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Flowrate control in flexible bioelectronics with targeted drug delivery capabilities is essential to ensure timely and safe delivery. For
neuroscience and pharmacogenetics studies in small animals, these flexible bioelectronic systems can be tailored to deliver small
drug volumes on a controlled fashion without damaging surrounding tissues from stresses induced by excessively high flowrates.
The drug delivery process is realized by an electrochemical reaction that pressurizes the internal bioelectronic chambers to deform
a flexible polymer membrane that pumps the drug through a network of microchannels implanted in the small animal. The
flowrate temporal profile and global maximum are governed and can be modeled by the ideal gas law. Here, we obtain an
analytical solution that groups the relevant mechanical, fluidic, environmental, and electrochemical terms involved in the drug
delivery process into a set of three nondimensional parameters. The unique combinations of these three nondimensional
parameters (related to the initial pressure, initial gas volume, and microfluidic resistance) can be used to model the flowrate
and scale up the flexible bioelectronic design for experiments in medium and large animal models. The analytical solution is
divided into (1) a fast variable that controls the maximum flowrate and (2) a slow variable that models the temporal profile.
Together, the two variables detail the complete drug delivery process and control using the three nondimensional parameters.
Comparison of the analytical model with alternative numerical models shows excellent agreement and validates the analytic
modeling approach. These findings serve as a theoretical framework to design and optimize future flexible bioelectronic
systems used in biomedical research, or related medical fields, and analytically control the flowrate and its global maximum for
successful drug delivery.

1. Introduction

Controlled and targeted drug delivery of pharmacological
agents in organs/tissues has helped researchers study local
biological responses to drug treatments and determine the
drug efficacy while mitigating unwanted side effects often
present in systemic drug delivery strategies [1, 2]. The
approaches and technologies in drug delivery vary signifi-
cantly depending on factors related to the type of drug

and anatomical target location. A review of drug delivery
technologies presented in [3, 4] discusses the evolution of
drug delivery approaches that range from tailored nanopar-
ticles that drive the active drug agents through biological
membranes to implantable microsystem with injectable
probes that enable targeted drug delivery in organs/tissues
of interest.

Examples of injectable drug delivery systems include
intracerebral [5, 6] and intra-arterial [7] injections in the
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brain, kidneys, eyes, ears, and lymphatic system of small-
(mice) and medium-sized (cats) animals that are aimed at
enhancing the drug effectiveness when treating affected
areas. For a timely and successful drug delivery, the flowrate
must be accurately controlled as excessively high flowrates
can exert dangerous stresses on fragile surrounding tissue
[8, 9] and excessively low flowrates can obstruct the fluidic
probes and result in an incomplete/ineffective delivery
[10]. Table 1 shows a list of reported flowrate ranges used
in drug delivery applications that vary depending on the size
of the animal and target location. In reported injectable drug
delivery systems for small animals, the drug flowrate can
vary in the range of tens of nanoliters per minute to hun-
dreds of microliters per minute depending on the drug dose
and intended application such as behavioral neuroscience
[10, 11] or cancer therapeutics [12–14]. For this reason,
accurately controlling the flowrate and its maximum value
during the drug delivery process is important to ensure safe
delivery of the drug without imposing stresses that can dam-
age the surrounding soft tissues in small animals.

The rapid development of microtechnology in biomedi-
cal research has enabled wireless flexible bioelectronics with
drug delivery capabilities in miniaturized form factors that
integrate chemical, mechanical, and fluidic interfaces to
manipulate small fluid volumes in a programmable fashion
and realize targeted drug delivery in regions like the brain
[7, 9, 10, 15, 16], peripheral nerves [11], and eyes [17]. To
circumvent previous tethered delivery strategies that restrict
animal motion, flexible bioelectronics utilize a wireless link
that harvests energy from nearby electromagnetic sources
and powers the corresponding subsystems to deliver the
drug in freely moving animals while maintaining negligible
device and thermal loads that can affect the animal behavior
or alter the chemistry of the drug. For neuroscience research
specifically, this aspect is especially important because min-
imizing the device load on freely moving animal allows to
study the drug effects without any interference from the
drug delivery actuation mechanisms [18–20].

Figure 1 shows a cross-sectional schematic of a typical
flexible bioelectronic device used for drug delivery where
all the geometric, environmental, fluidic, and mechanic
parameters are labeled. The main components of the flexible
bioelectronic include a set of interdigitated electrodes, an
electrolyte chamber, a flexible membrane, a drug chamber,
and microfluidic channels partially implanted in organs/tis-
sues. To deliver the drug, electrical current flows through the
electrodes—in direct contact with the electrolyte—to initiate
an electrochemical reaction known as water hydrolysis. The
byproducts of this electrochemical reaction are hydrogen
and oxygen gas that accumulates in the electrolyte chamber
and pressurizes the bottom side of a flexible membrane. In
response to the accumulated gas pressure, the flexible mem-
brane deforms into the form of a spherical cap and gradually
pumps the drug, sitting on the top side of the flexible mem-
brane, through a network of microfluidic channels which
outlet is the target organ/tissue. By using electrochemistry,
the drug can be pumped from inside the devices in a con-
trolled fashion without generating excessive heat [11, 21,
22] or requiring external moving parts that can increase

the complexity of injectable devices operating partially
inside the tissue/organs of animals.

