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ABSTRACT Objective: A primary goal of acute stroke rehabilitation is to maximize functional recovery
and help patients reintegrate safely in the home and community. However, not all patients have the same
potential for recovery, making it difficult to set realistic therapy goals and to anticipate future needs for short-
or long-term care. The objective of this study was to test the value of high-resolution data from wireless,
wearable motion sensors to predict post-stroke ambulation function following inpatient stroke rehabilitation.
Method: Supervised machine learning algorithms were trained to classify patients as either household or
community ambulators at discharge based on information collected upon admission to the inpatient facility
(N=33-35). Inertial measurement unit (IMU) sensor data recorded from the ankles and the pelvis during a
brief walking bout at admission (10 meters, or 60 seconds walking) improved the prediction of discharge
ambulation ability over a traditional prediction model based on patient demographics, clinical information,
and performance on standardized clinical assessments. Results: Models incorporating IMU data were more
sensitive to patients who changed ambulation category, improving the recall of community ambulators at
discharge from 85% to 89-93%. Conclusions: This approach demonstrates significant potential for the early
prediction of post-rehabilitation walking outcomes in patients with stroke using small amounts of data from
three wearable motion sensors. Clinical Impact: Accurately predicting a patient’s functional recovery early in
the rehabilitation process would transform our ability to design personalized care strategies in the clinic and
beyond. This work contributes to the development of low-cost, clinically-implementable prognostic tools for
data-driven stroke treatment.
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I. INTRODUCTION21

