2J IEC). The

Fig. 3 | ANNETM One Sensor System and Appli-
cation. The ANNETM One Sensor System is com-
posed of two individually packaged wireless sensors
as illustrated in (a). The anatomical placement of
each sensor, the limb sensor (left) and chest sensor
(right), is demonstrated in (b). Soft, flexible sensors
are adhered to the skin with hydrogel adhesives. The
form factor of the limb sensor reinforces the pho-
todiode and LED to the index finger.
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trial was conducted as per the Indian Council of Medical Research Guide-
lines for Biomedical Research on Human subjects, including standards of
the Declaration of Helsinki (Brazil, 2013) and other applicable guidelines.
This study is a registered clinical trialwith theNIH initially releasedApril 15,
2022 under the registry name: “InternationalValidation ofWearable Sensor
to Monitor COVID-19 Like Signs and Symptoms” and identifier:
NCT05334680.

Data collection
Data was collected in an uncontrolled, real-world clinical environment
across multiple sites in India. The primary clinical research team trained
external clinical staff on the data collection protocol including sensor
application, the activity sequence, and data transfer. Initial data quality
checks and routine site visits were conducted to verify protocol adher-
ence and data integrity. Institutionally required personal protective
equipment (PPE) was worn during all study procedures. Participants
were asked to remain masked throughout the session. Sensor locations
on the skin were cleaned with a medical wipe and sanitized before and
after every sensor application. Sensors were systematically rotated to
allow a complete sanitation cycle and were adhered to the skin as shown
in Fig. 3. Clinical staff placed one sensor on the suprasternal notch and
one on the tip of the index finger. Sensors placed on the chest were
adhered using medical adhesive.

An overview of the data collection protocol can be visualized in
Fig. 4. The activity sequence was designed to leverage changes in phy-
siology from baseline measurements to measurements during recovery
from exertion, emulating stress or walking tests that are commonly used
to evaluate cardiorespiratory function71,72. Thus, the activity sequence
aims to 1) address the capability of a rapid protocol to elicit measurable
physiological change that can be picked up by a commercial-grade
wearable sensor, and 2) determine if the physiological features captured
are sensitive enough to detect differences in individuals with and
without cardiorespiratory illness.

Under supervision by clinical staff, all participants began seated and
were asked to refrain from talking during a short and simple sequence of
standardized activities. Normal breathing was collected while seated before
and immediately after 30 s of walking, inwhich participants were instructed
to walk at a fast yet safe pace. Participants were then instructed to take five
voluntary deep breaths while seated, followed by another 30 s period of fast
yet safe walking, and then five voluntary deep breaths while seated. Parti-
cipants then performed five consecutive voluntary coughs while seated. The
entire activity sequence is approximately two minutes long. Between each
activity, three consecutive hand-taps were performed onto the chest sensor
as a reference for activity segmentation. Each participant performed one
trial of the activity sequence.

Feature generation
Real time bio-signals were streamed from the sensors via Bluetooth to
the ANNETM Sync application. Data from the sensor system was
directly uploaded to a cloud-based server for use in the feature
extraction pipeline. Oxygen saturation index (SpO2), central body
temperature, and peripheral body temperature were directly used as
measured by the ANNETM system’s proprietary software (Sibel Health,
Inc., Niles, IL, USA), including only measurements with the given
signal quality index above 0. To access increased signal information
from other data streams, all other physiological measures were custom
derived from the raw sensor stream using methods in literature, as
detailed in the sections below. The acceleration signal was used to
segment the sequence into the activities described above using a cus-
tom code that required visual inspection and confirmation of starting
and end points of each activity. The time points at which various
physiological signals were analyzed and extracted relative to the
movement-based activities can be visualized in Fig. 5. The design of the
activity sequence permits accounting for physiological differences
before and after exertion, thus many of the features were normalized to
measures at baseline (i.e., resting) to capture this. A summary of the
features input to the model across all sensing modalities can be found
in Supplementary Table 4.