Several analytic models that combine more than 12
parameters involved in the drug delivery process related to
geometric, environmental, fluidic, electrical, and flexible
membrane mechanics into unique combinations of 3 nondi-
mensional parameters related to the initial environmental
pressure, initial gas volume, and the microfluidic resistance
have been proposed [23]. These 3 nondimensional parame-
ters group all the parameters involved in the drug delivery
process and must be carefully selected to control the total
delivery time and volume for accelerated drug delivery
[24]. However, prior analytical models [23–25] focus on
the total volume delivered over time for applications requir-
ing accelerated delivery (e.g., life-saving medication) and do
not satisfy the zero-flowrate initial condition which affects
the flowrate over time, particularly the maximum flowrate.
For injectable drug delivery systems targeting fragile tis-
sues/organs in small animals, the maximum flowrate always
occurs near the beginning of the drug delivery process and is
the relevant quantity to control and adhere with reported
experimental flowrate guidelines for administering certain
types of drugs in experiments like the ones listed in
Table 1 and to ensure that the drug is delivered safely with-
out inducing excessive stresses that can damage the sur-
rounding tissue/organs.

Here, we propose an analytical model that separates the
drug delivery process into a “slow” variable that satisfies
the zero-volume, but not zero-flowrate initial conditions, as
used previously in [24, 25] to control the drug delivery time
and volume, and a new “fast” variable that corrects the slow
variable solution to satisfy both the zero-volume and zero-
flowrate initial conditions and is used to control the flowrate
and its maximum value without affecting the drug delivery
time and volume. The new analytical model featuring a
“fast” variable for flowrate control and an explicit formula
for the maximum flowrate is validated by showing excellent
agreement with the numerical results without using the
“slow” and “fast” variables and serves as the theoretical
framework to design the flexible bioelectronic devices with
flowrate control capabilities that can be adjusted by unique
combination of the nondimensional parameters depending
on the target organ and drug delivery timeframe.

2. Results

2.1. Flexible Membrane Mechanics. Pumping the drug from
inside the flexible device into the target location is achieved
by inducing a pressure differential P − Pdrug between the bot-
tom and top surfaces of a flexible membrane which causes it
to deform into the shape of the drug reservoir (e.g., spherical
cap) with a maximum vertical displacement H. This defor-
mation is governed by the flexible membrane geometrical
(i.e., thickness h and radius R0) and mechanical properties
(i.e., Young’s modulus E and Poisson ratio v or alternatively
a generalized hyperelastic strain energy density function),
and the mechanics of deformation can be modeled accord-
ing to the function f ðVÞ that gives the relationship between
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pressure differential P − Pdrug = f ðVÞ applied to the flexible
membrane and the volume V it expands.

During the delivery process, the flexible membrane
transitions from bending-dominated (i.e., small displace-
ment H ≪ h) to stretching-dominated deformation (i.e.,

large displacement H≫ h) as it goes from flat into the shape
of a spherical cap. Based on experiments for a bioelectronic
device that targets the peripheral nerves [11] and numerical
models of the drug delivery process [10, 23], the maximum
flowrate always occurs near the beginning of the delivery

Table 1: Flowrate range in targeted drug delivery applications.

Application Flowrate Units Reference

Intracerebral injection in mice <0.1 μl/min [6]

Murine inner ear drug delivery 0.01–0.1 μl/min [26]

Drug delivery system for the renal medulla in rats 0.016–0.5 μl/min [27]

Convection-enhanced delivery to striatum in rats 0.1–5 μl/min [8]

Intracerebroventricular injection of cells in mice 1 μl/min [28]

Optofluidic drug delivery system for the peripheral nerves 1.5 μl/min [11]

Optofluidic drug delivery system for the brain 0.1–2.5 μl/min [10]

Convection-enhanced delivery in the brain of cats 0.5–4 μl/min [15]

Focal delivery in the brain 0.03–5 μl/min [9]

Optofluidic drug delivery system for the brain 5.2 μl/min [29]

Lymphatic drug delivery system 10–80 μl/min [30]

Intra-arterial drug delivery in rat brain tumor 17–200 μl/min [7]

Drug delivery system for transdermal delivery 63–520 μl/min [31]
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Figure 1: Simplified schematic of a bioelectronic layout used for drug delivery. (a) Before the drug delivery process, the electrolyte reservoir
is partially filled where an initial volume of gas and the drug sits on top of the flexible membrane. (b) The gas formation process deforms the
flexible membrane to pump the drug from inside the device through the microchannels and into the target location. The parameters
involved in the drug delivery process are labeled through the schematic in their respective locations except the Young modulus, Poisson
ratio, and stress-strain relationship of the flexible membrane.

3Research



process when the deformation is small, i.e., bending-
dominated.

For these bioelectronics with drug delivery capabilities,
block copolymers like styrene-isoprene-styrene (SIS) have
been used as flexible membrane for their soft mechanics
and gas permeability properties which allow larger deforma-
tions and prevent the gas migration from the electrolyte
chamber to the drug chamber [10]. Ideally, the stress-strain
relationship of the block copolymers should be obtained
from experimental testing (e.g., uniaxial and biaxial), when
possible, to accurately model the flexible membrane expan-
sion [32, 33]. Figure 2(a) shows the constitutive stress-
strain relationship, obtained from uniaxial testing, of a SIS
block copolymer sample. Young’s modulus is calculated
from the small strain (linear-elastic regime) as E = 8MPa.
For a representative bioelectronic device (i.e., thickness h =
150 μm and radius R0 = 1:2mm) previously used for drug
delivery in the mouse brain [10], the function f ðVÞ is
obtained numerically using finite element analysis (FEA) as
shown in Figure 2(b), which considers both bending and
stretching effects and uses the Marlow hyperelastic model
[33] to build the strain energy density function of the SIS
block copolymer based on the stress-strain data shown in
Figure 2(a). When the deformation of the flexible membrane
is small (i.e., H ≪ h) such as near the beginning of the drug
delivery process when the maximum flowrate occurs, a
bending-dominated function f ðVÞ is derived from plate the-
ory [34] as