Inpatient stroke rehabilitation is an early-stage program inte-22

grating clinical care with targeted therapy to maximize a23

patient’s functional recovery. A primary goal of inpatient24

rehabilitation is to retrain patients to maneuver safely and25

independently in the home and community after hospi-26

tal discharge, such as by restoring walking ability. Walk-27

ing at home or in the community are very meaningful28

tasks for individuals following a stroke; however, they are29

uniquely different skills. The functional capacity, coordina-30

tion, endurance, strength, motor control, cognition needed31

are significantly higher for community ambulation compared32

to household ambulation [1], [2], [3]. With the average33

length of stay at an inpatient rehabilitation facility (IRF)34

in the United States declining over time [4], [5] (current35

estimates ranging from 8.9-22.2 days depending on impair-36

ment severity [6]), the patient’s care team only have a37

brief time to create and execute a support plan for dis-38

charge based on the patient’s capability. For patients who do39

not achieve functional independence, including community40

walking, comprehensive discharge plans must be established41

to ensure appropriate support or continued services outside of42

the hospital. Accurately predicting a patient’s outcomes and43

response to treatment early in the rehabilitation processwould44

be invaluable for setting realistic and achievable goals during45

therapy, anticipating future needs for assistive equipment46

(e.g., wheelchair, walker, orthotics) or home modifications,47

maximizing time for caregiver training, and informing inter-48

actions with insurance providers.49

Numerous prediction models have been proposed in stroke50

research. Many of these models are based exclusively on51

information readily available from an electronic medical52

record (EMR), including patient demographics, stroke char-53

acteristics, and standardized functional assessment scores [7],54

[8]. For instance, Bland et al. identified that a Berg Balance55

Scale (BBS) score≤20 points and a Functional Independence56

Measure (FIM) walk item score of 1 or 2 at IRF admission57

were predictive of low functional ambulation at discharge [9].58

Harari et al. found that functional assessment scores recorded59

at admission to an inpatient rehabilitation facility (IRF) were60

the most important predictors of the same test scores at61

discharge, over age, stroke characteristics, or performance on62

other assessments of gait or balance [10]. While standardized63

clinical functional assessments are useful indicators to predict64

future outcomes, their administration can be time-intensive65

and cumbersome due to limited interaction time with patients66

and need for specialized training. Furthermore, some func-67

tional assessments are scored using subjective rating scales68

and suffer from floor/ceiling effects [11], high inter-/intra-69

rater variability [12], [13], and lack of suitability for patients70

with severe cognitive impairments [14]. Reliance on these71

assessments could result in imprecise and inequitable prog-72

noses. Indeed, previous studies indicate that patient prognosis73

can be an important source of variation in healthcare and may74

lead to inconsistent access to rehabilitation services across75

the continuum of care [15], [16]. Identifying alternative, 76

objective predictors of stroke recovery that can be obtained 77

easily in a clinical setting may improve measurement resolu- 78

tion, diagnostic accuracy, and lead to data-driven, prognostic 79

models. 80

Wearable sensors have started transforming our ability 81

to objectively measure patient health and performance in 82

clinical settings. Ongoing technological advances yield sen- 83

sors that are smaller and more affordable, with options 84

to wirelessly stream analytics to customized, user-friendly 85

digital dashboards. Inertial measurement units (IMUs) are 86

especially ubiquitous in research-grade and commercial 87

devices, providing three-dimensional kinematic metrics from 88

accelerometers and gyroscopes. These devices have demon- 89

strated utility in various stroke rehabilitation applications in 90

the inpatient setting – for example: instrumenting clinical 91

tests [17]; measuring changes in motor features related to 92

arm reaching [18], gait and transfers [19], [20], or balance 93

[21]; and detecting posture or activity [22]. To date, there has 94

been limited exploration of IMU data for recovery prediction 95

after stroke. A recent study in exception found that combining 96

clinical data obtained at admission with inertial sensor data 97

provided superior prediction of the discharge FIM compared 98

to clinical data alone [23], indicating that wearable sensors 99

could be beneficial for prognostic models. It remains to be 100

seen whether IMU data can characterize recovery of walking 101

ability, a critical discharge need for individuals following a 102

stroke. High resolution measures of lower-limb motion may 103

capture nuanced information about a patient’s propensity for 104

functional gait recovery. 105

Thus, the objective of this study was to quantify the value 106

of inertial sensor data in predicting post-stroke recovery 107

of walking function. We trained machine learning models 108

to retrospectively classify functional walking ability at IRF 109

discharge (household or community ambulation) using var- 110

ious types of data obtained at admission, including patient 111

demographics and clinical information, functional assess- 112

ment scores, and IMU sensor data.We hypothesized that IMU 113

data recorded during a brief walking bout at IRF admission 114

would improve discharge predictions over traditional models 115

trained using standard clinical assessment scores and patient 116

characteristics alone. 117

II. RESULTS 118

A. IMU DATA RECORDED DURING 10-METER WALK AT 119

ADMISSION IMPROVE PREDICTIONS OF FUNCTIONAL 120

WALKING LEVEL AT DISCHARGE 121

We trained a machine learning algorithm to classify patients 122

as household ambulators (discharge 10MWT score≤0.4 m/s) 123

or community ambulators (discharge 10MWT >0.4 m/s) [1], 124

[24] at discharge using input data recorded at admission. 125

A balanced random forest classifier was selected as the 126

algorithm of choice following initial exploration (see V. 127

Methods and Procedures, section F. Algorithm Selection), 128

demonstrating the highest average weighted F1 score and 129
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FIGURE 1. Discharge predictions using fixed distance IMU data.
(a) Top 10 important features for a model utilizing patient information
(PI) and IMU data. Features from IMUs placed on the pelvis and
unaffected ankle were selected via backward elimination for optimized
model performance (red box). (b) Models trained with IMU sensor data
from 10 m of walking at admission show improved classification of
discharge walking level over a model using patient information and
functional assessment scores (FA) alone. Bars show the average and SD
of each metric across 100 iterations. Acc = Accelerometer; Gyr =
Gyroscope; US = Unaffected Side; AS = Affected Side; AoM = Amount of
motion; SampEn = Sample entropy.

performance stability. Features for model training included130

patient information (PI), functional assessment scores at131

admission (FA), and metrics computed from inertial sensor132

data during the 10MWT at admission (IMU, recorded from133

the pelvis and bilateral ankles). Thus, IMU features charac-134

terized lower limb walking motion at admission over a fixed135

10-m distance.136

Model performance was evaluated using the weighted F1137

score, accuracy, and area under the receiver operating char-138

acteristic (AUROC). All metrics were computed using leave-139

one-subject-out cross-validation (N=33 patients) following140

optimization via feature selection and hyperparameter tuning.141

These procedures were repeated over 100 iterations with142

incremented random seeds to account for the stochasticity of143

the balanced random forest classifier, andmodel performance144

metrics were averaged.145

Example feature importance and selection are illustrated146

in Fig. 1a for a model trained on patient information and147

IMU features (PI+IMU). Four features were selected for148

this model via backward elimination, including the standard149

deviation of acceleration at the pelvis, amount of motion150

of the stroke-unaffected ankle, amount of motion of the151

pelvis, and sample entropy of acceleration on the stroke-152

unaffected ankle. Feature importance and selection for the153

PI+FA model and PI+FA+IMU fixed distance model are154

provided in Fig. 2a and Fig. 2b, respectively.155

Fig. 1b compares optimized model performance across156

three different combinations of feature training sets. Per-157

formance was highly stable across the 100 iterations for158

all models, with no fluctuation in the participant classifi-159

cations. The benchmark model, trained on patient informa-160

tion and functional assessment scores only (PI+FA), had161

a weighted F1 score of 0.889. Adding sensor-based fea-162

tures – either to the patient information alone (PI+IMU)163

or to both patient information and functional assessment164

FIGURE 2. Feature importance and selected features for the benchmark
and full model. Red box indicates the features selected via backward
elimination for use in the optimized model training and testing.
(a) Benchmark model (PI+FA), with 1 feature selected (10MWT score at
admission), (b) Fixed distance full model (PI+FA+IMU), with 8 features
selected (10MWT score at admission and 7 features from the ankles and
pelvis IMUs), (c) Fixed duration full model (PI+FA+IMU), with 2 features
selected (10MWT score at admission and a feature from the affected
ankle IMU). No patient information (PI) features were selected for use in
any model. Acc = Accelerometer; Gyr = Gyroscope; US = Unaffected Side;
AS = Affected Side; AoM = Amount of motion; SampEn = Sample entropy.

