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Abstract
Objective. Large channel count surface-based electrophysiology arrays (e.g. µECoG) are
high-throughput neural interfaces with good chronic stability. Electrode spacing remains ad hoc
due to redundancy and nonstationarity of field dynamics. Here, we establish a criterion for
electrode spacing based on the expected accuracy of predicting unsampled field potential from
sampled sites. Approach. We applied spatial covariance modeling and field prediction techniques
based on geospatial kriging to quantify sufficient sampling for thousands of 500ms µECoG
snapshots in human, monkey, and rat. We calculated a probably approximately correct (PAC)
spacing based on kriging that would be required to predict µECoG fields at≤10% error for most
cases (95% of observations).Main results. Kriging theory accurately explained the competing
effects of electrode density and noise on predicting field potential. Across five frequency bands from
4–7 to 75–300Hz, PAC spacing was sub-millimeter for auditory cortex in anesthetized and awake
rats, and posterior superior temporal gyrus in anesthetized human. At 75–300 Hz, sub-millimeter
PAC spacing was required in all species and cortical areas. Significance. PAC spacing accounted for
the effect of signal-to-noise on prediction quality and was sensitive to the full distribution of
non-stationary covariance states. Our results show that µECoG arrays should sample at
sub-millimeter resolution for applications in diverse cortical areas and for noise resilience.

1. Introduction

Electrocorticography (ECoG) is an intracranial elec-
trophysiology tool often used clinically in neurosur-
gery following innovations in epilepsy treatment
by Jasper and Penfield in the late 1940s [1]. The

high signal amplitude and spatial precision result-
ing from direct cortical contact has provided neuro-
physiologists with an important tool for studying
speech and skeletomotor systems [2–9]. The centi-
meter scale geometry of ECoG grids has been prior-
itized for clinical usage. However, there is extensive
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evidence that sub-centimeter scale electrode arrays
(i.e. millimeter scale contact size and spacing) can
resolve finer topographical detail [10] and provide
better discrimination for sensory input [11, 12],
higher order language processing [13–15], and speech
and motor output [16–19].

Application of microfabrication technology has
introduced a diverse set of sub-millimeter scale
research electrode arrays collectively referred to as
‘micro’ ECoG (µECoG) [20–27]. µECoG arrays are
typically produced with thin film polymers and
one or more thin layers of conductive material
that can fit over the curvature of neocortex with
lower rigidity and bending stiffness than tradi-
tional silicon or metal microwire electrodes [28, 29].
µECoG arrays sample local field potential (LFP) at
sub-millimeter intervals, revealing fine-scale sens-
ory topologies consistent with intracorticallymapped
topologies in rat barrel cortex [30], rat auditory
cortex [23, 31, 32], non-human primate (NHP)
somatosensory cortex [33], cat visual cortex [34],
and rat ocular dominance columns [35]. Improve-
ments in the integration density of headstage and
implanted neural amplifiers are expected to enable
orders-of-magnitude scaling ofµECoG sensor counts
[27, 36, 37]. However, LFP, including surface poten-
tial, is spatially correlated for physical and physiolo-
gical reasons, leading to the concern that high dens-
ity sampling is redundant. Thus, the appropriate
sampling resolution for µECoG remains an open
question.

Prior studies linking primary visual cortex mul-
tiunit activity (MUA) to intracortical LFP through a
Gaussian integration (point-spread) model have sug-
gested Gaussian kernel scales of ∼100µm, measured
via voltage sensitive dye [38], and between ∼100µm
in layer 4 to ∼200–300µm in layers 5 and 2/3 in
electrode recordings [39]. These (planar) integration
models suggest that 95% of the sources contributing
to the LFP are within a radius of 250–750µm, and
that the full width at half maximum of the point-
spread function for a source is 230–700µm. Model-
ing the impact of pairwise correlations on movement
decoding from LFP recorded by arrays of microelec-
trodes suggests decoded performance is maximized
with sub-millimeter spaced electrodes [40]. In an
anatomically realistic simulation of field potential,
the dynamic factor of synaptic input correlation
modulated the spatial reach of source contributions
between 100 and 1000µm [41, 42].

The spatial reach of cellular sources on the surface
potential has been studied using optogenetic meth-
ods. Optical stimulation resulted in µECoG-recorded
potential profiles extending at least 1mm in rodents
and non-human primates [20, 43–45]. The point
spread of surface potential has also been inferred
by analyzing the spatial bandwidth of µECoG sig-
nals, with the conclusion that there is little spatial
variation in cycle lengths lower than 0.5–0.7mm

in rat and rabbit, and 1–3mm in human [46–48].
Recent correlogram studies that indexed pairwise
correlations (or frequency-resolved coherence) by
electrode distance suggest that the length scale of spa-
tial correlation varies from 100 to 1000 s of microns
depending on electrode contact (epi- versus sub-
dural) and brain state (anesthetized versus awake)
[23], and is also highly dependent on the frequency
band in question [49–51].

Results regarding characteristic length scales and
spatial bandwidth have suggested spatial intervals at
which field potential, on average, is no longer redund-
ant. However, no report has discussed the confound-
ing roles of process nonstationarity and signal to
noise ratio (SNR) when interpreting auto-covariance
functions, nor tested the efficacy of sampling at
suggested length scales. We address these topics by
using covariance kernel modeling and spatial pre-
diction in a framework known as ‘kriging’ in geo-
spatial statistics [52, 53], and Gaussian processes
more generally [54]. Kriging predicts the expected
value of unobserved spatial field values conditional
on several observed values, under the assumption
that all field values are jointly Normal with spa-
tially dependent covariance. As a statistical predictor,
kriging also quantifies uncertainty in terms of the
expected mean square error (MSE) of the predicted
value.

We used kriging prediction error as the key figure
of merit to delineate when µECoG spatial fields were
sufficiently sampled. Based on analysis of theoret-
ical kriging error, we established the competing roles
of SNR and electrode spacing in determining the
predictability of spatial field details. By manipulat-
ing the covariance model, we proposed sufficient
electrode spacings required to predict spatial fields
with an expected error of 10% of process variance.
We tested the theoretical results in vivo with cross-
validated analysis of kriging error for anesthetized rat
auditory cortex µECoG recordings, using electrode
arrays that were matched in geometry, but differed in
noise levels. The different LFP prediction efficiency
for the two arrays confirmed the theoretical trade-
off between SNR and electrode spacing, and corres-
ponded to the ability to decode sensory informa-
tion, as measured by a tone frequency classification
analysis. In subsequent results, we analyzed the spa-
tial covariance and kriging error of µECoG in mul-
tiple bandpasses for awake rat, NHP, and anesthet-
ized humans. Submillimeter electrode spacing was
generally required for stable prediction at 10% error,
although electrode spacing from 1 to 1.5mm were
sufficient for some human and NHP motor cortex
bandpasses. Spacing at 600–850µm was required in
all species and cortical areas at the highest 75–300Hz
frequency band, even when recording noise was set
to zero in the kriging model. The projected sufficient
sampling based on expected kriging error accounted
for the full range of covariance states surveyed in our
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datasets. Sufficient sampling for kriging prediction is
easily tunable for stricter or looser tolerances in other
settings, and can be estimated a priori given assump-
tions about LFP image statistics and measurement
quality.