f Vð Þ = P − Pdrug =
16Eh3

πR6
0 1 − v2ð ÞV forH ≪ h, ð1Þ

which establishes a linear relationship between pressure dif-
ferential P − Pdrug and the deformed volume V as shown in
our previous work [24, 25] and has excellent agreement with
the function f ðVÞ obtained from FEA as shown in
Figure 2(b) when the deformation of the flexible membrane
is small. Generally, the function f ðVÞ can be written nondi-
mensionally as GðV∗Þ = ðR0/ðEhÞÞf ðV∗R3

0Þ, where V∗ = V/
R3
0 is the nondimensional volume, which gives

G V∗ð Þ = 16h2
πR2

0 1 − v2ð ÞV
∗, ð2Þ

for bending-dominated deformation only. It gives a constant
derivative with respect to V∗, and for an incompressible
membrane material (i.e., v = 0:5),

G′ V∗ð Þ =G′ 0ð Þ = 16h2
πR2

0 1 − v2ð Þ = 64
3π

h2

R2
0
, ð3Þ

which will be used in subsequent sections to analyze the
maximum flowrate.

Figure 2(b) shows that once the deformation of the flex-
ible membrane becomes large or H ≫ h, the bending-
dominated solution does not agree well with FEA as the
stretching (and nonlinear deformation) effects in the mem-

brane become relevant. However, for the analysis in this
paper, the focus is the maximum flowrate which occurs
when the deformation is small as explained in the Supple-
mentary Information (Note 1), and thus, bending-domi-
nated, not the volume or flowrate temporal response,
requires the numerical and analytical function f ðVÞ to agree
over the entire pressure-volume range as shown in our pre-
vious work on stretching-dominated deformation [24, 25].
This validates the analytical bending-dominated function f
ðVÞ in Equation (1) instead of the FEA solution to control
only the maximum flowrate in the drug delivery process.

2.2. Governing Equations of Drug Delivery. A typical wireless
bioelectronic device features three main components: (1)
electrochemical reservoir, (2) flexible membrane, and (3)
microfluidic channels where each contributes to the drug
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Figure 2: Mechanics of the flexible membrane. (a) Stress-strain
experimental data for a representative SIS polymer selected for
the flexible membrane (squares) and the Marlow hyperelastic
(HE) model fit of the data (solid line). (b) Pressure-volume
relationship for the SIS polymer obtained from FEA using the
Marlow HE model (squares) and the pressure-volume relationship
derived from plate theory for bending-dominated deformation
(dashed line). The flexible membrane dimensions are thickness
h = 150 μm and radius R0 = 1:20mm.
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delivery dynamics and affects the delivery time, flowrate, and
its maxima and must be accounted for explicitly. The phys-
ics of wireless bioelectronics relying on electrochemistry as
actuation method can be modeled approximately by the
ideal gas law:

P V + V0ð Þ = nRT , ð4Þ

where P is the pressure, V is volume change inside the elec-
trolyte reservoir, V0 is the initial volume of gas in the elec-
trolyte reservoir, R is the ideal gas constant (8.3144 Jmol-
1K-1), T is the temperature of the electrolyte, and n is the
number of moles, which is linear to the electrical current i
in the electrodes and is given by n = ðð3iÞ/ð4FÞÞt + n0 follow-
ing Nernst equation [35]. Here, t is time, F is Faraday’s con-
stant (96485C mol-1), the ratio 3/4 corresponds to water and
must be changed if using a different electrolyte according to
the redox reaction [36], n0 is the initial amount of gas moles
in the electrolyte reservoir and is related to the initial volume
of gas V0 in the electrolyte reservoir [25] by P0V0 = n0RT ,
and P0 is the initial value of P, i.e., the initial environmental
pressure at the target region (e.g., ~117 kPa when consider-
ing blood pressure).

The pressures applied at both sides of the flexible mem-
brane can be combined with the pressure differential in the
microfluidic channel given by Pdrug − P0 to derive the pres-
sure P from equilibrium in the device as [23]

P = f Vð Þ + P0 +
12μL _V

ab3 1 − 0:63 b/að Þð Þ
, ð5Þ

where the terms on the right-hand side include the resis-
tance to membrane deformation, the initial environmental
pressure P0 at the target region, and the microfluidic resis-
tance that includes the following: μ is the dynamic viscosity
of the drug, L is the length of the microchannels, a and b are
the width and height of the rectangular microchannel, and _V
is the drug flowrate. The microfluidic resistance term Pdrug
− P0 = 12μL _V/ðab3ð1 − 0:63ðb/aÞÞÞ is given for a rectangu-
lar cross section with laminar flow and must be modified if
using different cross sections; for instance, in the following
analysis, it will be simplified to ~ ð32μL/a4Þ _V for a square
(i.e., a = b) cross section. At the beginning of the drug deliv-
ery process (i.e., t = 0) before any electrical current flows
through the electrodes, the initial value of P in Equation
(5) is P = P0 + ð32μL/a4Þ _V jt=0 which satisfied the presence
of an initial amount of gas moles in the electrolyte reservoir
n0. Substituting the pressure P and number of moles n into
the ideal gas law in Equation (4) yields a 1st-order ordinary
differential equation (ODE) for the drug volume V as

t = 4F
3iRT P0V + f Vð Þ V + V0ð Þ + 32μL

a4
_V V +V0ð Þ − _V

��
t=0V0

h i� �
:

ð6Þ

The first-order ODE in Equation (6) is the governing
equation for the drug delivery process, and it can be rewrit-

ten nondimensionally by normalizing the volume as V∗ =
V/R3

0, introducing a nondimensional time t∗ = tðð3/4ÞðRT/
FÞði/EhR2

0ÞÞ , and writing the general expression for the
function f ðVÞ nondimensionally as GðV∗Þ = ðR0/EhÞf ðV∗

R3
0Þ to yield

t∗ = P∗
0V

∗ + G V∗ð Þ V∗ +V∗
0ð Þ

+M∗ dV∗

dt∗
V∗ +V∗

0ð Þ − dV∗

dt∗

����
t∗=0

V∗
0

� � ð7Þ

that involves three nondimensional parameters, namely,
the initial environmental pressure P∗

0 = ðR0/EhÞP0, the ini-
tial volume V∗

0 = ðV0/R3
0Þ, and the microfluidic resistance

M∗ = ð24μL/a4ÞðRT/FÞðR2
0/E2h2Þi that combine all the

dimensional parameters involved in the delivery process
into only three nondimensional parameters that can be
studied independently to understand how they influence
the drug delivery process. In this case, it is important to
note that the nondimensional function GðV∗Þ in Equation
(7) is the nonlinear function obtained from FEA as shown
in Figure 2(b) because the governing equation is used to
obtain the volume temporal profile. The governing equa-
tion in Equation (7) can be solved numerically with the
initial condition V∗ðt∗ = 0Þ = 0.

2.3. Analytical Model for Flowrate in Drug Delivery: Slow
Variable. In general, the microfluidic resistance M∗ is small,
as compared to the other two nondimensional parameters
P∗
0 and V∗

0 , but not zero (M∗ ≪ 1), such that the perturba-
tion method [37] can be used to solve the governing equa-
tion in Equation (7) analytically [25] or the drug delivery
time as

t∗ = P∗
0V

∗ +G V∗ð Þ V∗ + V∗
0ð Þ

+M∗ V∗ + V∗
0

P∗
0 +G V∗ð Þ +G′ V∗ð Þ V∗ + V∗

0ð Þ
−

V∗
0

P∗
0 +G′ 0ð ÞV∗

0

" #
,

ð8Þ

which is written explicitly for the total nondimensional
delivery time t∗ that it takes to deliver a nondimensional
volume of drug V∗. The first two terms on the right side
of Equation (8) can be regarded as the time required for
the flexible membrane to deform and overcome the exter-
nal environmental pressure and the last term is as the
time for the drug to travel through the microfluidic chan-
nels where both of these times occur simultaneously; i.e.,
as the flexible membrane deforms, it pumps the drug
through the microchannels. Let V∗ = V∗

slowðt∗Þ denote the
solution of the above equation, where the subscript “slow”
is used to denote a function of the regular (slow) time t∗

(as opposed to the fast time introduced in the next sec-
tion). The flowrate of the “slow” variable solution is
obtained by taking its derivative with respect to time in
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Equation (8) as

dV∗
slow

dt∗
= P∗

0 +G V∗ð Þ +G′ V∗ð Þ V∗ + V∗
0ð Þ

8><
>:

+M∗ P
∗
0 −G′ V∗ð Þ V∗ + V∗

0ð Þ −G′′ V∗ð Þ V∗ + V∗
0ð Þ2 +G V∗ð Þ

P∗
0 +G V∗ð Þ +G′ V∗ð Þ V∗ + V∗

0ð Þ
h i2

9>=
>;

−1

:

ð9Þ

It is important to note that Equation (9) gives a non-
zero initial flowrate that is equal to

dV∗
slow

dt∗

����
t∗=0

= P∗
0 + G′ 0ð ÞV∗

0 +M∗ P
∗
0 − G′ 0ð ÞV∗

0 − G′′ 0ð ÞV∗
0
2

P∗
0 + G′ 0ð ÞV∗

0

h i2
8><
>:

9>=
>;

−1

,

ð10Þ

which does not satisfy the zero-flowrate initial condition
ðdV∗/dt∗Þjt∗=0 = 0.

2.4. Analytical Model for Flowrate in Drug Delivery: Fast
Variable. The “slow” variable solution V∗ = V∗

slowðt∗Þ pre-
sented in the previous section works well when M∗ is small
except at the initial delivery time because it does not satisfy
the zero-flowrate initial condition. Since M∗ appears as the
highest order derivative in the “slow” variable solution for
the flowrate in Equation (9) and is small, the singular pertur-
bation method can be used to introduce a “fast” variable
solution of the form M∗V∗

fastðηÞ, where the η = t∗/M∗ is a
“fast” changing variable and the presence of M∗ ensures a
small effect on the volume temporal profile but a large effect
initially in the flowrate to satisfy the zero-flowrate initial
condition.