Estimation Of R-R Intervals
R-R intervals were extracted from the raw ECG time series signal using the
Pan-Tompkins algorithm, which applies a series of filters to reduce noise
and accentuate the peak of the R wave in the QRS complex73. In cases of
inadequate detection by the Pan-Tompkins algorithm alone and after visual
confirmation, amaximal overlap discretewavelet transform (symletwavelet
filter, MATLABR2022B) was applied to confirm the available output of the
Pan-Tompkins algorithm and impute missing time points. In the case this
alternative couldnot detect reliableQRScomplexes, the heart rate signalwas
dropped for that sample. The final array of detected R peaks was passed into
the hrv-analysis Python module to extract features related to heart rate
variability74. Certain features that are not recommended for durations at or
below30 seconds75were ignored from the full set of hrv-analysis features. To
additionally measure the change in heart rate, the post-exertion measure-
ment was divided by the baseline measurement, thus normalizing the
change amongst subjects.

Respiration Rate
To measure respiration rates, the angular motion due to breathing was
reconstructed by tracking the rotation of the gravity vector in the accel-
erometer signal76. Tri-axial acceleration signals were down sampled
(200Hz) and filtered (2nd order Butterworth low-pass filter at 1 Hz). The

Fig. 4 | Overview of Rapid Snapshot Approach to Classify Probability of COVID-
19. A short and structured sequence of movement-based activities are performed
while wearing the ANNETM ONE sensor system. Periods of rest and deep breathing
are captured prior to and after gait to observe both baseline measurements and
elicited responses to increased exertion. Raw sensor signals are translated into

physiological measurements, including gait, respiratory rate, heart rate, cough, core,
and peripheral temperature, and SPO2. Time series and frequency domain features
of each sensingmodality are extracted and transferred as input to amachine learning
classifier to predict probability of COVID-19 infection.
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normalized vector of acceleration at each time point, at , was used to cal-
culate the axis of rotation, rt , between two consecutive measurements:

rt ¼ at × at�1 ð1Þ

Each axis of rotationwasweighted using aHammingwindow function. The
resulting rotation angle, φt , calculated as

φt ¼ sin�1ð at × rt
� �

× atÞ ð2Þ

was filtered (8th-order Butterworth band-pass filter at 0.1 and 0.8 Hz) and
differentiated to get the angular rate. The power spectral density of the
angular ratewas estimatedusingWelch’smethod, and the respiration rate in
BPM (breaths per minute) was taken as the dominant signal frequency (see
Fig. 5C). Frequency values were evaluated within physiologically relevant
bounds; 10 to 32 BPM for baseline respiration77,78 and 10 to 60 BPM for
respiration after walking79. Frequency values with a power of at least 50% of
the dominant signal frequency were included in calculations for the
maximumsignal power, average frequency, and sumof the signal power. To
measure the difference in respiration rate before and after walking, we
calculated the ratio of values—dividing the post-exertion measurement by
the baseline measurement.

Cough signal properties
Cough accelerometer signals contain high-frequency oscillating peaks due
to varyingmotions of the chest during a cough: breathing in, compressionof
muscles, and quick expulsion of air80. Each axis of the tri-axial accelerometer
data was interpolated to the sampling frequency of the z-axis (1600Hz) and
filtered (5th-order, high-pass Butterworth filter at 40Hz). The normalized
acceleration vector at each time point was calculated. Welch’s method was
applied to the entire signal duration to segment individual coughs using a
custom sliding window technique (0.2 s with a 50% overlap) based on a

threshold relative to themean signal power (see Fig. 5D). To compare cough
data between subjects, cough signals were normalized via a linear scaling
method based on the accelerometer signal range during seated baseline
respiration. Features were extracted from both the time and frequency
domains of each segmented cough signal. Themean and standard deviation
of feature values across all detected coughs for a given individual (expected
count of 5) were used in the final model.

Estimating lung sounds
High frequency lung sounds (i.e., crackles, wheezes) often captured via lung
auscultation can provide important digital biomarkers of respiratory illness
and severity81. Vibratory movements of the lung have been correlated to
diagnosis of COVID-19 infection82,83. We therefore used the upper obser-
vable range of the frequency domain for our sensing device to characterize
high frequency content as observable during the deep breathing activity.
Accelerometer data was filtered (8th-order, high-pass Butterworth filter at
100Hz) and the power spectral density of frequency was calculated via
Welch’s method. Information including the dominant frequency, statistical
moments of the power spectrum, and the number of detected frequency
peaks (at least 50% of the dominant frequency power) were included as
features to the model.