scores (PI+FA+IMU) – improved the weighted F1 to 165

0.943 and 0.916, respectively. This trend was preserved 166

for other metrics of model performance, including accu- 167

racy (PI+FA: 0.879; PI+IMU: 0.939; PI+FA+IMU: 0.909) 168

andAUROC (PI+FA: 0.905±0.003; PI+IMU: 0.988±0.001; 169

PI+FA+IMU: 0.963±0.005). 170

B. MODELS TRAINED ON IMU DATA WERE MORE 171

ACCURATE IN CLASSIFYING PATIENTS WHO IMPROVED 172

FUNCTIONAL WALKING LEVEL DURING REHABILITATION 173

The benchmark PI+FA model correctly predicted the dis- 174

charge functional walking level for 23 out of 27 community 175

ambulators (85%) and for 6 out of 6 household ambulators 176

(100%) (Fig. 3a). Adding sensor data improved the recall of 177

discharge community ambulators to 25 out of 27 (93%) for 178

PI+IMU or 24 out of 27 (89%) for PI+FA+IMU without 179

compromising the perfect recall of household ambulators. 180

We next examined the models’ ability to detect changes in 181

walking function during IRF treatment. All models achieved 182

perfect recall for patients who maintained the same level of 183

walking function between admission and discharge, which 184

applied to most study participants (community: N=21; 185

household: N=8). However, only models that included IMU 186

data could correctly classify patients who changed func- 187

tional walking level between admission and discharge (pro- 188

gressed from household to community ambulators: N=4). 189

The PI+IMU model correctly classified two out of these 190

four patients (50%), while the PI+FA+IMU model correctly 191

classified 1 out of 4 (25%). The benchmark PI+FA model 192

was unable to correctly classify any of these patients, instead 193

predicting that they would remain at the household functional 194

level (Fig. 3b). Such misclassifications were exclusively tied 195

to the four patients who transitioned to a higher level of 196

functional ambulation. These patients exhibited a moderate 197

range of 10MWT scores at Adm and Dis relative to the 198

0.4 m/s classification threshold (Fig. 4). The two patients 199

consistently misclassified across all models had Dis scores 200

close to (0.54 m/s) and far from (1.27 m/s) the threshold, 201
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FIGURE 3. Model performance for household and community
ambulators. (a) Confusion matrices for each model. (b) Percentage of
patients correctly classified based on functional walking categories at IRF
admission and discharge. While all models correctly classified 100% of
patients who maintained the same level of walking function
(Household→ Household, N=8; Community→ Community, N=21), only
models that included IMU data were able to identify any patients who
changed functional walking level during IRF treatment
(Household→ Community, N=4).

FIGURE 4. Model predictions by participant. Correct and incorrect
predictions for each participant’s discharge ambulation ability in relation
to their Adm and Dis 10WMT scores (fixed distance model). Dashed lines
illustrate the 0.4 m/s threshold that differentiates the community and
household ambulator classes.