The total drug delivery time in Equation (8) then
becomes V∗ =V∗

slowðt∗Þ +M∗V∗
fastðηÞ, where t∗ is the “slow”

variable and η = t∗/M∗ is a “fast” changing variable that is
relevant near the initial time of the delivery process to ensure
a zero initial flowrate. Therefore, for a finite η and a very
small M∗, the value of ηM∗ is approximately zero such that
V∗

slowðt∗ = 0Þ = 0, Gð0Þ = 0, and ðdV∗
slow/dt∗Þjt∗=0 is a con-

stant value given from Equation (10) and these assumptions
can be used to derive V∗

fast as

V∗
fast = −

V∗
0

P∗
0 +G′ 0ð ÞV∗

0

dV∗
slow

dt∗

����
t∗=0

1 − e
−

P∗0
V∗0

+G′ 0ð Þ
h i

t∗
M∗

n o* +
,

ð11Þ

and the derivation details for the “fast” variable are shown in
the Supplementary Information (Note 2). The flowrate term
of the “fast” variable solution is obtained from Equation (11)
by taking a derivative as

dV∗
fast

dη∗
= −

dV∗
slow

dt∗

����
t∗=0

e
−

P∗0
V∗0

+G′ 0ð Þ
h i

η

n o
: ð12Þ

The complete expression for the flowrate is dV∗/dt∗ =
ðdV∗

slow/dt∗Þ + ðdV∗
fast/dηÞ. For time t∗ = 0, Equation (12)

becomes dV∗
fast/dη∗jðdV∗

fast/dη∗Þjη=0 = −ðdV∗
slow/dt∗Þjt∗=0 to

satisfy the initial condition of zero initial flowrate.
The following terminology is adopted in this section to

distinguish the solutions:

(i) The term “numerical” is used for solutions of the
ODE in Equation (7) described in Section 2.2 when
the nondimensional function GðV∗Þ is obtained
from FEA using the Marlow hyperelastic model
based on the stress-strain behavior of the SIS
polymer

(ii) The term “semianalytical slow” is used for the
“slow” variable solutions in Equation (9) described
in Section 2.3 for the flowrate defined as dV∗/d
t∗ = dV∗

slow/dt∗ when the nondimensional function
GðV∗Þ is obtained from FEA using the Marlow
hyperelastic model based on the stress-strain
behavior of the SIS polymer

(iii) The term “semianalytical slow + fast” is used for
the solutions in Equations (9) and (12) described
in Section 2.4 for the flowrate defined as dV∗/d
t∗ = ðdV∗

slow/dt∗Þ + ðdV∗
fast/dηÞ when the nondi-

mensional function GðV∗Þ is obtained from FEA
using the Marlow hyperelastic model based on
the stress-strain behavior of the SIS polymer

(iv) The term “analytical slow + fast” is used for the
solutions in Equations (9) and (12) described in
Section 2.4 for the flowrate defined as dV∗/dt∗ =
ðdV∗

slow/dt∗Þ + ðdV∗
fast/dηÞwhen the nondimensional

function GðV∗Þ is derived from plate theory for
bending-dominated deformation in Equation (2)

The results in Figure 3 show the flowrate temporal pro-
file for a representative bioelectronic device with a SIS flexi-
ble membrane previously used for combined drug and light
delivery in the mouse brain [10] with the parameters listed
in Table 2 and show the numerical, semianalytical, and ana-
lytical solutions of the flowrate and its maximum value.
Figures 3(a) and 3(b) both show the numerical solution
and “semianalytical slow + fast” solution, and they begin
with an initial zero flowrate and increase until reaching a
peak value labeled as the maximum flowrate and then grad-
ually decrease as the drug delivery process continues. The
main difference between the “semianalytical slow” and
“semianalytical slow + fast” solutions in Figure 3(a) is at
the beginning of the delivery process (i.e., t = 0) showing that
the “semianalytical slow” solution does not satisfy the zero
initial flowrate, but the “semianalytical slow + fast” solution
does due to the introduction of the “fast” variable η = t∗/M∗

which dominates at the beginning of the delivery process.
Both semianalytical solutions in Figure 3(a) closely match
the numerical solution after the initial time because the
function f ðVÞ is obtained from FEA based on the Marlow
hyperelastic model and it considers both the bending and
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stretching effects of the deformation. Thus, just like in the
previous volume temporal profile models [24, 25], modeling
the flowrate temporal profile requires excellent agreement
between the FEA and analytical function f ðVÞ. However,
since the maximum flowrate always occurs at the beginning
of the drug delivery process when the bending effects in the
flexible membrane are prevalent, the FEA function f ðVÞ can
be replaced by the linear f ðVÞ function given in Equation (1)
for bending-dominated deformation to model the drug

delivery process up to the point where the maximum flow-
rate is reached. For this bioelectronic device geometry specif-
ically (i.e., thickness h = 150 μm and radius R0 = 1:2mm),
the bending effects in the membrane cannot be neglected
when controlling the maximum flowrate. Figure 3(b) shows
that the “analytical slow + fast” using the in f ðVÞ given in
Equation (1) satisfies the zero initial flowrate condition due
to the presence of the “fast” variable and has excellent agree-
ment with the numerical solution up to the point of the
maximum flowrate which is the key quantity of focus in this
analysis. It is important to note that the bending-dominated
deformation f ðVÞ can only be used up to the time point
when the maximum flowrate is reached while the deforma-
tion remains small; otherwise, a stretching-dominated f ðVÞ
or the FEA solution f ðVÞ is necessary. The reason why the
bending-dominated solution f ðVÞ is relevant in this particu-
lar case is twofold: (1) the maximum flowrate always occurs
near the beginning of the drug delivery process when the
deformation is small and therefore bending-dominated and
(2) the flexible membrane bending effects depend on the
nondimensional ratio h/R0 = 0:125 which is almost five
times higher than bioelectronic devices handling larger drug
volumes (e.g., 100–1000μl) that focus on achieving faster
drug delivery h/R0 = 0:03, where a larger membrane radius
ensures stretching-dominated deformation [25] and the
control is on the drug delivery time and volume instead of
the flowrate and its maximum value. However, for compact
bioelectronics with drug delivery capabilities for use in small
animals, the key quantity to control is the magnitude of the
maximum flowrate to avoid damaging surrounding fragile
tissues resulting from excessively high flowrates, not the vol-
ume or temporal profile as shown in our previous work
[23–25] where the focus was to obtain the total delivery time
and volume.

