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Temporary postoperative cardiac pacing requires devices with percutaneous leads and external wired
power and control systems. This hardware introduces risks for infection, limitations on patient mobility,
and requirements for surgical extraction procedures. Bioresorbable pacemakers mitigate some of these
disadvantages, but they demand pairing with external, wired systems and secondary mechanisms for control.
We present a transient closed-loop system that combines a time-synchronized, wireless network of
skin-integrated devices with an advanced bioresorbable pacemaker to control cardiac rhythms, track
cardiopulmonary status, provide multihaptic feedback, and enable transient operation with minimal
patient burden. The result provides a range of autonomous, rate-adaptive cardiac pacing capabilities, as
demonstrated in rat, canine, and human heart studies. This work establishes an engineering framework
for closed-loop temporary electrotherapy using wirelessly linked, body-integrated bioelectronic devices.

A
ll living systems function through the
interaction of complex networks of phys-
iological feedback loops tomaintainhome-
ostasis. Engineering approaches to treat
disorders, such as those based on cardiac

pacemakers, exploit conceptually similar meth-
ods for closed-loop control to enable auton-
omous, adaptive regulation of one or more
essential physiological parameters to target
set points without human intervention (1–3).
These and other existing platforms have key
limitations that follow from their reliance on
conventional electronic hardware, monitoring
schemes, and interfaces to the body. First,
such systems often require physical tethers
and percutaneous access points that may lead
to systemic infections (4–7). Second, connec-
tions to external modules for power supply,
sensing, control, and other essential func-
tions constrain patient mobility and impede

clinical care. Third, removal or replacement of
electronic components (e.g., leads or batteries)
demands surgical procedures that impose
additional risks and burdens on patients (8, 9).
These features can extend the duration of
hospitalization, often in intensive care units.
For example, short-term bradyarrhythmias
that commonly occur in the 5 to 7 days after
cardiac surgery must be treated with tempo-
rary percutaneous pacing systems, typically
prolonging hospital stays with limited ability
to initiate physical therapy (supplementary
text 1). Recently reported wireless, bioresorb-
able electronic implants for temporary thera-
pies address some of these challenges, but they
still require external, wall-plugged equipment
for monitoring, power, and control (10–16).
We introduce a transient, closed-loop sys-

tem that incorporates a time-synchronized,
wireless network with seven key components:

(i) a temporary, bioresorbable, stretchable
epicardial pacemaker; (ii) a bioresorbable
steroid-eluting interface that minimizes local
inflammation and fibrosis (17); (iii) a subcuta-
neous, bioresorbable power harvesting unit;
(iv) a set of soft, skin-interfaced sensors that
capture electrocardiograms (ECGs), heart rate
(HR), respiratory information, physical activ-
ity, and cerebral hemodynamics for physiolog-
ical monitoring of the patient; (v) a wireless
radiofrequency (RF)module that transferspower
to the harvesting unit; (vi) a soft, skin-interfaced
haptic actuator that communicates via mech-
anical vibrations; and (vii) a handheld device
with a software application for real-time visual-
ization, storage, and analysis of data for auto-
mated adaptive control. These components
integrate into a fully implantable, bioresorbable
module [(i) to (iii)]; a set of skin-interfaced
modules [(iv) to (vi)]; and an external control
module (vii).
Figure 1A illustrates the use of this system

for temporary cardiac pacing. The bioresorb-
able module wirelessly receives power for epi-
cardial pacing. A network of skin-interfaced
modules transmits diverse physiological data
to the control module via Bluetooth low energy
(BLE) protocols for real-time data visualiza-
tion and algorithmic control. A haptic module
provides tactile feedback to the patient. After a
period of therapy, the bioresorbable module
dissolves in the body, and the skin-interfaced
modules are removed by peeling them off the
skin. These “transient” characteristics of the
system eliminate the need for surgical removal
and allow ambulatory end of treatment. Fig-
ure 1B illustrates the closed-loop scheme that
interconnects these modules into a wireless
network (table S1). Soft, flexible designs (Fig.
1C) enable placement of the modules onto
various target locations of the body.
Figure 1D shows that the constituent mate-