with similar scores at Adm (0.20 and 0.26 m/s, respectively).202

Adding IMU features to the model reduced misclassification203

for the other two patients with Adm scores close to (0.33 m/s)204

and far from (0.17 m/s) the threshold, with intermediate Dis205

scores (0.79 and 0.69 m/s, respectively).206

C. LONGER BOUTS OF WALKING AT IRF ADMISSION DID207

NOT IMPROVE GAIT SPEED CLASSIFICATIONS208

To examine the impact of amount of sensor data onmodel per-209

formance, we also utilized IMU data recorded during differ-210

ent walking durations ranging from 10-360 s, obtained from211

a 6MWT. Data from two additional patients were available 212

for this fixed duration paradigm, so all models were trained, 213

optimized, and tested using the available data from a larger 214

patient cohort (N=35). Pre-optimized model performance is 215

shown in Fig. 5a for each model and walking duration. The 216

60-s walking duration was selected for downstream analysis 217

since this duration exhibited the highest initial classification 218

performance. 219

Example feature importance and selection is illustrated 220

in Fig. 5b for the fixed duration model trained on patient 221

information and IMU features computed from 60 s of walk- 222

ing (PI+IMU). Two features were selected for this model 223

via backward elimination, including the sample entropy 224

of acceleration on the stroke-unaffected ankle and sample 225

entropy of rotational velocity on the stroke-affected ankle. 226

Feature importance and selection for the PI+FA model and 227

PI+FA+IMU fixed duration model are provided in Fig. 2a 228

and Fig. 2c, respectively. 229

Similar to the fixed distance (10-m walk) analy- 230

sis, the fixed duration (60-s walk) analysis revealed 231

improved classification for models incorporating sen- 232

sor data compared to the benchmark PI+FA model 233

(Fig. 5c). Optimized models with IMU features demon- 234

strated higher weighted F1 score (PI+FA: 0.867±0.007; 235

PI+IMU: 0.916±0.009; PI+FA+IMU: 0.893±0.004), 236

accuracy (PI+FA: 0.855±0.007; PI+IMU: 0.911±0.011; 237

PI+FA+IMU: 0.885±0.005) and AUROC (PI+FA: 0.877± 238

0.002; PI+IMU: 0.901±0.009; PI+FA+IMU: 0.893±0.012). 239

The fixed duration models did not outperform the fixed 240

distance models (Fig. 1b). 241

III. DISCUSSION 242

We found that inertial sensor data recorded from the bilateral 243

ankles and pelvis during a brief walking bout at IRF admis- 244

sion improved the prediction of discharge walking ability. 245

Specifically, models trained with sensor data (PI+FA+IMU, 246

PI+IMU) were better able to predict household or commu- 247

nity ambulation at discharge compared to a model relying 248

on patient information and admission functional assessment 249

scores alone (PI+FA). This trend was true whether IMU data 250

were recorded over a fixed walking distance (10 m) or a fixed 251

walking duration (60 s). Improved model performance with 252

IMU data stemmed from superior identification of patients 253

who improved functional walking level during inpatient reha- 254

bilitation (progressing from household ambulation at admis- 255

sion to community ambulation at discharge). 256

The best-performing model utilized patient information 257

and IMU data recorded during a 10 m walk (fixed dis- 258

tance PI+IMU), indicating that functional assessment scores 259

may not be necessary for accurate predictions relating to 260

walking function. Sensor data recorded during a fixed dura- 261

tion of walking also improved prediction performance over 262

the benchmark PI+FA model, though not beyond the fixed 263

distance walking data. A model utilizing 60 s of walking 264

was optimal for this approach, with longer walking bouts 265

reducing performance below the benchmark. These results 266
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FIGURE 5. Discharge prediction performance using fixed duration IMU data. (a) Maximum model performance was observed
using the first 60 s of IMU data (red box) recorded during a 6MWT at IRF admission. (b) Top 10 important features for the PI+IMU
model using 60 s of IMU walking data. Features from the bilateral ankles were selected via backward elimination for optimized
model performance (red box). (c) Models trained with 60 s of IMU walking data also show improved prediction of discharge
walking level over the benchmark PI+FA model. Bars show the average and SD of each metric across 100 iterations. Note that the
PI+FA fixed duration model performance (shown here) varies slightly from the fixed distance model (Fig 1b) since data from a
larger number of patients were available for training.

are relatively intuitive since the model is trained to predict267

gait speed from a 10MWT, whereas longer bouts of walking268

rely more strongly on patient endurance. While performance269

on gait speed and endurance tests are correlated [25], [26],270

it is likely that fatigue and fluctuations in gait speed dur-271

ing the 6MWT negatively affected model performance for272

longer bouts of walking. Because patients walk at different273

self-selected gait speeds, the fixed duration analysis captures274

different amounts of walking within the same amount of time.275

Future work may also consider IMU data from alternative276

walking strategies, such as recording the same number of277

steps between patients.278

Interestingly, we observed worse performance in the279

PI+FA+IMU model compared to the PI+IMU model. This280

drop in performance is attributed to the PI+FA+IMU model281

misclassifying a participant who transitioned to the com-282

munity ambulation class (10MWT score increasing from283

0.17 m/s at admission to 0.69 m/s at discharge, as shown in284

Fig. 4). A possible explanation is that adding the admission285

10MWT score to IMU features biased the model toward a286

household ambulation prediction for this participant, since287

they had relatively low score at admission. However, a larger288

sample of patients who transition ambulation categories is289

needed to test this possibility and refine the models. Our290

quantized feature selection method may also contribute to291

the discrepancy between these two models. Future work will292

explore other forms of regularization in the models to assess293

the consistency of this behavior.294

An estimated 70-80% of patients are able to walk at295

the chronic stage of stroke [27]; however, only 30-50% of296

patients recover communitywalking function [1], [28]. A cru-297

cial test of a model’s predictive power is whether it can cor-298

rectly identify patients who change categories, such as from299

household to community ambulators. Previous work showed300

that functional ambulation is correlated with overall mobil-301

ity and quality of life, especially for household ambulators302

transitioning to higher ambulation categories [29]. Predicting 303

early in the acute rehabilitation program whether a partici- 304

pant will achieve community-level ambulation or remain a 305

household ambulator at IRF discharge would help clinicians 306

develop targeted treatment and care planning strategies for 307

patients and their families. 308

Formodels utilizing IMU data, sample entropy and amount 309

of motion features were consistently ranked among the most 310

important. Higher sample entropy (greater complexity in 311

the movements) and greater overall motion were associated 312

with the higher ambulation level. Additional data and feature 313

exploration will be critical to establish the most important 314

features across a larger sample size. To reduce the feature 315

space and risk of overfitting, we computed features using 316

the magnitude of the acceleration and gyroscope signals, 317

rather than on the three sensor axes. Future work examin- 318

ing motion in different anatomical planes (i.e., anteroposte- 319

rior, mediolateral, and vertical movements of the pelvis and 320

ankles) will be of interest to illuminate additional predictors 321

of recovery based on detailed gait patterns. As expected, 322

for any models utilizing the functional assessment scores, 323

we found that the strongest predictor of functional walking 324

level at discharge – which was defined using the discharge 325

10MWT score – was the 10MWT score at admission. This 326

aligns with our previous work, which demonstrated that a 327

functional assessment score at admission was the strongest 328

predictor of a patient’s performance on that same assess- 329

ment at discharge, over other functional assessments and 330

patient information such as demographics, stroke presenta- 331

tion, and pre-morbid activity levels [10]. Patient informa- 332

tion, such as age, height, or stroke characteristics, were not 333

selected as important features for any model, suggesting 334

that this information is less predictive than measures of gait 335

function and behavior. Indeed, a model trained on PI alone 336

demonstrated substantially lower precision and recall than 337

models including FA and IMU data in the fixed distance 338

VOLUME 10, 2022 2100711
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model (see V. Methods and Procedures, section F. Algorithm339