2.5. Analytical Model for Maximum Flowrate. The flowrate
temporal profiles in Figure 4(a) show that the maximum
flowrate occurs near the beginning of the drug delivery pro-
cess. Currently, the “analytical slow + fast” solution for the
flowrate is divided into the “slow” and “fast” terms given
by dV∗/dt∗ = ðdV∗

slow/dt∗Þ + ðdV∗
slow/dηÞ, and the exact time

when the maximum flowrate occurs can be obtained from
d2V∗/dt∗2=ðd2V∗

slow/dt∗Þ+ð1/M∗Þðd2V∗
fast/ðdη2ÞÞ=0, which,
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Figure 3: Flowrate temporal profile during drug delivery. (a)
Representative example of the flowrate temporal profile obtained
from the numerical, semianalytical slow, and semianalytical slow +
fast solutions for a bioelectronic device when the function f ðVÞ
is obtained from the finite element analysis (FEA) using the
Marlow hyperelastic model. The maximum flowrate is labeled as
the peak value of the flowrate temporal profile. (b) Representative
example of the flowrate temporal profile showing the analytical
slow + fast solution where the function f ðVÞ is obtained from
bending-dominated deformation. The dimensions of the flexible
membrane are thickness h = 150 μm and radius R0 = 1:20mm.
The electrical current is 0.5mA, and the cross section of the
microchannels is 50μm. The three nondimensional values are
M∗ = 0:0009, P∗

0 = 0:1013, and V∗
0 = 0:9162.

Table 2: Representative values for electrochemical bioelectronic
used in drug delivery.

Parameter Value Units

R0 1.2 mm

E 8 MPa

h 150 μm

T 310 (core body temp) K

i 0.10–1.00 mA

a, b 18–50 μm

L 20 mm

μ 0.89 mPa-s

7Research



however, is difficult to yield an explicit formula for the exact
time when the maximum flowrate occurs. When time is
small, such as in the beginning of the delivery process (i.e.,
t∗ = 0), the term d2V∗

slow/dt2∗ can be approximated by the
constant ðd2V∗

slow/dt∗2Þjt∗=0 because in the “slow” variable
solution, the maximum flowrate always occurs near t∗ = 0,
but η in the “fast” variable solution is not zero and must
be determined. Then, the approximate time when the maxi-
mum flowrate occurs can be rewritten as

d2V∗

dt∗2
= d2V∗

slow
dt∗2

�����
t∗=0

+ 1
M∗

d2V∗
fast

dη2
= 0, ð13Þ

where the first term in the right-hand side of Equation (13)
is a constant and the second term is only a function of η.

This gives an explicit formula for η at which the maximum
flowrate occurs, and its substitution into the flowrate expres-
sion dV∗/dt∗ = ðdV∗

slow/dt∗Þjt∗=0 + ðdV∗
fast/dηÞ gives an

explicit formula for the maximum flowrate as

max dV∗

dt∗

� �
= P∗

0 +G′ 0ð ÞV∗
0

h i−1
1 −M∗ 1

P∗
0 +G′ 0ð ÞV∗

0

h i2
2
64

3
75,

ð14Þ

where all the derivation details are shown in the Supplemen-
tary Information (Note 3). Since the bending effects are rel-
evant at the beginning of the drug delivery process when the
maximum flowrate occurs, the expression for G′ð0Þ can be
derived from Equation (1) as G′ð0Þ = ð64/3πÞðh2/R2

0Þ. The
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Figure 4: Maximum flowrate. (a) Drug delivery temporal flowrate showing the maximum (peak) flowrate value when the electrical current
changes from 0.10mA to 1.00mA. (b) Maximum flowrate as a function of the electrical current. The dimensions of the flexible membrane
are thickness h = 150μm and radius R0 = 1:20mm. The cross section of the microchannels is 50μm. The two nondimensional values are
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0 = 0:1013 and V∗

0 = 0:9162.
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explicit nondimensional expression for the maximum flow-
rate becomes

max dV∗

dt∗

� �
= P∗

0 +
64
3π

h2

R2
0
V∗

0

" #−1

� 1 −M∗ 1
P∗
0 + 64/3πð Þ h2/R2

0
	 


V∗
0

� �2
" #

ð15Þ

that depends on the ratio ðh/R0Þ (due to the bending effects)
and the three nondimensional parameters P∗

0 , V
∗
0 , and M∗

described in Section 2.3. Typically, in these bioelectronic
devices with the representative parameters listed in
Table 2, the electrical current can be modulated to control
(increase or decrease) the maximum flowrate as shown in
Figure 4(a) where the electrical current is changed from
0.10mA to 1.00mA which in turn increases the maximum
flowrate from 0.60μl/min to 5.20μl/min. The corresponding
nondimensional parameters for this example are calculated
and shown in Figure 4(a) for comparison, where M∗

increases from 0.0002 to 0.0018 when the electrical current
changes and the other two nondimensional parameters P∗

0
and V∗

0 are fixed since they do not depend on the electrical
current.