rials of the bioresorbable module completely
disappear in simulated biofluid consisting of
phosphate-buffered saline (PBS). Results of
in vivo studies are provided in fig. S1. As shown
in Fig. 2A, the bioresorbable module consists
of an RF power harvester, which includes an
inductive receiver (Rx) coil [molybdenum (Mo)]
and a PIN diode [silicon nanomembrane
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(Si NM)], a pair of stretchable interconnects
(Mo), and stimulation electrodes that integrate
a steroid-eluting patch at themyocardial inter-
face. The thin, lightweight, and stretchable
design minimizes the possibility for irritation
or damage at the tissue interface, with geom-
etries that can be tailored to the anatomy of
the patient (fig. S2). Figure 2B shows scatter-
ing parameters (S11) of power harvesters with
three different sizes of Rx coils (supplemen-
tary text 2). Continuous alternating current
applied to a transmission (Tx) coil wirelessly
delivers power to the Rx coil via magnetic in-
duction and induces an approximately direct
current monophasic output defined by the
diode rectifier (Fig. 2C). The magnetic reso-
nance imaging (MRI) compatibility of this
wireless system is discussed in supplementary

text 3. Top and bottom encapsulating layers of
a bioresorbable dynamic covalent polyurethane
(b-DCPU) and stretchable electrodes (11) ensure
reliable pacing against the mechanically dy-
namic surface of the heart (18). Figure 2D
shows negligible differences in output voltage
during mechanical deformation, consistent
with modeling results (fig. S7). Because the
wireless energy transfer is inversely propor-
tional to the coil-to-coil distance (fig. S8), the
power harvester resides subcutaneously to
maximize the efficiency. Poly(lactic-co-glycolic
acid) (PLGA)–based steroid-eluting patches
release dexamethasone acetate (DMA) over
the course of several months tominimize local
inflammation and fibrosis during cardiac
pacing (Fig. 2E and fig. S9). The slow rate of
dissolution of the bioresorbable conductor

(Mo) enables >1 month of functional lifetime
under simulated physiological conditions (Fig.
2F and supplementary text 4).
A network of skin-interfacedmodules placed

on various locations of the body acquires di-
verse data relevant to patient status. These
collective data streams form the basis for closed-
loop control. As the essential component, the
cardiac module mounts on the chest to collect
physiological information and to provide RF
power to the bioresorbable module. Its mate-
rials and architectures (Fig. 2G and fig. S12)
follow design principles of soft electronics to
ensure robust, irritation-free coupling to the
skin (fig. S13) at relevant locations (fig. S14)
(19). Themultihapticmodule on themid-medial
forearm provides information on patient status
and device operation through up to 625 patterns
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Fig. 1. Transient closed-loop system for temporary cardiac pacing. (A) Schematic illustration of a system for (i) autonomous and wireless pacing therapy
and (ii) nonhospitalized termination. (B) Operational diagram of the closed-loop system for continuous monitoring, autonomous treatment, and haptic
feedback. (C) Photographs showing the sizes of the various modules, relative to a US quarter. (D) Photographs of a bioresorbable module at different time
points during immersion in a simulated biofluid (in PBS at 95°C).
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Fig. 2. Materials, design features. (A) Schematic illustration of a bioresorbable
module. (B) S11 values of the Rx coils with different diameters (dcoil). (C) Example
output waveform (red; dcoil = 12 mm) wirelessly generated by an alternating
current (black; ~6 Vpp; 13.56 MHz) applied to the Tx coil. (D) Output open
circuit voltage (VOC) of devices as a function of tensile strain (left) and twist angle
(right) at a fixed transmitting voltage (8 Vpp) and frequency (13.56 MHz).
(E) Drug-release behaviors of steroid-eluting patches with three different
ratios of base polymer. Error bars represent standard deviation.
(F) Measurements of VOC of the bioresorbable module (red squares; 10-mm-