Selection).340

Recently, quantitative measures of kinematic, biomechani-341

cal, or neurological factors have also demonstrated sensitivity342

in predicting post-stroke recovery outcomes. These models343

incorporate data from force plates [30], 3D motion tracking344

[31], [32], or brain stimulation technology [33]. However, the345

high cost, low portability, and technical demands of these346

in-depth measurement systems can make them impractical347

to implement in a typical rehabilitation facility. Unobtrusive,348

affordable wearable sensors with automated data streaming349

may be a more practical alternative to capture early biomark-350

ers of impairment and recovery during simple activities that351

are regularly performed in the rehabilitation program.352

The primary limitation of this study is the small sample size353

of patients, which could contribute to overfitting and limit354

our ability to make claims about the most valuable predictive355

sensor features for a robust patient population. With a small356

sample size and imbalanced class distribution, the random357

seeding of the explored machine learning algorithms had an358

observable impact on classification performance. Rather than359

setting the seed to a single value, we iterated the models360

over 100 different random seeds and computed average per-361

formance to mitigate the effects of model stochasticity. This362

leads to our second limitation, which is that models were363

optimized using data from all participants to select features364

and hyperparameters, resulting in some data leakage between365

the training and test sets. We selected this approach over366

nested optimization to create single, aggregate models for367

easy interpretation and comparison. We did not use a hold-368

out set to maximize the data available for algorithm training369

with this small sample size. Although we do not expect the370

resulting data leakage to impact our broader findings that371

IMUdata improved predictions, subsequent analyses will aim372

to increase the sample size and explore other modeling strate-373

gies to avoid these issues. Finally, it should be noted that all374

models perform relatively well for this simple classification375

problem. Indeed, our ability to compare the models hinges376

on their predictions for a small sample of patients – namely,377

the four patients who transition ambulation categories (house-378

hold to community) between IRF admission to discharge.379

In the present study, we excluded data from patients who380

were unable to complete the either the 10MWT or 6MWT,381

utilizing IMU data during these walking assessments to train382

and test the predictive models. As such, these models require383

patients to be ambulatory at IRF admission, which is not384

always the case. For example, in a study of 41 IRFs, approx-385

imately 6% of stroke survivors were unable to ambulate or386

required assistance at admission [34]. It remains to be seen387

whether wearable sensor data have predictive value for non-388

ambulatory patients; incorporating sensor data during alter-389

native activities, such as sitting [35], [36], may facilitate the390

prediction of walking recovery for these patients.391

Importantly, this model was trained using admission and392

discharge data from patients at a single rehabilitation hospital,393

which may limit its generalizability to broader post-stroke394

outcomes. Stinear et al. [8] note the importance of predict- 395

ing outcomes at specific time-points after stroke rather than 396

at discharge, since discharge itself is linked to functional 397

achievements and subject to variations in care structure and 398

resources. We have developed a model that intentionally 399

leverages predictions based on standard-of-care treatment 400

at a single rehabilitation hospital. While it remains to be 401

seen whether such a model will generalize to other IRFs, 402

the approach described here can serve as a roadmap for the 403

development of site-specific models for accurate, validated 404

predictions at other rehabilitation hospitals. 405

Future work will expand the existing dataset for additional 406

training and testing of the predictive model, including exter- 407

nal validation in a new subset of patients. We will also test 408

the predictive value of additional sensor data such as EMG or 409

ECG to account for neuromuscular or cardiovascular factors, 410

and we will examine the feasibility of regression models over 411

classification models to improve the precision of predictions. 412

IV. CONCLUSION 413

Inpatient stroke rehabilitation is often a hectic and over- 414

whelming experience for patients, families, and clinicians 415

working to deliver optimal therapeutic care. Many times, 416

due to time restrictions, patients’ limited physical capabili- 417

ties, or cognitive/communication impairments, full functional 418

assessments and clinical measures are not recorded and/or 419

uploaded to the EMR. Furthermore, the full sequence of 420

assessments at admission might take as long as 2-3 hours 421

to complete. This results in incomplete or inconsistent data, 422

posing a significant challenge in the creation of traditional 423

prediction models to estimate a patient’s future functional 424

scores. Our current study suggests that a viable alternative 425

is to record data from three simple inertial sensors during 426

a brief walking bout (maximum of 60 seconds), which can 427

be completed during any part of therapy or non-therapy time 428

without significant dedicated time. This represents a unique 429

translational engineering approach to support clinical eval- 430

uation and treatment of stroke using widely available IMU 431

technology and machine learning techniques. 432