The “analytical slow + fast” solution in Figure 4(a) shows
excellent agreement up to the time when the maximum
flowrate is reached; after, the agreement deteriorates for
larger current values (e.g., 0.75 and 1.00mA) due to (1) the
magnitude of M∗ which increases and (2) the differences
between the function f ðVÞ obtained from FEA and
bending-dominated deformation in Equation (1). Most
notably, the magnitude of the maximum flowrate shows
excellent agreement between the numerical and “analytical
slow + fast,” which is the key quantity to control during
the drug delivery process to avoid damaging fragile sur-
rounding tissues. Figure 4(b) shows the excellent agreement
of the value for the maximum flowrate obtained from the
explicit analytical formula in Equation (15) with the numer-
ical values computed from the peaks in the flowrate tempo-
ral profile. When the electrical current is less than 0.50mA,
the agreement between the numerical and explicit formula
is excellent. As the electrical current increases to 1.00mA,
the explicit formula overpredicts the maximum flowrate by
~10.8%, which is still a reasonable agreement, which vali-
dates the explicit analytical expression in Equation (15) for
the maximum flowrate.

2.6. Parametric Study of the Maximum Flowrate. The maxi-
mum flowrate in Equation (15), like the scaling law in Equa-
tion (7), depends on the three nondimensional parameters
P∗
0 , V

∗
0 , and M∗. Therefore, understanding how the maxi-

mum flowrate scales with each of the three nondimensional
parameter is important to design and optimize the bioelec-
tronic device geometry and ensure safe and successful drug
delivery. To explore the influence of M∗, the cross-
sectional area of the microfluidic channel a is reduced from
50μm to 18μm which in turn increases M∗ to 0.027, while

the other two nondimensional parameters are fixed to P∗
0

= 0:10 and V∗
0 = 0:92. This cross-sectional reduction is rele-

vant when targeting smaller areas (or cells) within the tissues
to ensure that the drug is being delivered only in a specific
region. Figure 5(a) shows that the maximum nondimen-
sional flowrate decreases approximately nonlinearly with
M∗; this nonlinearity is clearly captured from the flowrate
temporal profile peaks in the “analytical slow + fast” model
as shown by the excellent agreement with the numerical
solution. The explicit formula in Equation (15) has a linear
dependence on M∗ as shown in Figure 5(a) and provides
an excellent agreement when M∗ is small (key assumption
when using the perturbation method) and a reasonably well
analytical approximation to the nondimensional maximum
flowrate when M∗ increases over the relevant range of
microchannel cross sections.

To study the influence of V∗
0 , which is relevant in the

refill ability aspect of the bioelectronic device, the other
two nondimensional parameters were fixed to P∗

0 = 0:1000
andM∗ = 0:0011. Figure 5(b) shows that both the “analytical
slow + fast” and the explicit formula agree extremely well
with the numerical solution in the range V∗

0 = 0 − 1:3, which
corresponds to the electrolyte reservoir being completely full
V∗

0 = 0 and partially full (i.e., 50%) that introduces the pres-
ence of an initial gas volume V∗

0 = 1:3. Here, the explicit for-
mula slightly overpredicts within ~6% the magnitude of the
nondimensional maximum flowrate.

To understand the influence of P∗
0 , the other two nondi-

mensional parameters are fixed to V∗
0 = 0:9200 and M∗ =

0:0011. Significantly changing the value of P∗
0 is difficult as

it depends on the initial environmental pressure of the target
organ which might vary only by a few kilopascals in humans.
Figure 5(c) shows that the “analytical slow + fast” and the
explicit formula agree very well with the numerical solution.

3. Discussion

Wireless drug delivery technologies have attracted signifi-
cant attention for their ability to precisely deliver small
drug volumes in a programmable fashion to different target
tissues/organs without restricting the animal’s ability to
move. Designing these drug delivery technologies requires
careful consideration of the geometrical, electrical, flexural,
fluidic, and environmental parameters to optimize the
device layout to ensure safe and complete delivery within
the required timeframe based on the flowrate and delivery
time. Specifically, controlling the maximum flowrate during
the drug delivery process can help to reduce any damage to
the surrounding fragile tissues caused by stresses generated
from excessively high flowrates. The introduction of a “fast”
variable analytical model in Section 2.4 and the explicit for-
mula for the maximum flowrate in Section 2.5 provides a
theoretical framework to control the maximum flowrate
by changing any of the three nondimensional parameters
P∗
0 , V

∗
0 , and M∗. Future flexible bioelectronic systems with

drug delivery capabilities can be designed by explicitly con-
sidering the influence of geometric dimensions, electronics,
flexible membrane mechanics, and microfluidic geometries.
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For example, wireless drug delivery devices in neuroscience
experiments are aimed at being small and lightweight such
as to not influence the behavior of the small animal during
experiments. This design goal of achieving a small and
functional device can be achieved by carefully studying
the unique combinations of the nondimensional parameters
to yield the optimal configuration for the bioelectronic
device. After the bioelectronic device is fabricated, only
the initial gas volume and electric current can be modified.
The initial gas volume can be changed during the refilling
process between experiments, and the electric current can
be modified by operating at different duty cycles. Restric-
tions in size and geometric dimensions affect the device
radius and available electric current, and these effects can
be modeled using the nondimensional parameters to iden-
tify if the bioelectronic device is able to reach the desired

