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Abstract

Background: Parkinson’s disease (PD) is a progressive neurological disease, with characteristic motor symptoms
such as tremor and bradykinesia. There is a growing interest to continuously monitor these and other symptoms
through body-worn sensor technology. However, limited battery life and memory capacity hinder the potential for
continuous, long-term monitoring with these devices. There is little information available on the relative value of
adding sensors, increasing sampling rate, or computing complex signal features, all of which may improve accuracy
of symptom detection at the expense of computational resources. Here we build on a previous study to investigate
the relationship between data measurement characteristics and accuracy when using wearable sensor data to
classify tremor and bradykinesia in patients with PD.

Methods: Thirteen individuals with PD wore a flexible, skin-mounted sensor (collecting tri-axial accelerometer and
gyroscope data) and a commercial smart watch (collecting tri-axial accelerometer data) on their predominantly
affected hand. The participants performed a series of standardized motor tasks, during which a clinician scored the
severity of tremor and bradykinesia in that limb. Machine learning models were trained on scored data to classify
tremor and bradykinesia. Model performance was compared when using different types of sensors (accelerometer
and/or gyroscope), different data sampling rates (up to 62.5 Hz), and different categories of pre-engineered features
(up to 148 features). Performance was also compared between the flexible sensor and smart watch for each
analysis.

Results: First, there was no effect of device type for classifying tremor symptoms (p > 0.34), but bradykinesia
models incorporating gyroscope data performed slightly better (up to 0.05 AUROC) than other models (p = 0.01).
Second, model performance decreased with sampling frequency (p < 0.001) for tremor, but not bradykinesia (p >
0.47). Finally, model performance for both symptoms was maintained after substantially reducing the feature set.
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Conclusions: Our findings demonstrate the ability to simplify measurement characteristics from body-worn sensors
while maintaining performance in PD symptom detection. Understanding the trade-off between model
performance and data resolution is crucial to design efficient, accurate wearable sensing systems. This approach
may improve the feasibility of long-term, continuous, and real-time monitoring of PD symptoms by reducing
computational burden on wearable devices.

Keywords: Parkinson’s disease, Wearable sensors, Soft wearables, Machine learning, Symptom detection, Tremor,
Bradykinesia, Daily activities

Background
Parkinson’s disease (PD) is a neurodegenerative disorder
characterized by progressive motor symptoms such as
tremors, rigidity, and bradykinesia (slowness of move-
ment). It is estimated that the number of people affected
by PD worldwide has more than doubled from 1990 to
2016, making it the fastest growing neurological disease
[1, 2]. Available treatments for PD motor deficits con-
tinue to expand, including pharmacological, surgical,
and other therapeutic interventions [3]. As the disease
progresses, changes to an individual’s customized treat-
ment plan are often needed to maintain symptom con-
trol as medications wear off while avoiding troublesome
side-effects. Long duration, continuous monitoring of
PD symptoms would allow for more personalized treat-
ment and better control of symptoms during the time-
course of the disease.
Motor symptoms of PD are typically assessed via peri-

odic, in-person evaluations by a clinician, with supple-
mental diaries completed by patients [4, 5]. However,
evaluations are infrequent and sometimes inaccurate [6],
and the diaries can be cumbersome and are often not
maintained over long periods of time [7, 8]. Pilot investi-
gations have explored the use of telemedicine to replace
or accompany in-person evaluations, though the fre-
quency of assessment would still be limited by patient/
clinician schedules [9–11].
Wearable devices offer a powerful alternative to trad-

itional, in-person clinical assessment strategies. These
devices can house multiple types of sensors to continu-
ously record physiological data related to PD symptoms.
Supervised machine learning models can be trained on
this data to detect the presence and severity of a symp-
tom offline or in real time. There are many potential al-
gorithms to associate features of the data signals with a
diagnostic output, which is typically a problem of classi-
fying the data (e.g., as having the presence/absence of a
symptom, or whether the symptom is mild/moderate/se-
vere). Once trained, these models are used to detect
symptom presence and severity for new data. Modeling
motor symptoms of PD is primarily conducted using
sensors that record body movements, such as accelerom-
eters, gyroscopes, or electromagnetic motion trackers