V. METHODS AND PROCEDURES 433

A. PARTICIPANTS 434

Fifty-five patients with stroke at the Shirley Ryan AbilityLab 435

(Chicago, IL, USA) enrolled in the study. Inclusion criteria 436

were: having a diagnosis of stroke and undergoing acute 437

inpatient rehabilitation at the Shirley Ryan AbilityLab; at 438

least 18 years of age; and able and willing to give consent 439

and follow study procedure directions. Exclusion criteria 440

were: having a known neurodegenerative pathology (e.g., 441

Alzheimer’s disease, Parkinson’s disease, etc.); pregnant or 442

nursing; or utilizing a powered, implanted cardiac device 443

for monitoring or supporting heart function. Medical clear- 444

ance was obtained from each patient’s primary physician 445

and all individuals (or a proxy) provided written informed 446

consent prior to participation. The study was approved by 447

the Institutional Review Board of Northwestern University 448
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TABLE 1. Patient information and functional assessment scores at IRF
admission (N=35).

(Chicago, IL; STU00205532) in accordance with federal reg-449

ulations, university policies, and ethical standards regarding450

research on human subjects.451

Data from 33 patients were available for the fixed dis-452

tance analysis, after excluding patients whowithdrew consent453

before the study (2 patients), were unable to complete a454

10MWT at the admission time-point (13 patients), discharged455

without conducting discharge clinical tests (3 patients), and456

with incomplete sensor data (4 patients, e.g., due to depleted457

battery or sensor malfunction). Data from 35 patients were458

available for the fixed duration analysis, since two additional459

patients were able to perform a 6MWT at admission. This is460

because the 6MWT allows the patient to take rests as needed,461

whereas the 10MWT requires that the patient walk 10 m462

continuously, which fewer patients were able to complete463

at admission. Patient information (i.e., demographics, stroke464

characteristics) and functional assessment scores for the full465

cohort (N=35) are provided in Table 1.466

B. DATA COLLECTION AND EXPERIMENTAL SETUP467

Within the first week of admission, patients performed a468

series of functional assessments for overground gait and bal-469

ance, including the 10-Meter Walk Test (10MWT), 6-Minute470

Walk Test (6MWT), Berg Balance Scale (BBS), and Timed-471

Up-and-Go (TUG) in a non-standardized order based on the472

availability of equipment and space. The same clinical tests473

were administered within a week before discharge from the474

hospital to capture any functional changes following the inpa-475

tient rehabilitation process. We also collected the FIM motor476

subscore at admission and discharge from individual FIM477

items recorded in the patient’s EMR, in accordance with the478

FIGURE 6. Study overview. (a) Placement of three wireless inertial
measurement units (IMUs) at the pelvis and bilateral ankles. Coordinate
system is shown for the pelvis sensor; ankle sensors are rotated by
90◦ clockwise. (b) Model pipeline for predicting discharge walking
function and determining the relative value of IMU data. Separate models
were trained using IMU data recorded during a fixed distance walk (10 m
during the 10MWT) or a fixed duration walk (the first 10-360 s of the
6MWT) upon admission to a post-stroke IRF program.

Inpatient Rehabilitation Facility Patient Assessment Instru- 479

ment guidelines (IRFPAI, regulated by the United States 480

Centers for Medicare & Medicaid Services). All tests were 481

administered and scored by a licensed physical therapist. 482

Patient demographics and stroke information were obtained 483

from the EMR and a study intake form. 484

During the clinical assessments at the admission, all par- 485

ticipants wore three flexible, wireless inertial motion sensors 486

(BioStampRC; MC10, Inc., Cambridge, MA) at the pelvis 487

(L4-L5 region) and bilateral ankles (Fig. 6a). The sensors 488

were attached to the skin with an adhesive film (Tegaderm; 489

3M, St. Paul, MN). The BioStampRC collected triaxial accel- 490

eration (sensitivity ±4g) and triaxial angular velocity (sensi- 491

tivity ±2000◦/s) at a sampling rate of 31.25 Hz. A Samsung 492

tablet running the proprietary BioStampRC application was 493

used to collect the sensor data and annotate the beginning 494

and end of each trial or item of the clinical tests. De-identified 495

sensor data were uploaded to theMC10Cloud and then down- 496

loaded and stored on a HIPAA-compliant (Health Insurance 497

Portability and Accountability Act of 1996) secure server. 498

C. FEATURE EXTRACTION 499

Three sets of features were defined and extracted from infor- 500

mation obtained at admission, including patient information 501

(PI, such as demographics and clinical information about 502

their stroke), functional assessment scores (FA), and sensor 503

data (IMU). Table 2 summarizes the 71 total features utilized 504

for model development. A custom code in MATLAB (Math- 505

works, Inc. R2017b, Natick, MA) calculated features from 506

the sensor data and concatenated them with the other feature 507

sets. 508

All sensor features were computed from the data recorded 509

during the 10MWT (fixed walking distance) or a subset of 510

the 6MWT (fixedwalking duration). Sensor features included 511

amount of motion (AoM) [37], defined as the cumulative 512

angular displacement measured from gyroscope signals, and 513

general statistical and mathematical features calculated from 514

the gyroscope (Gyr) and accelerometer (Acc) signals of the 515
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TABLE 2. Features extracted for prediction models.