2. Methods

2.1. Electrophysiology
2.1.1. Electrode arrays
We measured epidural µECoG fields in rat with
two types arrays (figure 1 ‘Rat Arrays’). One was a
passively conducting (‘passive’) array fabricated with
gold conductors in liquid crystal polymer (LCP) insu-
lator, manufactured by DyconexMicro Systems Tech-
nologies (Bassersdorf, Switzerland [55]). The other
was a custom fabricated ‘active’ device with NMOS
voltage buffering and multiplexing within the array.
Gold electrode pads formed the biotissue interface,
and were conductively coupled to back-side elec-
tronics via highly doped silicon nanomembranes
(p++-Si NM), which also functioned as a biofluid
insulation material in chemical bond with the main
insulation layer of thermally grown silicon-dioxide
(t-SiO2) [56]. Both devices had electrodes arrayed
on an 8× 8 grid. The active array had 64 rectangu-
lar electrodes of 360× 360µm2 with 400µm inter-
electrode pitch (one electrode was excluded due to
malfunction). The passive array included 61 channels
(with 3 corners missing) of 229µm diameter discs
with 420µmpitch. Impedance could not bemeasured
for the active arrays as a result of their design, but con-
ductor impedance measured with a test structure was
∼450 kΩ at 1 kHz [56]. Typical in-vitro impedance
values at 1 kHz for the passive arrays were 21–36 kΩ
interquartile range (IQR). A 244-channel LCP and
gold µECoG array (also manufactured by Dyconex)
was used in the human and NHP recordings. These
229µm disk electrodes were arrayed in a 16× 16 grid
with 762µm pitch with typical in vitro impedance
values at 1 kHz of 44–53 kΩ IQR (figure 1 ‘Human
Array’).

2.1.2. Acute auditory cortex recordings
All rat procedures were performed in accordance
with National Institutes of Health standards and
were conducted under a protocol approved by the
Duke University Institutional Animal Care and
Use Committee. Two female Sprague-Dawley rats
weighing 260–280 g were anesthetized with ketamine
(80 mg kg−1 intraperitoneal) and dexmedetomidine
(0.125 mg kg−1 intraperitoneal), and secured to a
custom-built orbital clamp head mount. Craniotom-
ies of approximately 6× 6 mm2 were made over
temporal cortex, exposing right hemisphere audit-
ory cortical areas. In acute recordings, active and
passive µECoG arrays were sequentially implanted
epidurally. Primary auditory cortex and anterior
auditory field (collectively ‘auditory cortex’) were

targeted by anatomical landmarks and the reversal of
rostrocaudal tonotopic gradients. Neural field poten-
tial data from the active array was sampled and logged
with a custom National Instruments data acquisi-
tion system [57] at an effective rate of 780 S s-1 per
channel. Field potential from the passive rat array
was amplified and sampled at 20 kS s−1 by an Intan
RHD2164 64-channel board with high pass filter-
ing at 0.1Hz, and logged with the Open Ephys data
acquisition system [58].

2.1.3. Chronic auditory cortex implants
Four female Sprague-Dawley rats weighing 225–275 g
were anesthetized with 5% isoflurane at 3 lmin−1 for
induction and 1–3% at 0.5–1.0 lmin−1 for mainten-
ance. An identical surgical procedure to the acute
preparation was carried out in sterile conditions for
placement of passive LCP arrays. Additional proced-
ures regarding surgery and implantation are detailed
in [55]. Dexamethasone (0.3mg kg−1) and Baytril
(0.5mg kg−1) were administered postoperatively for
3 and 7 days respectively. The awake recordings were
made with the animals awake and freely moving in
their home cages and field potential was acquired in
the same manner as acute passive array recordings.

2.1.4. Semi-chronic NHP implant
A semi-chronic recording chamber base was
implanted in one adult male NHP (Macaca mulatta),
as described in [59]. In brief, the NHP was anesthet-
ized during surgical implantation. The base was fixed
to the skull with dental cement (MetaBond, Parknell
Inc. and Simplex P, Stryker) and ceramic bone screws
(Rogue Research). After the chamber base was affixed
to the skull, chamber hardware was stacked on top of
the base to a height that was tall enough to allow for
seal testing of the chamber in vivo. After confirmation
of chamber seals, a craniotomy and durotomy were
performed to provide access to precentral gyrus, and
an artificial dura molded with the 244-channel elec-
trode array was implanted within the durotomy. All
data collection occurred while the NHP was awake
and seated quietly performing a center-out reach
task [27]. All animal procedures were performed in
accordance with National Institutes of Health stand-
ards and were approved by the New York University
Animal Welfare Committee (UAWC). Neural data
were sampled at 30 kS s−1 (NSpike NDAQ System,
Harvard instrumentation Lab, x1 gain headstage,
Blackrock Microsystems). Recordings were refer-
enced to a metal screw implanted through the skull to
make contact with the dura at a distant location. Of
242 of 244 electrodes that were recorded, we excluded
48 sites that were located across arcuate sulcus in
the frontal eye field, and another 11 malfunctioning
channels, leaving 183 precentral gyrus sites remaining
that covered portions of dorsal premotor cortex and
primary motor cortex (collectively ‘motor cortex’).
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LCP insulator
Au contacts and conductors

PI and t-SiO2 insulator
Au contacts with p++-Si NM coupling
Active buffer and MUX
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and conductors11.7 mm

762 µm400 µm420 µm
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Rat Arrays Human/NHP Array
Passive Active

Figure 1. µECoG electrode arrays. Two µECoG arrays were designed for use in rat auditory cortex. The passively conducting array
was fabricated with gold contacts (229µm diameter) and interconnects insulated in liquid crystal polymer (LCP). The active
array had gold contacts (360× 360µm2) insulated by conductive silicon nanomembranes (p++ Si NM). It was fabricated with
active powered silicon transistors within the array that buffered and multiplexed field potential. The 61 passive electrodes and the
64 active electrodes were both arranged in an 8× 8 grid with approximately 400µm pitch. A second passive electrode array
(shown at 1/2 the scale of the rat arrays) was designed for use in humans and non-human primates. This array was fabricated with
LCP and gold using the same process as the rat array, and had an electrode pitch of 762µm.

2.1.5. Human clinical procedure
Intraoperative recordings were made in two patients
(subject A, female, age 20; subject B, female,
age 22) undergoing resection surgery in left pos-
terior superior temporal gyrus (pSTG) to treat
drug resistant epilepsy. Clinical procedures were
performed in accordance with National Institutes
of Health standards and were conducted under a
protocol approved by the Duke Institutional Review
Board. Prior to surgery, each electrode array was
pre-selected based on impedance measurements in
saline solution. After selection, the electrode array
was cleaned and impedance measurements were
taken again in saline. The electrode array, electrode
holder, and all cables were gas sterilized prior to use in
the operating room. In the operating room, patients
underwent general anesthesia with propofol (240 mg
subject A, 150 mg subject B). Prior to resection, the
surgeon placed the 244-channel µECoG electrode
(either bare or molded in silicone) to record areas
adjacent to the seizure onset zone. Recordings were
made in pSTG for subject A (15 min) and motor
cortex for subject B (6 min) during acoustic stimula-
tion with words and non-words in vowel-consonant-
vowel and consonant-vowel-consonant patterns.
Neural responses were amplified and sampled at
20 kS s−1 using four Intan RHD2164 amplifiers held
by a 3D printed mount and acquired through Open
Ephys software.

