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Soft Sign Language Interpreter on
Your Skin
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Sign language represents an essential means of communication for a
significant fraction of the population but can only be used by trained
individuals. Researchers report a wearable system that incorporates
stretchable sensors and a wireless circuit for real-time sign-to-
speech translation.
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Around 466 million (one in every twenty)

people worldwide suffer from disabling

loss of hearing. This number may double

in 30 years because of a combination of

congenital origins and acquired causes

such as infectious diseases, ear infections,

use of medicines, and excessive noise.1

People with hearing loss are often unable

to effectively communicate with others,

and therefore are at a high risk of experi-

encing loneliness, anxiety, depression,

and even decreased cognitive function.

Efforts to address these issues involve

initiatives in national sign language

education and support from sign lan-

guage interpreters. These activities, how-

ever, have significant costs, estimated to

approach $750 billion globally, on an

annual basis. Even when supported at

these levels, existing approaches are un-

able to adequately address communica-

tion barriers.

Automated systems for sign language

recognition represent an alternative,

and perhaps complementary, means

to overcome these barriers. Certain sys-

tems for automated sign language

recognition are suitable for large-scale

production, with potential for real-

time sign-to-speech translation for hun-

dreds of millions of people. Such hard-

ware approaches rely on camera(s)

or projection of structured light for

vision-based recognition, and electro-

myography (EMG), inertial measure-

ment units (IMUs), or haptic technology

for sensor-based recognition schemes.2

Although advances in microelectronics

and microelectromechanical systems
can support miniaturized, portable plat-

forms of these types, further improve-

ments and/or transformations of form

factors are necessary for wearable,

on-demand sign-to-speech translation

technologies. Daunting challenges are

in overcoming the mismatch between

the materials used in traditional elec-

tronic devices—rigid silicon for IMUs

and integrated circuits, metal plates

for EMG, thick plastic layers for pack-

aging—and the soft, curvilinear sur-

faces of the human body.

Research teams from the University of

California, Los Angeles and Chongqing

University, led by Profs. Jun Chen and

Jin Yang, report a wireless wearable sys-

tem that addresses these challenges.3

The system incorporates an array of soft,

stretchable strain sensors mounted on

five fingers to convert hand gestures of

sign language into analog electric sig-

nals, and a customized circuit to amplify,

multiplex, digitize, andwirelessly transmit

the resulting data to portable electronic

devices (Figure 1A). A machine-learning

algorithm and a graphical user interface

enable real-time sign-to-speech transla-

tion, with recognition rates >98% and

recognition times <1 s (Figure 1B). These

platforms have many other attractive

properties, including but not limited to,

high sensitivity, fast response, and high

levels of robustness.

The key component is a yarn-based

stretchable sensor. The sensor leverages

the authors’ expertise in smart textiles4

and triboelectric nanogenerators.5 Each
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sensing unit consists of a stretchable mi-

crofiber as the inner core, a conductive

yarn based on twisted microfibers of

stainless steel and polyester, and a poly-

dimethylsiloxane (PDMS) sleeve to cover

the entire structure (Figure 1C). The

conductive yarn forms a coil structure

around the rubber microfiber to afford

uniaxial stretchability of up to 90%.

The sensor detects changes in strain

based on a combined effect of triboelec-

trification and electrostatic induction.5

Different electron affinities associated

with PDMS and polyester induce electron

transfer between the two materials upon

physical contact, thereby building an

electrical potential (Figure 1D). Tensile

strains can change the contact areas be-

tween the PDMS and polyester, leading

to a variation in electrical potential. The

stainless steel serves as an electrode to

capture such changes through electro-

static induction. These sensors do not

require any specialized materials; they

support high levels of elastic stretch-

ability based on structural designs with

intrinsically non-stretchable materials

and determine changes in strain through

simple contact electrification processes.

The compatibility of these underlying de-

signs with wide-ranging classes of mate-

rials is an important advantage in cost-

effective, large-scale manufacturing.

The data from these devices must,

however, be processed to support accu-

racy and automation in a process of

translation. Here, the team exploits ma-

chine learning based on amulti-class sup-

port-vector machine classifier, trained us-

ing large datasets captured from an array

of sensors. As distinct from recent
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Figure 1. Wearable Sign-to-Speech Translation System

(A) Optical image of the wearable strain sensor and customized circuit.

(B) Screenshots of the mobile application for real-time sign-to-speech translation.

(C) Structure of the stretchable strain sensor.

(D) Schematic illustration of the sensing mechanism.
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approaches that integrate both visual and

somatosensory data,6 the authors use

collections of strain sensors to simulta-

neouslymonitor changes at different stra-

tegic locations on the hands. The use of

arrays in this manner can support accu-

racies of greater than 98% in gesture

recognition, without any imaging tech-

niques or user inputs.

The same soft features and fibrous ar-

chitectures of these sensing systems

may support applications in other types

of wearable devices. For example,

placement near the eyebrows and

mouth may allow for digital identifica-

tion of facial expressions, mounting on

multiple joints could support tracking

of body movements, and integration
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with clothing has potential for fitness

and activity monitoring.7 These sce-

narios could extend uses beyond sign

language, to avenues for enhancing

communications with digitized informa-

tion related to aspects such as facial

expressions and body language.

The translational potential and rela-

tively low-cost construction (�$50 for

the prototype in the laboratory) are

additional important features of the

technology. Future work may involve

(1) acquiring additional training data

to improve the accuracy of the ma-

chine-learning algorithm, (2) establish-

ing reference datasets for different

sign languages and developing mobile

applications to convert the translation
into different languages, and (3)

combining such translations with ges-

tures, body movements, and facial ex-

pressions for augmented communica-

tion. Additional opportunities lie in

heterogeneous integration with other

fiber-based electronic,8 optoelec-

tronic,9 and energy devices10 for multi-

functional wearable systems.
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