maximum flowrate range during delivery before fabricating
the device. Further, the influence of the flexible membrane
mechanics can be explicitly considered to use a block copol-
ymer with Young’s modulus that deforms quickly with the
applied pressure (i.e., soft) and helps achieve the desired
maximum flowrate. Similarly, the influence of the microflu-
idic channel geometry and dimensions can be considered
explicitly such as to not impose excessive fluid resistance
that can delay the delivery or cause a blockage inside the
device while still targeting drug delivery in specific loca-
tions. For example, Figure 5(a) shows that changing the
cross section of the microchannel from 50μm (delivery area
2500μm2) to 18μm (delivery area 324μm2) will decrease
the maximum flowrate during delivery which can be impor-
tant to consider especially when interested in drug delivery
to cells with dimensions in the tens of micrometers or less.
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Figure 5: Parametric study of the maximum flowrate. Changes in the maximum flowrate when (a) the microchannel cross section is
reduced from 50 μm to 18μm which increases the nondimensional parameter M∗, (b) the electrolyte chamber goes from full to
partially full (50%) which introduces an initial gas volume via the nondimensional parameter V∗

0 , and (c) the initial environmental
pressure in the tissue/organ changes which affects the nondimensional parameter P∗

0 . The dimensions of the flexible membrane are
thickness h = 150 μm and radius R0 = 1:20mm.
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The separation of the flowrate solution into a “slow” vari-
able (which is relevant to determine the total delivery time)
and a “fast” variable (which is relevant to satisfy the zero-
flowrate initial condition at the beginning of the drug deliv-
ery process) allows to prioritize which dimensional param-
eters (and consequently nondimensional parameters) to
change depending on the quantity to control, e.g., delivery
time or flowrate and its maxima, and most importantly
how to change them to increase or decrease the maximum
flowrate based on the linear dependence on M∗ and inverse
linear dependence on P∗

0 and V∗
0 shown in Equation (15)

which can be used to control the maximum flowrate when
changing the microchannel cross section to target a smaller
region in the organs, initial volume of gas during refill and
reuse process, and the physiological pressure of the target
region organ as shown in Figure 5. For example, the pro-
posed analytical model can be used to design the bioelec-
tronic device to comply with the maximum flowrate
applications listed in Table 1 and tailor specific experi-
ments, target locations, drug delivery timeframe, and ani-
mal size. The physics of the maximum flowrate are
presented as follows: the first term in Equation (15) is the
maximum flowrate achieved while the flexible membrane
is overcoming the external pressure to deform, and the sec-
ond term (which is a negative term of the nondimensional
parameter M∗) is the delayed effect caused by the drug trav-
eling through the microchannels. The relevance of the “slow
+ fast” variable analytical model presented in Section 2.4 in
the context of time-sensitive experiments in freely moving
animals (1) provides control over the rates of drug delivery
which are important in many behavioral neuroscience stud-
ies and the total time to deliver the drug and (2) the “fast”
variable model allows to determine the time required to
reach the maximum flowrate to enable safe wireless phar-
macology experiments. The benefits of employing the “ana-
lytical slow + fast” variable over the numerical model and
FEA to design this emerging class of bioelectronic devices
are as follows: (1) the iterative design and optimization pro-
cess can be done in minutes to properly tune the maximum
flowrate by studying only the unique combinations of the
nondimensional parameters, subject to practical limits in
the fabrication process, rather than each individual dimen-
sional parameter (e.g., electric current, device, and micro-
channel geometries) and help to study only optimized
geometries that need to be characterized experimentally
using microparticle tracking velocimetry, a confocal micro-
scope technique used to examine flowrate characteristics in
microfluidic devices with drug delivery capabilities. Noting
that the “slow + fast” variable analysis presented here is
for a bioelectronic device where the bending effects in the
polymer flexible membrane are not negligible since the
maximum flowrate occurs at the beginning of the delivery
process, a similar analysis can be performed for bioelec-
tronic devices mainly experiencing large deformation (i.e.,
stretching-dominated deformation) to determine the total
drug delivery time, flowrate, and its maximum value.
Although further experimental testing is required to scale
these bioelectronics from small animals to medium and
large animals for targeted drug delivery studies, the pro-

posed “slow + fast” variable analytical model for the flow-
rate and its maxima provides a scalable understanding to
control the flowrate via P∗

0 , V
∗
0 , and M∗ during the drug

delivery process.

4. Materials and Methods

4.1. FEA of the Flexible Membrane. The commercial software
ABAQUS was used to calculate the function f ðVÞ for a flex-
ible membrane with a thickness h = 150 μm and radius R0
= 1:2mm. A pressure load of P was applied uniformly to
the bottom surface of the flexible membrane to deform it
into the shape of a spherical cap. The flexible membrane
was meshed with 3D stress elements (C3D8H), and the total
number of 3D elements used in the model is ~50,000. The
displacement and rotational degrees of freedom of the ele-
ment nodes located at the circumference of the flexible
membrane were fixed to zero; the remaining elements were
free to deform because of the applied pressure resulting in
a spherical cap shape. To calculate the deformed volume of
the flexible membrane, the changes in the element volume
(EVOL) and vertical displacement (U) were output for 250
evenly spaced time intervals. The hyperelastic material prop-
erties of the flexible membrane were defined from the uniax-
ial stress-strain relationship data shown in Figure 2(a) using
the Marlow hyperelastic model to build the strain energy
function of the SIS block copolymers.

4.2. Numerical Model for Drug Delivery. The numerical
solver ode45 was used in MATLAB to solve the 1st-order
ODE in Equation (6) with the initial condition Vðt = 0Þ = 0
: The step size was set to 1/10,000th of the total time, and
the function f ðVÞ was obtained from FEA. All the parame-
ters used in the model are listed in Table 2.
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