IMU. All sensor features were computed from the magnitude516

of tri-axial signals to conserve the number of features and517

facilitate the compatibility of our analysis with alternative518

devices that may have different orientations or coordinate519

systems.520

The analysis process is summarized in Fig. 6b. To evaluate521

the predictive value of sensor data in predicting discharge522

ambulation ability, we compared models with different sets523

of features, including: (1) patient information and func-524

tional assessments (PI+FA), (2) patient information and sen-525

sor data (PI+IMU), and (3) patient information, functional526

assessments, and sensor data combined (PI+FA+IMU). The527

PI+FA model served as a benchmark against which the other528

models, trained using sensor data, were compared.529

An additional model, utilizing patient information only530

(PI), was also implemented for the fixed distance analysis.531

However, this model was not pursued further as it demon-532

strated low classification performance relative to the three533

models described above.534

D. FIXED DISTANCE AND FIXED DURATION ANALYSES TO535

EXPLORE ALTERNATIVE IMU DATA INPUTS536

The 6MWT is a performance-based test of self-pacedwalking537

endurance, wherein the patient attempts to walk as far as538

they can in six minutes. Recording IMU data from a 6MWT539

provided a natural experiment to explore different durations540

of overground walking IMU data for use in the predictive541

models, as an alternative to a fixed distance walking bout542

afforded by the 10MWT.543

Data from the full 6MWTwere segmented into 10 different544

walking durations – 10, 20, 30, 60, 90, 120, 180, 240, 300, and545

360 seconds from the beginning of the test – and IMU features546

were computed from the entire duration. Weighted F1 scores547

were computed across durations to select the best-performing548

algorithm and duration of walking data that would maxi-549

mize model performance. Model optimization, evaluation,550

and comparison were then completed using IMU features 551

computed from the selected duration. 552

E. CLASSIFICATION STRATEGY 553

Walking speed is an objective indicator of post-stroke 554

walking ability, a reliable marker of deficit severity, and 555

a strong predictor of functional community ambulation 556

[26], [29]. We targeted the classification of patients as 557

household or community ambulators based on discharge 558

10MWT scores. Target model predictions were ‘‘household’’ 559

or ‘‘community’’ discharge walking speed based on strati- 560

fied 10MWT scores, in alignment with previous classifica- 561

tions for household (<0.4m/s) and community (≥0.4 m/s) 562

ambulation [1], [24]. 563

For the fixed distance dataset, 26 participants were labeled 564

as community walkers at discharge, and 7 participants were 565

labeled as household walkers at discharge. For the fixed 566

duration dataset, 28 participants were labeled as commu- 567

nity walkers at discharge, and 7 participants were labeled 568

as household walkers at discharge. These imbalanced classes 569

can pose a challenge for machine learning models, with a risk 570

of biasing classifications toward the majority class. To min- 571

imize this risk, we selected candidate algorithms that can 572

contend with imbalanced classes, namely Balanced Random 573

Forest, Balanced Bagging, and RUSBoost, which randomly 574

undersamples from the majority class. All machine learning 575

algorithms were implemented using the Scikit-Learn (0.23.2) 576

and Imbalanced-Learn (0.23.2) libraries in Python (3.8.8). 577

F. ALGORITHM SELECTION 578

We evaluated the performance of each model using leave- 579

one-subject-out cross validation. The primary performance 580

metric was the weighted F1 score, an average of precision 581

and recall scaled by the proportion of samples for each class. 582

The weighted F1 score ranges from 0 to 1, with 1 indicating 583

perfect precision and recall. Since the explored models are all 584

stochastic in nature, the performance can vary depending on 585
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FIGURE 7. Example effect of random seed state on model performance.
The stochastic nature of the explored algorithms causes variation in the
weighted F1 score with random seeds. To evaluate broader performance
of each model, performance was averaged across 100 repetitions with
incrementing random seed. The Balanced Random Forest typically
demonstrated higher average performance and lower fluctuation,
as illustrated in this fixed duration model (60s walk) with all data inputs
(PI+FA+IMU).