2.2. Covariance modeling and kriging prediction
We modeled the µECoG signal x(s, τ ), measured at
location s and moment τ , as the sum of a spatially
correlated neural field process η (variance λ µV2),
uncorrelated measurement error ε (σn µV2), and a
common spatial mode κ, which may be zero. Field
covariance was estimated using the semivariogram
(or variogram) which is half the variance of the dif-
ference in signal measured at two locations:

γx(s,u) =
1

2
var{xs − xu}. (1)

Due to finite signal energy and compact fields of
view, we made the common simplifying assumption
of spatially isotropic second-order stationarity, which
reduces the variogram to a function of relative
distance h= ∥s− u∥. We also assumed approxim-
ate process stationarity over short time windows, to
estimate variances over time samples. Under these
conditions, we link a field-plus-noise covariance
model Cx(h) = Cη(h)+σnδ(h) to the variogram:

γx(h) = Cη(0)−Cη(h)︸ ︷︷ ︸
neural field

+σn(1− δ(h))︸ ︷︷ ︸
noise

. (2)

We fit empirical variograms with a combination
of a constant offset for noise (the ‘nugget’, per spa-
tial statistics literature [60]) and the Matérn ker-
nel [61] for the neural field covariance term. The
Matérn kernel is parameterized by a length θ that
scales the correlation range, and a unit-less shape
parameter ν influences the smoothness of the field
at short range. We summarized the noise-free spa-
tial scale of neural fields with the Nyquist pitch,
which is the sample spacing that would enable perfect
interpolation for bandlimited fields that are sampled
with exact precision. We defined the effective Nyquist
pitch as the reciprocal of the −30 dB bandwidth of
the spatial power spectral density (∆nyq = BW−1),
calculated via the Fourier transform of the Matérn
kernel. This interval corresponded to half of the
smallest effective cycle length for a field process.
See the supplemental discussion (available online at
stacks.iop.org/JNE/18/036011/mmedia) for extended
details of the covariance and power spectrummodels.

Once a covariance model was estimated, we could
derive kriging predictions and errors for the µECoG
field. Given a vector of µECoG measurements at n
electrodes, x= (x1, . . . ,xn)T, the kriging predictor of
a target site s ′ is a linear predictor η̂s ′ = wT

s ′x that is
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optimized for error variance, conditioned on the spa-
tial kernel model. The prediction error variance:

σe(s
′) = E{(ηs′ − η̂s′)

2}
= λ− 2wT

s′cov{xηs′}+wT
s′Cxws′ ,

is minimized by the filter ws ′ = C−1
x cov{xηs ′}. Not-

ing that the field and noise components of x are
uncorrelated, the cross-covariance vector is com-
puted from the neural field kernel absent the nugget
c(s ′) = (Cη(∥s1 − s ′∥), . . . ,Cη(∥sn − s ′∥))T. The kri-
ging predictor is a weighted sum of the sample data
with coefficients that depend only on the covariance
kernel:

η̂s ′ = c(s ′)TC−1
x x. (3)

Similarly, the prediction MSE depends only on the
covariance model and not directly on the data sample
itself:

σe(s
′) = λ− c(s ′)TC−1

x c(s ′) (4)

The ‘simple’ kriging predictor is the best unbiased
linear predictor (BLUP) for a zero mean field. How-
ever, the presence of a spatial common mode does
not affect the variogram modeling, and can be
accommodated in the kriging predictor by constrain-
ing ws ′ to sum to one. The ‘ordinary’ kriging weights
are an unbiased predictor of an unknown field value
plus a constant mean, and the error has the stand-
ard form σe(s ′) = λ− 2wT

s ′c(s
′)+wT

s ′Cxws ′ [53]. We
used the ordinary kriging predictor for awake record-
ings, which tended to have more strongly correlated
fields. We saw no justification for modeling spatially
varying deterministic trends.

2.3. Cross-validated kriging
We quantified kriging error and critical sample spa-
cing by modeling the covariance of µECoG field
potential in short-time (500ms) batches, to better
approximate statistical stationarity on a per-batch
basis. Empirical variogram clouds were computed
from the sample variance of all pairwise electrode
differences (figures 2(a and b)), and signal and
shape parameters {λ,σn}∪ {θ,ν} of the Matérn-
plus-nugget model (equation (2)) were estimated via
non-linear least squares fit to binned semivariance
medians, weighted by bin count. Total signal vari-
ance ζ = λ+σn (the ‘sill’, per spatial statistics) was
constrained to be within ±25% of the total signal
sample variance. To account for a common mode
variance, which is poorly estimated with the mean of
correlated samples, total variance was computed after
re-referencing the signal batch to the channel with
minimum Euclidean distance to the channel average.
Noise power was determined based on heuristic sin-
gular value thresholding [62]. Batches with poorly
fit covariance were identified by smoothness values

within 0.1 of the 0.3< ν < 5 bounds, and were dis-
carded.

Model prediction errors (equation (4)) were
cross-validated with residual errors from kriged
µECoG fields, which were made by subsampling
half of the array rows and columns and predicting
interior sites (avoiding extrapolation, figure 2(c)).
With this scheme, four sets of overlapping predictions
could be made. The MSE of cross-validated resid-
uals was computed using a 0.5% trimmed mean of
square errors, which was robust to heavy-tail out-
liers [63]. Since the total cross-validated residualMSE
included the noise variance of the reference sites,
which was independent of the prediction error, we
adjusted the total expected MSE to include estimated
noise:

E{|η̂s ′ − (ηs ′ + ϵs ′)|2}= σe +σn. (5)

The expected error was calculated per batch for
all kriged sites and summarized by the median
(figure 2(c)).

We used the Bhattacharyya coefficient (BC)
to measure overlap of covariance parameter dis-
tributions on a 0–1 scale. Samples were histo-
grammed into density-normalized bins {Pi} and
{Qi} using the Freedman Diaconis rule and BC
was calculated as

∑
i(PiQi)

1/2. To find the hypo-
thetical electrode spacing that would result in 10%
kriging error—termed the ‘kriging resolution’—
we computed ∆10% = argmin∆ |σe − 0.1| via line-
search along inter-electrode pitch∆while holding the
covariance kernel parameters {θ, ν,σn/ζ} constant in
equation (4).

2.3.1. Signal bandpasses
All recordings (except from the active array) were
anti-alias filtered offline at 800Hz and then res-
ampled at 2 kS s−1. We applied cross-validated
kriging analysis to multiple commonly defined LFP
frequency bands. We used approximately log-spaced
frequency bands (following [50]): theta (4–7Hz),
alpha (7–14Hz), beta (15–30Hz), and gamma (30–
60Hz). Additionally, we used a wide high frequency
broadband (HFB) (75–300Hz) in which power mod-
ulation has been linked to neuronal spiking rates
[64, 65], and which includes high gamma (roughly
80–200Hz) that is used for measuring stimulus-
and behavior-related activity in human ECoG [2–6].
While broadband power fluctuations are technically a
full-spectrum phenomenon, we use ‘HFB’ to denote
a bandpass generally free of narrow-band oscillatory
activity [66].