thick Mo) and a reference module (black circles; 700-nm-thick W coated
50-µm-thick Mg) immersed in PBS (37°C). (G) Schematic illustration of a
skin-interfaced cardiac module. PMIC, power management integrated circuit.
(H) System block diagram of the cardiac module. (I to L) Comparisons of ECG, HR,
respiratory rate, and SpO2 levels determined by the skin-interfaced modules [red;
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who held their breath for 60 s (yellow background). A.U., arbitrary units; rpm,
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of vibrotactile input (20). The respiratory mod-
ulemounts at the suprasternal notch to capture
physical activity, body temperature, and res-
piratory behavior in a dual-sensing design
for accurate operation (21). The hemodynamic

module on the forehead measures peripheral
blood oxygen saturation (SpO2) (22).
Figure 2H shows a block diagram of the

skin-interfaced cardiac module. An ECG ana-
log front end (AFE) and amicrocontroller unit

(MCU) process measured data in real time to
calculate the HR (fig. S15). A BLE-enabled user
interface serves as a control unit that stores
and displays ECG tracings and three-axis ac-
celeration data associated with cardiac and
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respiratory activity (fig. S16). Figure 2, I to
K, shows that the skin-interfaced modules
and data analytics approaches accurately
determine HR and respiratory rate (fig. S17).

The hemodynamic module yields SpO2 data
comparable to that recorded by a medical-
grade finger probe (Fig. 2L). These systems
use current best practices to protect health

data, from the sensor, BLE link, phone, cloud,
and beyond. To ensure secure medical data
storage and processing, the interface appli-
cation is compatible with hypertext transfer
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protocol secure (HTTPS) transport layer sec-
urity (TLS 1.2) and with algorithms for en-
cryption and decryption (fig. S18). In-sensor
encryption [advanced encryption standard–128
(AES-128)] and Health Insurance Portability
and Accountability Act (HIPAA)–compliant
cloud data storage further protect patient data.
One of the key features of this transient

closed-loop system (10–15) is that the skin-
interfaced cardiac module eliminates require-
ments for wall-plugged external hardware
for power transfer and control of the im-
planted pacemaker (fig. S19). In vivo studies
with a canine whole-heart model demon-
strate its capabilities (fig. S20). When the
wireless cardiac module generates pulsed
alternating currents [6 peak-to-peak voltage
(Vpp)], the bioresorbable module rectifies the
received waveform and delivers it to the
myocardium-interface as a cathodic mono-
phasic pulse (~4 mW) (supplementary text 5).
Investigations using rodent models demon-
strate continuous, long-term pacing and bio-
compatibility (supplementary text 6 and 7).
An additional capability of this system is in

autonomous treatment based on algorithmic
identification of ECG signatures of abnormal
cardiac activity. For example, hysteresis pacing
delivers programmed electrical stimuli if the
intrinsic rate falls below a certain threshold
(23). Ex vivo human whole-heart studies dem-
onstrate this type of treatment for temporary
bradycardia (Fig. 3). Anisotropic activation of
the membrane potential confirms that the
bioresorbable module is the driving source
of cardiac activation (Fig. 3C).
A flow chart of the feedback control system

(Fig. 3D) implemented in the mobile appli-
cation describes the hysteresis pacing scheme
by which the system recognizes bradycardia
and activates pacing during the programmed
period of treatment. A separate pacing elec-
trode enables manual control of the HR to
mimic bradycardia (fig. S40). Figure 3E
shows that the transient closed-loop system
detects bradycardia [in this case, the brady-
cardic threshold is set to 54 beats per minute
(bpm)] and automatically initiates pacing
(~100 bpm). After a predetermined pacing
duration (10 s), the system automatically stops
pacing and evaluates the underlying intrinsic
ECG signals to determine the need for addi-
tional pacing treatment. When the heart recov-
ers from temporary bradycardia, the system
detects the normal HR (~60 bpm) and ceases
to deliver on-demand pacing.
For advanced forms of operation, the con-