Estimation Of Walking Cadence
To estimate the subject walking cadence, the L2-norm of the acceleration
was calculated and the fast Fourier transform was applied to find the
dominant frequency between a low and high frequency bound, 0.7 Hz and
3.5 Hz, respectively. The dominant frequency was considered to be the
stepping frequency, i.e., cadence. Statistical moments and entropy of the
power density spectrum were extracted as input to the model. To quantify
post-gait activity relative to the exertion level of gait activity,meanheart rate,
frequency and power of the respiration rate, and lung sound features during
deep breathing were normalized by the dominant gait frequency. Gait

Fig. 5 | Extraction of Physiological Signals and Features from Rapid Snapshot
Protocol. aA complete sequence of the rapid snapshot activity protocol is shown for
the time series acceleration signal (in black). Directly below, colored bars repre-
senting physiological signals are vertically aligned in the time series domain for time
points of various activity-wise extraction and are horizontally stackedwith respect to
the sensing modality from which they were extracted; ACC acceleration, ECG

electrocardiography; CT central temperature, PT peripheral temperature, PPG
photoplethysmography. b–d present supporting visual diagrams of the signal pro-
cessing and/or feature extraction domains for heart rate, respiration, and cough,
respectively. (c) also shows the chest sensor placement and the gravity vector with
respect to the participant. Feature extraction processes for all physiological signals
are detailed in their respective sections.
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features were also compared between the first and second walking pass to
determine any effects of fatigue on the walking dynamics.

Model architecture and evaluation
All sensor features and selectmetadata information (age, sex)were provided
as input to amachine-learning pipeline in Python. The pipeline architecture
was designed tomaximally utilize all data samples while also implementing
external validation via split-sample validation.Anoverviewof the pipeline is
visually represented in Fig. 6. Training, validation, and testing splits pre-
vented sample-wise data leakage across trained and evaluated partitions of
the dataset and evaluated robustness of the model to generalize to unseen
data. Additionally, the robustness of the model was validated with an
additional cross-validation method described in Supplementary Table 5.

Stratified Shuffle Split techniquewas used to split the data into training
and testing subsets (k = 100 folds) and preserve the ratio of COVID to
NON-COVID in our sample84. Training data was further partitioned into
training and validation subsets within a nested loop cross-validation pro-
cedure (Stratified Shuffle Split method, k = 10 folds) with the purpose of
tuning hyperparameters. Optimal values of the internal model parameters
were determined within a randomized search process84,85, evaluating each
internal fold on 100 randomly selected combinations of model hyper-
parameters. Within this nested optimization and training procedure, the
feature data were provided as input to a series of standardized pipeline
processes:
• Imputation of missing feature values using k-Nearest Neighbors

technique84,86 (reasons for missing data mentioned in Results and
percentage of feature availability per sensor modality is presented in
Table 2).

• Normalization of features using RobustScaler method, robust to
outliers84.

• Removal of outliers via Isolation Forest algorithm84,87.
• Removal of highly correlated features (method = ‘Pearson’,

threshold = 0.95)88 to reduce feature dimensionality.
• Handling of imbalanced training data via SMOTE, known as Synthetic

Minority Over-sampling Technique89,90.
• Feature selection via SelectKBest (n = 50) which comprehensively

compares feature values against the target variable84 to reduce feature
dimensionality.

As the final step in the pipeline, we used an extreme gradient
boosting decision tree algorithm (XGBoost) in a binary supervised
learning task to classify COVID fromNON-COVID cases91.We defined
a test positivity cut-off of 0.5 for themodel’s output probability, as this is

the standard default in binary classification tasks. Model parameters
specific to gradient tree algorithms known to affectmodel fit were lent to
the hyperparameter optimization process: maximum tree depth,
minimum child weight, learning rate, and gamma (Supplementary
Table 1). The hyperparameters selected were those which resulted in the
highest average harmonic F1-score across the ten-fold cross-validation.
The best performing model from the internal cross-validation proce-
dure was fit to the corresponding training data using the selected
hyperparameters and evaluated upon the held-out test set to observe
model generalization errors. For each of the train-test split iterations,
the model was independently evaluated on metrics of recall, precision,
F1-score, and Area under the Receiver Operating Characteristic Curve
(AUC). The distribution of performance scores, optimized hyper-
parameter values, and feature importance across the 100 train-test splits
are reported.

Data availability
Sensor data that support the findings of this studymay bemade available to
an investigator upon request for academic, research, and non-
commercial use.

Code availability
The code used to process and analyze thefindings of this publicationmay be
made available to an investigator upon request for academic, research, and
non-commercial use.
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