A 4–300Hz band was used to summarized the
union of these frequency bands. However, due to
the elevated transistor noise of the ‘active’ electrode
array, kriging analysis for the acute rat auditory cor-
tex recordings was restricted to 5–100Hz.
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Figure 2. Spatial variography and cross-validated kriging of inter-electrode µECoG samples. (a) Squared difference of cortical
potential between a corner electrode (black) and electrodes along a diagonal transect of an 8× 8µECoG array. The physical
distance of subtracted electrodes increases from bottom to top. (b) Semivariance (one-half the variance of differences) between all
electrode pairs, ordered by inter-electrode distance. A Matérn variogram kernel (solid line) was fit with estimates for range (θ),
smoothness (ν), noise (σn) and total signal variance (ζ). (c) One sampling-prediction pattern used for cross-validated kriging,
and the expected kriging error based on the variogram kernel in (b). Cortical potential was predicted (kriged) at the sites of the
dropped electrodes without extrapolating. The electrode in position (1, 7) was excluded due to malfunction. (d) A µECoG frame
(left) and the composite frame kriged from subsamples at alternate rows and columns (right). The cross-validation residual
variance for this 500ms batch was 1756µV2 MSE, or 23.4% MSE relative to the total power. The median expected value was
1754µV2 MSE, which included 717µV2 (9.5%) kriging error plus uncorrelated 1037µV2 (13.8%) noise power (equation (5)). In
this example, the kriging error for the interpolated frames is lower than the noise error in the raw frames, meaning the predicted
frames were nearer to the true field potential than direct measurement.

2.4. Tone stimulation and classification
Acute rat auditory cortex recordings were carried out
in a sound-attenuated chamber. We played 60 repeats
of tone pips for 13 frequencies (0.5–32 kHz, 0.5 octave
spacing, 50ms duration, 2ms cosine-square ramps)
at a rate of 1 s−1 in pseudorandom sequence (780
trials). Acoustic stimuli were generated with custom
MATLAB code through an NI 6289 DAC card, and
delivered at 70 dB SPL through a free-field speaker
(CR3, Mackie) calibrated to have a flat output over
the frequency range used.

We analyzed the effect of electrode spacing on
predicting auditory stimuli using a previously repor-
ted principal components analysis (PCA) and linear
discriminants analysis (LDA) classification scheme
[32, 55]. To vary electrode spacing in a continuous
manner, we used Poisson Disc sampling [67] to gen-
erate subsets of the passive rat array that were approx-
imately periodic in space: 10 subsets for spatial peri-
ods between 420 and 2000µm in 25µm steps. The
effective inter-electrode distance was calculated as
the square root of area per electrode: ∆= (A/n)1/2,
where Awas derived by the electrode set’s convex hull
(see figure 6(a)). The concatenated response from
50ms post-stimulus µECoG on subset channels was
used to form feature vector, and the SVD threshold-
ing heuristic used for noise estimation [62] was used
to determine the number of feature PCs to use in
the LDA stage. Six-fold cross-validation was then
used to produce tone frequency predictions for each
trial.

3. Results

3.1. Theoretical and in vivo analysis of sampling
noise and density
The proposed electrode spacing requirements based
on prediction loss followed from analytical results of
kriging theory, which we outline here. We noted that
optimal prediction loss (equation (4)) was a func-
tion of (a) the length-scale and texture qualities of a
spatial field, (b) the SNR of the measurements, and
(c) the electrode array geometry vis-a-vis the loca-
tion to be predicted. Since the expected loss was com-
pletely parameterized by the covariance model, we
could compute results a priori in response to the three
relevant geospatial and signal factors.

Using the Matérn covariance model (equation
(2)) with unit variance and zero noise, we calcu-
lated kriging errors on a 10× 10 grid geometry with
1mm pitch over a range of length scale and smooth-
ness parameters (figure 3(a)). Error approached high
levels (>50% of process variance) for fine-scale mod-
els having short range and low smoothness, and was
particularly affected by rough texture (low smooth-
ness) fields at all length scales. Such rough spatial
fields would be highly irregular within short-distance
neighborhoods, regardless of the dominant spatial
length scale indicated by θ. Error wasmonotonic with
both spatial parameters, and we defined an error of
10% MSE relative to process variance (0.1 relMSE)
to partition the range of covariance models into pre-
dictable and not-predictable subsets. The 1mm pitch
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Figure 3. Effects of covariance model parameters on expected prediction loss. (a) Kriging MSE (equation (4)) was calculated for
1mm spacing, unit variance, and zero noise over a Matérn parameter space. MSE was monotonic in both range and smoothness
parameters. Our threshold for predictability was 10%MSE relative to process variance (blue isocontour). Predictability was
limited by a low value of either parameter. Smoothness had a weak influence on predictability when range was below a limit, and
vice-versa. (Exact limits depended on the sampling geometry.) (b) The 10% predictability threshold for 1mm grid pitch was
computed under increasing levels of sample noise. In higher noise, predictability was restricted to smoother and longer range
fields. (c) Predictability thresholds at 20% noise and varied grid pitch from 0.5 to 2.5mm. Increasing or decreasing pitch had a
similar effect on predictability as increasing or decreasing noise. By reducing pitch to 0.5mm, approximately the same fields were
predictable in 20% noise as were predictable in 0% noise and 1mm pitch.

in this geometry implied that the covariance models
along the predictability threshold had a∆10% ‘kriging
resolution’ of 1mm.

We then repeated the prediction MSE calcula-
tions while introducing noise in the covariance ker-
nel. Figure 3(b) depicts the predictability thresholds
for noise levels at 10% increments overlaid in Matérn
parameter space. The subset of predictable models at
1mm spacing (equivalent to panel (a) at 0% noise)
became increasingly lower resolution (smoother and
longer range)with higher noise. In otherwords, 1mm
spacing had the same prediction efficiency for a finely
featured (high resolution) field in low noise and a
coarsely featured (low resolution) field in high noise.

We next explored how sample spacing affected
the coverage of predictable models. Holding noise
at 20%, we calculated prediction MSE for a 10× 10
grid arrangement with electrode pitch in 0.5mm
increments. Predictability thresholds for all spacings
are overlaid in figure 3(c). Comparing figures 3(b)
and (c), increased noise and increased density (lar-
ger pitch) moved the predictability threshold in com-
peting directions, such that the loss of coverage in
higher noise was almost directly counteracted by
higher density. Approximately the same subset of field
models predictable at 10% MSE or lower in noiseless
conditions was predictable in 20% noise by reducing
electrode spacing from 1 to 0.5mm.

We confirmed the theoretical effects of covari-
ance model parameters on cross-validated predic-
tion errors made from four paired epidural µECoG
recordings of auditory cortex in two rats, using ‘act-
ive’ and ‘passive’ arrays that had similar geometry
but different noise properties. Covariance modeling
and kriging were carried out on 6540 (3459 active
and 3081 passive) short-time 500ms batches of sig-
nal in the 5–100Hz bandpass (outlined in figure 2
and section 2.3). Extensive evaluation of kriging pre-
diction with in vivo µECoG and simulated noise can

be found in supplemental materials (supplemental
figure S3).

The spatial field and measurement signal stat-
istics highlighted in the previous section accur-
ately delineated predictable versus non-predictable
µECoG batches. See figure 4 and supplemental videos
S1–S4 for specific examples. In aggregate, the expec-
ted kriging errors based on covariance models were
highly consistent with cross-validated kriging pre-
diction errors. Ordinary least squares (OLS) regres-
sion of expected error (equation (5)) from observed
relMSE, normalized by the sill variance, resulted
in slopes of 0.99 and 0.98 for active and passive
batches, respectively (r2 = 0.989, combined model
using slopes only).

The covariance model parameters illustrated the
distinction between ‘field’ and ‘signal’ properties
of the two arrays (figures 5(a) and (c)). Statistics
corresponding to the neural potential field, i.e.
correlation range, smoothness, and field variance,
were largely overlapping (smoothness BC= 0.99;
range BC= 0.95; noise-compensated field variance
BC= 0.98). The larger covariance range estimated
for the active array (1.65mm median) versus passive
array (1.38mmmedian) may be explained by shorter
edge-to-edge distances in the active array, which were
140µm less than that of the passive array, and would
likely increase correlation and bias the Matérn length
scale.