trol module wirelessly communicates with the
full collection of skin-interfaced modules via
BLE protocols in a manner that is expandable
and customizable to accommodate wide-
ranging types of devices with various actuation,
feedback, and/or monitoring capabilities. The
schematic illustrations in Fig. 4A and fig. S41

summarize themost sophisticated system con-
figuration reported here. This network of mod-
ules also includes the option to deliver tactile
inputs through different patterns of vibration
(fig. S42 andmovie S1) to inform the patient of
(i) the remaining battery life, (ii) the proper
operation of the cardiacmodule, (iii) instances
of malfunction of the other modules, and (iv)
symptoms of bradycardia (Fig. 4B). The haptic
module can also be activated to facilitate posi-
tioning of the cardiac module during mount-
ing, of particular importance in the course of
device replacement for recharging (fig. S43).
Real-time monitoring of cardiopulmonary

status and physical activity, along with other
essential parameters enables elaborate schemes
for rate-adaptive pacing (supplementary text 9).
Exercise tests of healthy human subjects on
stationary bicycles demonstrate this rate-
adaptive function (fig. S44). Figure 4C shows
a strong qualitative correspondence (i) be-
tween measured physical activity and exercise
intensity (e.g., rest, slow, fast). The respiratory
rate (ii) shows a time-delayed correlation to
physical activity and has gradual changes
at the transition of exercise intensities. The
pacing signal (iii), calculated by (i) and (ii),
shows good agreement with the HR of the
healthy subject because the metabolic demand
is consistent with the level of exercise inten-
sity and respiration. Results from different
human subjects (n = 8) confirm the reliability
of this algorithm (fig. S46), and supplemen-
tary text 10 describes strategies for stable
and reliable pacing. Other physiological pa-
rameters, such as body temperature (iv) and
blood oxygen saturation level (v), provide ad-
ditional information that is postoperatively
useful for patients with limited cardiopulmo-
nary reserve, slowly resolving pneumonia, or
persistent supplemental oxygen requirements.
This transient, closed-loop system repre-

sents a distributed, wireless bioelectronics
technology that provides autonomous electro-
therapy over a time frame that matches
postoperative needs. The operation involves
coordinated operation of a network of skin-
interfacedmodules and a bioresorbable device
in time-synchronized communication with a
control platform. Data captured from various
locations of the body yield detailed infor-
mationoncardiopulmonaryhealth andphysical
activity. The results define autonomous, rate-
adaptive pacing parameters to match meta-
bolic demand through wireless powering of
the bioresorbable module; they also support
feedback on device and physiological status
through a multihaptic interface. The biore-
sorbable module for cardiac pacing undergoes
complete dissolution by natural biological pro-
cesses after a defined operating time frame.
The skin-interfaced devices can be easily re-
moved after patient recovery. This system
provides a framework for closed-loop technol-

ogies to treat various diseases and temporary
patient conditions in a way that can comple-
ment traditional biomedical devices and phar-
macological approaches.
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A transient, closed-loop network of wireless, body-integrated devices for
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Better cardiac care
There is an unmet medical need for minimally invasive devices to aid patients with slow heart rates, particularly after
cardiovascular surgery, because the lines required to connect internal electrodes with battery packs are a common
cause of infection and extended hospitalization. Choi et al. developed a biodegradable, closed-loop, wireless micro-
electro-mechanical system (Bio-MEMS) for heart rate monitoring and control (see the Perspective by Zimmermann).
Because the devices allow for both monitoring and control of the heart rate, they can be reprogrammed on demand in
response to physiological conditions using the onboard electronics. Furthermore, the batteries in the devices can be
recharged wirelessly through the skin, fully eliminating the need for transcutaneous wires. —MSL
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