the random seed initialization, particularly for a small sample586

sizewith randomly sampled classes. For example,Fig. 7 illus-587

trates the variation in weighted F1 score across increment-588

ing random seeds with PI+FA+IMU features (IMU features589

computed during a 60-s walk) applied on the three different590

algorithms. To copewith this issue andmore broadly compare591

performance of each model, we executed 100 iterations with592

different random state parameters and computed the average593

and standard deviation in F1 score.594

Generally, the Balanced Random Forest classifier demon-595

strated the highest average weighted F1 score and lower596

fluctuations in performance (Fig. 8). Thus, this algorithmwas597

selected for implementation in the fixed distance and fixed598

duration analyses.599

G. MODEL OPTIMIZATION600

Models with the three different combinations of feature inputs601

(PI+FA, PI+IMU, PI+FA+IMU) were trained and tested602

using the selected algorithm and leave-one-subject-out cross603

validation. Prior to testing, we employed feature selection and604

hyperparameter tuning to optimize each model for maximum605

performance and reduce risk of overfitting.606

In the optimization procedure, we first removed highly607

correlated features (Pearson’s correlation coefficient>0.9) to608

avoid multi-collinearity. We then performed recursive feature609

elimination and cross-validation selection (RFECV function610

from Scikit-Learn) to identify the most important features611

for the model and their corresponding importance scores.612

RFECV was executed iteratively 100 times with different613

random seeds, resulting in 100 sets of selected features and614

importance scores. We then summed importance scores for615

each feature across the 100 RFECV iterations and normalized616

by the total sum, resulting in importance scores which added617

FIGURE 8. Algorithm selection for fixed distance and fixed duration
models. Average and SD of weighted F1 score across 100 iterations for
three algorithms to predict discharge ambulation outcomes.
Pre-optimized performance is shown for different model types trained
under the (a) fixed distance (10m walk), or (b-d) fixed duration (10-360s
walk) paradigms, relative to the amount of IMU data used for analysis.
Models without IMU data (PI and PI+FA) are unaffected by the amount of
IMU walking data. PI models were not considered for the fixed duration
analysis given their low performance, shown in (a). The Balanced Random
Forest algorithm was selected to compare downstream models for its
typically higher performance (e.g., maximum average performance for
10m walk and 60s walk) and lower fluctuation across conditions.

FIGURE 9. Feature elimination for fixed distance and fixed duration
models. Average and SD of weighted F1 score across 100 iterations is
shown as a function of the number of features, as determined by
backward elimination, for (a) fixed distance (10m walk), and (b) fixed
duration (60s walk) paradigms. The subset of features that maximized the
weighted F1 score were selected to optimize model training and testing.
Performance for the PI+FA model is identical between the fixed distance
and fixed duration models since this model is unaffected by the amount
of IMU walking data.

to 1 and a cumulative order of importance for the feature 618

set. Finally, we used backward elimination to remove the 619

least important features based on their cumulative order of 620

importance. The mean and standard deviation of weighted 621

F1 scores were calculated using another 100 iterations of 622

the model over different random seeds to capture changes 623

in performance across the number of features used during 624

backward elimination (Fig. 9). 625

Backward elimination indicated that only a subset of fea- 626

tures was needed to achieve a maximum average F1 score. 627

VOLUME 10, 2022 2100711



M. K. O’Brien et al.: Wearable Sensors Improve Prediction of Post-Stroke Walking Function

FIGURE 10. Hyperparameter selection. Hyperparameters for the
Balanced Random Forest algorithm were tuned using a randomized
search cross-validation. Red boxes indicate the values used for each
optimized model based on majority-selection from 100 iterations with
different random seed states.

For the benchmark model (PI+FA), the only feature needed628

was 10MWT score at admission. For the fixed distance anal-629

ysis (with sensor data recorded during a 10-meter walk),630

the selected features were: standard deviation of acceleration631

at the pelvis, amount of motion of the stroke-unaffected632

ankle and the pelvis, and sample entropy of acceleration633

on the stroke-unaffected ankle (PI+IMU, 4 features); and634

10MWT score at admission, amount of motion of the stroke-635

unaffected ankle, standard deviation of acceleration at the636

pelvis, skewness of the gyroscope signal on the stroke-637

affected ankle, sample entropy of acceleration on the stroke-638

unaffected ankle, amount of motion of the pelvis, sample639

entropy of the gyroscope signal on the stroke-unaffected640

ankle, and kurtosis of acceleration on the stroke-affected641

ankle (PI+FA+IMU, 8 features). For the fixed duration anal-642

ysis (with sensor data recorded during a 60-second walk), the643

selected features were: sample entropy of the acceleration644

signal at the stroke-unaffected ankle and sample entropy of645

the gyroscope signal on the stroke-affected ankle (PI+IMU,646

2 features); and 10MWT score at admission and sample647

entropy of the gyroscope signal at the stroke-affected ankle648

(PI+FA+IMU, 2 features).649

Using the selected features, we tuned the hyperparameters 650

of each model based on a randomized cross-validation search 651

(RandomizedSearchCV function from Scikit-Learn, using 652

the default 5 folds). These parameters included the number 653

of estimators, minimum sample split, minimum sample leaf, 654

method for determining the maximum number of features 655

(automatic, log2, or sqrt), and the maximum depth. We exe- 656

cuted 100 iterations with different random states and identi- 657

fied the best-performing hyperparameters based on majority 658

vote. The hyperparameters selected for each model using this 659

randomized search approach are shown in Fig. 10. 660

H. MODEL EVALUATION 661

Model performance metrics were averaged across test folds 662

(left-out subjects in the cross-validation procedure). Per- 663

formance was primarily evaluated using the weighted F1 664

score, which accounts for class imbalances by computing a 665

weighted average of precision and recall based on the num- 666

ber of samples in each class. Secondary model performance 667

metrics included accuracy (proportion of correctly classified 668

samples) and area under the receiver operating characteristic 669

(AUROC). Possible values for thesemetrics range from 0 to 1, 670

with higher values indicating better model performance. 671
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