The buffering and multiplexing transistors in
active arrays introduce 1/f and aliased wideband
noise [27]. Median noise estimated by SVD [62] was
1037µV2 for the active array used here, which agreed
with bench-top measurements of 992± 308µV2

(mean ± SD, 5–100Hz). The noise level was also
consistent with the 870µV2 difference in median
sill variance between active array and passive array
batches. The separability of field and signal qualit-
ies was summarized by the average variograms for
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Figure 4. Predictable and non-predictable frames in anesthetized rat auditory cortex. Variograms were binned at∼0.4mm
intervals. Squares and vertical stripes are bin median and IQR scaled to bin count. (a), (b) Longer range and smooth fields were
predicted with errors of less than 10% of the signal variance in the spatially sub-sampled passive electrode (840µm (a)) and active
electrode (800µm (b)). The kriging error (residual relMSE minus estimated noise) here was 4.1% and 5.1% for passive- and
active-electrode, respectively. Interpolated frames in (a and b) were visually similar to the optimal prediction from all electrodes,
i.e. filtered voltage. (Note that errors marked ‘†’ are estimated since the true field potential was unknown.) (c) A rough field
(lower smoothness index) was not accurately predicted at 840µm (passive array). The residual relMSE was 13.3%, with 12.5%
due to kriging error. (d) A rough field with lower SNR was not predictable at 800µm (active array), despite having a long
covariance range. Residual error was 29.0% (12.9% kriging error and 16.1% noise). Kriging error in (c) and (d) was characterized
by oversmoothing, compared to the optimally filtered frames.

each device, which differ mainly by the vertical off-
set representing the noise floor of the active array
(figure 5(d)).

Figure 5(e) depicts the inverse relationship
between the Nyquist pitch ∆nyq, and the noise-
compensated prediction relMSE that is attributed
to kriging prediction error. The increased error for
smaller pitches echoed the tendency towards higher
error for smaller model parameters in figure 3(a).
Increased noise in the active array resulted in uni-
formly higher compensated relMSE, which shifted
the 10% relMSE threshold to lower resolution fields,

as in figure 3(b). Figure 5(e) also shows the extent
to which imperfect measurement and lack of band-
limiting prevented lossless interpolation even when
the subsampled electrode spacing was equal to or less
than the effective Nyquist pitch. However, the pre-
diction relMSE for active array fields (median 9.3%)
was lower than the noise error (median 18.5%) in
3290/3459 (95.1%) of field snapshots, indicating
that the interpolated fields were a better approx-
imation of true cortical potential than the original
measurements. We further validated denoising res-
ults for interpolated and in situ field prediction using
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Figure 5. Kriging results for low and high noise recordings in anesthetized rat auditory cortex. (a)–(c) Variogram kernel
parameter distributions from four paired auditory cortex recordings in two rats with low noise ‘passive’ and high noise ‘active’
electrodes (n= 3081 passive signal batches, n= 3459 active batches). Kernel parameters pertaining to the LFP process were
consistent between devices (BC= 0.98 noise-compensated field variance, BC= 0.95 range, BC= 0.99 smoothness). (d) Median
variogram kernels are primarily distinguished by their noise floors: active 1037µV2 (18.5% signal power) and passive 26.5µV2

(0.5% power). (e) Noise compensated prediction relMSE was inversely related with spatial scale (summarized by Nyquist pitch
∆nyq), and agreed with expected kriging error based on kernel parameters (OLS slope 0.99 and 0.98 for active and passive batches,
respectively, r2 = 0.989 combined). Error-bar plots show equation (4) kriging error median and IQR per decile of∆nyq. (f)
Distributions of the projected spacing for 10% error (∆10% ‘kriging resolution‘) for each µECoG snapshot. The 5th percentile
probably approximately correct (PAC) spacing was 414µm (active) and 844µm (passive). (g) Predictability coverage over field
batches is depicted in the Matérn parameter space. Green/gray dots mark fields at≤10% and> 10% relMSE, respectively, at
subsampled spacing. Red dots mark fields projected to become predictable with PAC spacing (414µm) for the active electrode.

controlled amounts of additive Gaussian white noise,
summarized in supplemental figures S3–S4.

We computed the empirical predictability ‘cov-
erage’, at 0.1 compensated relMSE, for the two sub-
sampled µECoG arrays. 95.2% of passive array snap-
shots were predictable at 840µm, compared to 33.0%
of active array snapshots at 800µm. By manipulating
the electrode spacing term in equation (4), we calcu-
lated the kriging resolution (∆10%) that would nor-
malize prediction error to 10%MSE for each µECoG
batch (figure 5(f)). Due to the competing roles of
electrode spacing and SNR, shorter electrode spacings
would be needed for stable interpolation from active
array measurements.

To concisely summarize uncertainty in both the
range of model statistics and kriging prediction qual-
ity, we adopted the terminology probably approx-
imately correct to specify a single target for elec-
trode spacing and prediction error (loosely based
on the rigorous PAC learning theory, see [68] for a
definition). For potential fields recorded with very
low noise in anesthetized, epidural rat auditory cor-
tex, 840µm electrode spacing had a high probab-
ility (∼95% empirical rate) of enabling approxim-
ately correct (⩽10% error) prediction of unseen
field potential. However, the 95%–10% PAC elec-
trode spacing for the same potential fields in a high
noise scenario was projected at 414µm, based on the
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and computed tone frequency classification accuracy for each sample. (a) Three examples of subsampled electrodes (solid red) are
shown at different spatial periods. The average spacing was calculated as (A/n)1/2 for area A of the convex hull (traced in black)
and n electrodes. (b) The reference accuracies based on fully sampled active arrays were 53.6% (rat 1) and 60.9% (rat 2). Chance
accuracy was 7.7% for 13 frequencies. Purple and green points show classifier accuracy at each passive array subsample for rat 1
and rat 2, respectively. Accuracy results binned in 50µm intervals (squares) were compared to reference accuracy (filled squares
are significantly higher). Accuracy was not significantly higher than 400µm spaced active electrodes starting at 845µm for rat 1
and 895µm for rat 2 (one-sided Z-test with binomial large sample Normal approximation, p= 0.003 threshold, false detection
rate controlled at 0.05).

5th percentile of ∆10% in active array batches. The
projected expansion of predictability coverage from
800 to 414µm is shown in figure 5(g), echoing the
recovery of predictability in the simulated results in
figure 3(c).

3.2. Field predictability and stimulus information
content
We have observed previously [27] that, despite sim-
ilar electrode geometry and recording conditions,
auditory stimulus classification accuracy is lower
using active array recordings compared to passive,
due to increased noise. Here we used tone classific-
ation to test whether the hypothetical equivalence
in active- and passive array sampling predictability
corresponded to equivalent information content in
the signals. We gradually reduced the effective inter-
electrode distance of the passive array from 420µm
to∼2000µm to compare classifier accuracy with that
from active arrays sampled at 400µm (53.6% for rat
1 and 60.9% for rat 2, figure 6).

As expected, passive array classifier accuracy at
full sampling (72.4% for rat 1 and 78.2% for rat
2) outperformed corresponding active arrays, and

decreased fairly regularly as fields were sampled more
sparsely. To determine where the subsampled accur-
acy rates intersected with the corresponding active
array baselines, we binned results at every 50µm and
used the large-sample Normal approximation (with
σ2 = p(1− p)/780) to calculate z-scored accuracy
differences. The smallest electrode spacing bin with
no significant difference in accuracy rates was 845µm
for rat 1 and 895µm for rat 2 (one-sided Z-test, p<
0.003with false detection rate controlled at 0.05). The
equivalent spacing for stimulus information content
agreed the hypothesized equivalent PAC spacings of
840 and 414µm.

3.3. Kriging resolution in rat, NHP, and human
µECoG
We analyzed spatial covariance in multiple band-
passes for µECoG recordings from one semi-
chronically implanted NHP performing a center-out
reach task, two intra-operatively implanted humans
listening to word/non-word acoustic stimulation
under anesthesia, and four chronically implanted
rats listening to tone pips while awake and freely
moving. We used four commonly defined oscillatory
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(a) Prediction relMSE worsened for fields with fine spatial pitch. Parametric kriging error explained residual errors with a slope of
b= 0.99, r2 = 0.842. (b) Nyquist pitch (1.61mmmedian, 1.54–1.70mm IQR) and kriging resolution (1.63mmmedian,
1.44–1.87mm IQR). The 5th percentile of kriging resolution (PAC electrode spacing) was 1.22mm. (c) Prediction relMSE in
bandpassed µECoG snapshots tended higher for decreasing Nyquist pitch and SNR (especially HFB). Expected kriging error was
accurate within 5% of unity slope (r2 = 0.952 combined). (d) Nyquist pitch (gray line) was consistent in theta through gamma
bands (BC⩾ 0.97 successive bands), but shifted to smaller values HFB (BC= 0.84 gamma-HFB). Central tendency kriging
resolution (black line, median and IQR) was similar to Nyquist pitch (gray line) in theta-gamma bands with median noise of
1.4%–2.2%, but deviated in HFB due to higher 6.3% noise proportion. PAC spacing (black dots) was∼1mm for theta-gamma
and 502µm in HFB.

bandpasses (theta: 4–7 Hz, alpha: 7–14Hz, beta:
15–30Hz, gamma: 30–60Hz) and a high frequency
broadband (75–300Hz) characterized by wide spec-
trum power fluctuations.

3.3.1. NHP motor cortex
We recorded neural potentials from 183 of 244
electrodes with 762mm pitch in motor cortex of
a macaque performing a center-out reach task
(figure 7(a) inset). Bandpassed and broadband spatial
variance modeling of 4161 500ms batches accurately
predicted cross validated kriging error, with b= 0.99
in broadband signal and 0.96< b< 1.05 among
bandpasses. There was a lower degree of precision
in the expected model error for broadband signal
(r2 = 0.842) versus bandpasses (r2 = 0.952).

Broadband fields in awake NHP motor cortex
had longer correlation range and rougher texture
compared to anesthetized rat auditory cortex, with
median ∆nyq = 1.61 mm. The larger subsampled
electrode spacing of 1.52mm predicted 62.3% of
field batches at 10% MSE or lower. The hypothet-
ical kriging resolution for 95%–10% PAC coverage
was 1.22mm. At 2.1%median noise, the PAC sample
spacing compared closely to the same 5% quantile
of Nyquist pitch, which was 1.33mm (figures 7(a)
and (b)).

The spatial properties of bandpassed µECoG
fields from theta to gamma were extremely consistent
(note the overlapping sets in figure 7(c)). TheNyquist
pitch distributions from theta to gamma (pairwise
BC⩾ 0.91) had median values highly consistent with
the broadband 1.6mmmedian.Noisewas also similar
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Figure 8. Kriging results in anesthetized human pSTG and motor cortex. (a) Variography and prediction results for a low
resolution/low error motor cortex field. Optimal predictions are also shown (‘†’ per figure 4). Long range and locally-regular (high
smoothness index) patches of similar polarity were accurately predicted at 1.52mm subsampled spacing. Cross-validated kriging
relMSE was 6.5% relMSE (1.0% noise and 5.5% kriging error). (b) A shorter range, but smooth field batch was predicted with
8.7% relMSE (1.5% noise and 7.2% kriging error). (c) A rough field batch was predicted at 13.7% relMSE (3.0% noise, 10.7%
kriging error), which was above the 10% predictability threshold. The low smoothness index indicated texture detail that was lost
to interpolation. (d) Noise-subtracted prediction error for broadband (4–300Hz) fields was inversely related to spatial scale
(∆nyq). The three snapshots in (a)–(c) are marked. Expected kriging error explained relMSE error with linear slopes of b= 1.00
(each subject), r2 = 0.898 (combined). (e) Central tendencies of kriging resolution (pSTG: 1.48mmmedian, motor: 1.87mm
median) exceeded Nyquist pitch (pSTG: 1.13mmmedian, motor: 1.50mmmedian), but approached similar values at the lower
tails. PAC spacing was 829µm in pSTG and 1.43mm in motor cortex. (f) Grouped prediction error (relMSE combined subjects)
for bandpass fields depended on Nyquist pitch, but tended higher in theta band due to rough texture, and at higher frequencies
due to falling SNR. Per band and per subject, expected relMSE regressed actual kriging error with slopes 0.93< b< 1.11
(combined model r2 = 0.982). (g) Nyquist pitch (light lines, median and IQR) underestimated kriging resolution (dark lines) in
bands with smoother fields and high SNR. PAC spacing was 240–902µm in pSTG and 498µm–1.49mm in motor cortex.

at 1.4%–2.2% levels, but the actual 10%MSE predict-
ability coverage at 1.52mm was higher for alpha and
beta bands (77.0% and 74.6%, respectively) than for
theta and gamma (41.1% and 55.9%, respectively).
PAC sample spacing was 0.93–1.18mm in the theta
to gamma bandpasses (figure 7(d)).

The combination of finer spatial scale (median
∆nyq = 1.24 mm) and higher noise (median 6.3%)
in HFB had a significant impact on kriging predic-
tion error. The minimum compensated relMSE was
12.4%, meaning there was no predictability cover-
age at the 1.52mm electrode spacing. We projec-
ted the 95%–10% PAC to be 502µm in the HFB
bandpass.

3.3.2. Human pSTG and motor cortex
We applied the kriging experiment to µECoG recor-
ded from motor cortex in two human volunteers
undergoing surgery for drug resistant epilepsy. The
244-channel electrode was implanted intraoperat-
ively and field potential was recorded outside the
seizure onset zone while subjects were anesthetized.

Recordings were split into short-time batches (1560
subject A pSTG, 662 subject B motor). Model-based
expected error was generally accurate explaining
cross-validated kriging error for broadband (b= 1.00
for both subjects) and bandpassed fields (0.95<
b< 1.11 subject A, 0.92< b< 1.03 subject B), with
a difference in precision as noted in NHP fields
(broadband r2 = 0.898, bandpass r2 = 0.982, com-
bined factors models).

Examples of 4–300Hz broadband fields from sub-
ject B with three different covariance characterist-
ics are shown in figure 8(a)–(c) (and in animated
form in supplemental videos S5–S7). The most pre-
dictable fields were those with smooth texture and
large extents of equal polarity (e.g. figure 8(a)). As
indicated by the analytical results, texture strongly
affected the error of kriging predictors. Two field
batches in figures 8(b) and (c) had dominant spatial
cycle limits (∆nyq) of 1.16 and 1.25mm, respectively,
less than the subsampled pitch of 1.52mm. How-
ever, the smoother texture in figure 8(b) led to recov-
ery at 7.2% MSE, while more granular features in
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figure 8(c) were considered ‘not predictable,’ at 10.7%
MSE. In figure 8(a)–(c), the divergence of the empir-
ical semivariogram from an asymptotic variance at
long range is likely due to these points being the least
reliable estimates of semivariance [69]. These points
were down-weighted in the model fit, as indicated by
the visual weight in the figures.

Broadband motor cortex fields were of sim-
ilar spatial scale in human (median ∆nyq = 1.50
mm) as in NHP, while pSTG fields were smal-
ler scale (median ∆nyq = 1.13 mm). The differ-
ence in Nyquist pitch corresponded to 91.8% pre-
dictability coverage in motor cortex at the actual
1.52mm electrode spacing, but only 42.7% pre-
dictability coverage in pSTG (figure 8(d)). PAC
spacings were 1.43mm and 829µm respectively
(figure 8(e)).

As a group, bandpassed human µECoG fields
were predicted less effectively at smaller length
scales (figure 8(e)). There was also greater variab-
ility between bands in both brain areas, compared
to NHP motor cortex. Median Nyquist pitch peaked
in the alpha band (1.27mm, subj. A, 1.72mm, subj.
B), which may have been influenced by a moder-
ate increase of coherent alpha rhythms in temporal
areas during general anesthesia under propofol [70].
Median kriging resolution spacings exceeded the sub-
sampled electrode spacing of 1.52mm in bands with
larger Nyquist pitches and lower noise proportions
(figure 8(g). For generally stable prediction, we estim-
ated the PAC spacing in pSTG to be between 902µm
(alpha band) and 240µm (HFB), and in motor cor-
tex between 1.49mm (beta band) and 324µm (HFB).
See figure 9 for detailed PAC spacing and noise

results. Supplemental videos S8–S12 show recorded,
kriged, and filtered humanµECoG snapshots for each
bandpass.

3.3.3. Combined effects of spatial scale and noise
To incorporate fields recorded in a chronic implant-
ation setting, we also analyzed spatial field charac-
teristics for a cohort of four rats implanted with the
passive electrode array in auditory cortex [55]. We
used recordings made in the first week and the eighth
week of implantation, at which point the acute tissue
response was presumed to have stabilized and elec-
trode impedance was near peak levels.

In figure 9, we summarized the PAC sampling res-
ults in rat, NHP, and human in the context of the
particular SNR that we observed in those recordings.
After manipulating the electrode spacing term for the
expected kriging error to find the PAC predictability
boundary, we also varied the share of noise in covari-
ancemodels on the boundary to project PAC spacings
for 0–50% noise levels. PAC electrode spacings in the
ideal scenario were uniformly submillimeter for HFB
fields in all cortical areas and species. Spacings were
approximately 1mm or lower for auditory cortex in
rat and pSTG in anesthetized human. Except in HFB
and theta bands,motor cortex fields in bothNHP and
human were projected to be predictable at spacings
between∼1 and 1.5mm.

In all cases, the compensatory balance of spatial
oversampling in the presence of noise reduced estim-
ation of the 95%-10% PAC spacing. Values for ‘new’
implants (intraoperative human, semi-chronic NHP,
and early rat electrodes) were within an average of
115µm of ideal PAC spacings across bands. However,
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anesthetized human fields showed notable deviations
from ideal PAC spacings at HFB of 371µm (pSTG)
and 354µm (motor).

In the chronic implant setting, field statistics were
relatively stable between week 1 and week 8, with
overlap in Nyquist pitch having mean BC= 0.90. By
week 8, 1/f thermal noise from increased electrode
impedance deteriorated signal quality at lower fre-
quencies, raisingmedian noise proportion from 1.2%
to 9.2% mean across bands (mean BC= 0.11). The
signal properties had a significant effect on predictive
sampling. At the first week of implantation, very low
noise fields could be sampled effectively with 635–
846µmPAC spacing across bands, similar to results in
anesthetized auditory cortex during the same acous-
tic tone stimulation. The PAC kriging resolution for
week 8, as a product of SNR and field resolution,
was 243–612µm, which was lower than ideal by 200–
700µm (365µmmean).

4. Discussion

In the preceding results, we analyzed sufficient spa-
tial sampling of cortical surface potential with the
objective of predicting continuous voltage fields with
constrained loss of detail. From basic analytical res-
ults, we expected that predictability should depend
on three independent factors: (a) the natural image
statistics of the cortical field potential (the ‘field’),
(b) the precision of measuring those potentials (the
‘signal’), and (c) the electrode sampling geometry. In
particular, this analysis suggested that prediction loss
induced by substantial noise or fine feature scale can
be corrected with greater sampling density.

We established through covariance modeling
and cross-validated predictions that the theoretically
expected kriging error accurately explained predic-
tion MSE across a range of field, signal, and elec-
trode spacing conditions. Next, we extrapolated elec-
trode spacings for each short-time batch that would
normalize expected kriging error to 10% of the pro-
cess variance (although a lower tolerance could be
used in practice). Based on the distributions of spa-
tial field statistics in a variety of regimes, we pro-
posed electrode spacings that were ‘probably approx-
imately correct’, i.e. resulting in≤10% approximation
error for ≥95% of the observed fields. The mathem-
atically rigorous PAC learning framework [68] was
only loosely adapted here, but the ‘probable’ and
‘approximate’ concepts succinctly described the task
of seeking a sufficient sampling density to constrain
loss under non-stationary conditions. In an experi-
ment with controlled neural field statistics and elec-
trode geometry, we found that different µECoG sig-
nals sampled at 95%–10% PAC predictability spa-
cings generated approximately equivalent stimulus
classification accuracy.

For the fields we observed, PAC sample spacing in
ideal (noiseless) conditions was between about 570–
1050µm across bandpasses for rat auditory cortex.
NHP and human motor cortex fields in the alpha,
beta, and gamma bands could be predictably sampled
in the 1–1.5mm range, while human pSTG fields
required sampling at approximately 600–1000µm.
HFB required sampling between 600 and 850µm for
all cortical areas and species, assuming noiseless con-
ditions, while the 4–7Hz theta band also required
∼500µm sampling for human fields and rat fields at
week 8, after implants had stabilized. Adjusted to the
noise levels we observed, PAC sample spacing was,
on average, 115µm smaller than the ideal case for
intraoperative or semi-chronic electrode placements,
with the largest deviations occurring in HFB. In
the long-term chronic case, increased thermal noise
reduced PAC sampling 365µm on average relative to
the noiseless ideal.

Optimal linear combination techniques based on
sensor covariance are commonly used for inverse
problems in electro- and magnetoencephalography
[71–73], and other spatial filters have been pro-
posed to maximize spatial contrast [74]. To the best
of our knowledge, this is the first study to rigor-
ously apply optimal linear prediction methods to
interpolate field potential based on spatial statist-
ics. While other interpolation methods may yield a
similar quality of predictions, a statistical interpol-
ator forecasts the uncertainty of its prediction, i.e.
equation (4). The model-based kriging error was the
basis of our determination of sufficient sampling, but
it also revealed the denoising benefit of correlated
sampling. The kriging error for interpolated fieldswas
often smaller than the estimated noise in the original
recording. This result indicated that electrode spa-
cing can be tuned for small approximation errors,
even below the sensor noise limit, by sufficient over-
sampling of correlated field potential.

We also made use of in situ prediction, as
opposed to interpolation, to produce denoised views
of neural fields (e.g. figures 8(a)–(c)). Any linear fil-
ter (e.g. Gaussian smoothing, spatial averaging, etc)
may enhance SNR in a correlated field with spatially
independent noise. Kriging produces the best lin-
ear unbiased predictor, optimized conditional on the
variance model, which tends to perform well com-
pared to deterministic interpolators such as splines
or inverse-weighted prediction [75]. Kriging is also
adaptive to the field statistics, which vary in time.
A more thorough analysis of denoising performance
based on the approximately noise-free rat auditory
field recordings is available in supplemental mater-
ial (supplemental figures S3 and S4). Since measure-
ment noise may be an unavoidable consequence of
electronics miniaturization, intentional spatial over-
sampling coupled with spatial filtering is a promising
strategy to recover high fidelity neural fields. Curves
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for hypothetical field coverage vis-a-vis electrode spa-
cing and noise (as in figure 3(a)–(c)) could help guide
electrode array design.

Prior investigations of neural signal correlation
have made length scale inferences from either the
correlogram or its dual, the spatial power spec-
trum. However, the analyses in these studies were
device dependent. Recent results for ECoG in awake
humans found electrode spacings at which correla-
tion crossed a threshold of 1/2. One, using a para-
metric model, revealed length scales in STG ranging
from 1.5mm for gamma and high-gamma to>4mm
for the lowest theta band [50]. Another, using spec-
tral coherency profiles of microwire ECoG in motor
cortex resulted in length scales from 0.8 to 1mm at
150Hz, and rising to 2.13–3.45mm at low frequen-
cies [49]. Raw correlogram profiles in STG record-
ings cross the 1/2 threshold between 1 and 3mm
in descending frequency bands [51]. Using device-
independent covariance kernels (not scaled to sig-
nal or noise), we observed average half-correlation
lengths with a minimum of ∼1.15mm in the HFB
range for both brain areas, and a maximum in the
alpha band of ∼3mm in pSTG and ∼4.25mm in
motor cortex. The discrepancy between motor area
findings may partially be due to the lack of distinc-
tion between ‘field’ and ‘signal’ in the correlation
coefficient and coherency estimators. Spatially inde-
pendent noise lowers normalized correlation values
at all inter-electrode distances. Correlograms from
the same neural field, but measured with different
noise power, would show threshold crossings at dif-
ferent inter-electrode distances. Another factor in the
present results that likely impacted correlation range
in alpha and HFB was the state of general anesthesia
under propofol [70]. Spatial correlation profiles are
also highly variable across time, as observed in [51]
and confirmed in this study.

Previous spatial spectra analyses identified effect-
ive bandwidths where physiological spectra intersec-
ted noise floors, and determined sufficient sampling
densities in terms of the bandwidth reciprocal. Our
median results for spatial bandwidth resolution were
similar to previous findings in human [47] and rat
[48]. However, we found that a field’s texture, which
had a large impact on predictability, had only a subtle
impact on the power spectrum, making bandwidth
an unreliable estimator of sufficient sample spacing.
In addition, the bandwidth selection methodology in
this report eliminated device dependence by discard-
ing the noise floor. Estimating bandwidth based on
the intersection of field and noise spectra leads to the
counter-intuitive result of decreased bandwidth/in-
creased electrode spacing in low SNR scenarios and
increased bandwidth/decreased spacing for higher
SNR, when the underlying field spectrum might be
equal. Our basic results suggest the opposite result
(see figures 3(b)–(c)). The same neural field can be
predicted to the same accuracy in low noise using

larger electrode spacing, or in high noise with smaller
spacing.

The methodology we employed pre-supposed a
need for correlated sampling, which is a require-
ment for spatial prediction. Another functional utility
of redundant electrode signals was recently stud-
ied through the use of shared trial-to-trial variabil-
ity in discriminating visual stimuli from V4 activity
in NHP. Rather than being a nuisance, shared vari-
ability in LFP contributed substantially to decoding
accuracy [76]. The logic of avoiding redundancy by
setting electrode spacing based on spatial cycle lim-
its was also challenged through a detection theory
model that elucidated the impact of redundancy in
both event-related signals of interest and background
processes. High-density grids have greater detec-
tion power for spatially redundant event-related sig-
nals buried within a high-amplitude, low-correlation
background process, or can conversely pick out
spatially focal signals in the presence of highly
correlated background activity [77]. The first result is
directly analogous to our finding that field potential
can be predicted to nominal precision in high noise
with sufficiently dense sampling. The second result
also relates to the need for dense sampling for highly
textured (low smoothness) fields, even if the domin-
ant correlation length scale is long range.

We attempted to adapt to nonstationarities in the
field structure and SNR by operating in short-time
batches. But there can be little doubt that our analysis
smoothed over the most transient neural events such
as evoked responses. We observed comparatively low
fitness of our spatial prediction framework when kri-
ging evoked response transients directly. Such events
may plausibly be described by a the superposition
of uncorrelated background and response field pro-
cess with different spatial covariance kernels, and thus
may benefit from a nested variogram model [53].

The present analysis was indifferent to spatio-
temporal interactions in the covariance kernel, which
were clearly demonstrated empirically in [49] and
are also indicated by the cortical traveling wave phe-
nomenon [78]. The framework of spatial prediction
can be expanded using appropriate spatio-temporal
covariance kernels [79, 80]. It is quite likely that
coupled structure in space and time may provide
more efficient field potential prediction and reduce
the sufficient sampling density indicated in this study.

The 95% ‘probable’ and 10% ‘approximate’
figures were chosen as intuitively grasped quantities
for the purpose of exposition. However, in light of
the results relating sampling predictability to mutual
information with sensory stimulation (figure 6), the
10% error tolerance may be too large for most applic-
ations. In fact, tone classification accuracy from the
passive arrays continued to improve until the smal-
lest testable electrode spacing (i.e. the fully sampled
grid). Expected error for 95% of the observed fields
at 420µm spacing would be 3% or less, and the
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corresponding 95%–3% PAC sample spacing on the
active array would be 69µm. With these caveats in
mind, the PAC sampling densities stated for mul-
tiple scenarios might be considered minimum start-
ing points for electrophysiology in practice.

5. Conclusion

The present study attempted to rigorously address the
problem of sufficient sampling in µECoG in terms
of minimum MSE prediction of field potential. We
introduced (a) a set of field covariance estimation
techniques that improved upon common methodo-
logy in electrophysiology, and (b) a framework that
quantified the relationship between prediction effi-
ciency versus electrode spacing over a distribution of
covariance and SNR conditions. Our prediction res-
ults suggested that sampling based on spatial band-
width, as suggested in prior literature, can be a good
rule of thumb for low frequency field potential and
low noise conditions. However, using an single point
estimate of bandwidth (i.e. the average) does not
expose the full range of field statistics. Additional spa-
tially over-sampling of the bandwidth-based pitch is
required for rough textured fields, and can recover
bandwidths beyond the noise floor in higher noise
settings. We found that natural image statistics and
SNR of field potential varied significantly within
single recordings. Based on these distributions, we
recommended sufficient sampling based on a high
probability of low error predictions. These findings
suggested that sufficient sample spacing for ≤10%
MSE predictability in noiseless conditions ranged
from lows of ∼500µm across species, up to 1.5mm
in low frequency human and NHP motor cortex.
Accounting for the most adverse chronic implant
noise conditions, sufficient sample spacings were
reduced by 200–700µm. Importantly, the observed
prediction errors werematched by the expected error,
allowing sufficient sampling inferences to be made
based on reasonable parameter assumptions prior to
future electrode design.
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