[12–16]. Other types of sensors, including those measur-
ing bioelectrical activity (electromyography, electroen-
cephalography), have also been used [17–20]. Results
from current state-of-the-art models are encouraging,
with accuracies exceeding 85% for detection of tremor
and bradykinesia during controlled tasks or free move-
ments [16, 21]. These recent results indicate that wear-
able technologies have become increasingly viable for
monitoring PD symptoms in the clinic and community.
However, the real-world implementation and utility

of these systems is heavily limited by practical consid-
erations, including the battery life and memory cap-
acity of the devices. The need to remove and replace
devices – to restore the battery or download collected
data, for example – can lead to intermittent usage or
inconsistent device positioning. Accelerometers are
typically considered the standard or minimum neces-
sary sensor configuration for characterizing human
activity. These sensors measure movement data while
consuming relatively little power compared to other
types of inertial sensors, like gyroscopes, and can
meaningfully describe human movements at sampling
rates much lower than those used for bioelectric re-
cordings. It is unclear whether accelerometer data
alone is sufficient to detect PD symptoms, or whether
additional sensor types are necessary to characterize a
symptom and improve detection. In addition, sam-
pling rates of wearable sensors can be tuned, increas-
ing temporal resolution and thereby model accuracy
at the cost of some increase in power and memory
overhead. Finally, features of the data signals may be
computed onboard the device and stored in place of
raw signals to conserve memory or provide real-time
symptom tracking; however, the feasibility of real-time
tracking is predicated on the complexity of the fea-
tures themselves and available system resources. Fea-
tures based on relatively complex signal processing
techniques, such as fast Fourier transforms or sample
entropy, may capture subtly meaningful characteristics
of a signal but also require more time to compute
and drain device power more quickly. Together, these
ideas suggest an important tradeoff between the rela-
tive costs (i.e. power consumption, device memory)
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and benefits (i.e. accuracy of symptom detection) of
data complexity in disease monitoring.
This study evaluates the impact of data measurement

characteristics on the accuracy of PD symptom detec-
tion. Individuals with PD wore a flexible, skin-mounted
sensor that recorded accelerometer and gyroscope data
from the hand during various motor tasks. Machine
learning models were used to classify the presence and
severity of tremor and bradykinesia symptoms based on
scores from an experienced, licensed clinician. We char-
acterized changes in model performance for different
types of sensors, sampling rates, and subsets of a pre-
engineered feature set. Performance was compared be-
tween the flexible sensor on the hand and a consumer-
grade smart watch recording accelerometer data only.
Although not an exhaustive exploration of data measure-
ment characteristics for wearable devices, our results
show that simplified data collection approaches can be
used for PD symptom monitoring without compromis-
ing accuracy.

Methods
This work is a continuation of the “Wireless Adhesive
Sensor Sub-Study,” which is part of a larger multi-center
study entitled “Clinician Input Study on Parkinson’s Dis-
ease” (CIS-PD), sponsored by the Michael J. Fox Foun-
dation for Parkinson’s Research.

Participants
Twenty individuals diagnosed with PD participated in
the study. The study was approved by the Institutional
Review Board of Northwestern University (Chicago, IL;
IRB No. STU00203796), and all participants provided
written informed consent. Analysis for this study was
limited to 13 participants who simultaneously wore the
flexible sensor and a smart watch during assessment.
Demographic and clinical characteristics of these study
participants are summarized in Table 1.

Study protocol
Participants wore a BioStampRC sensor (MC10 Inc.,
Lexington, MA, USA) – a lightweight, flexible, sensor
that can support multiple sensing modalities – on the
dorsal aspect of the hand on their predominantly af-
fected side (Fig. 1). The sensor was secured to the skin
with adhesive dressing. They also wore a smart watch
(Apple Watch Series 2, Apple Inc., Cupertino, CA) on
the same-side wrist during all assessments. The predom-
inantly affected side was determined by clinician assess-
ment using the Movement Disorder Society – Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS). Partici-
pants who were bilaterally affected wore the devices on
their dominant side. Participants wore the devices for up
to 3 h without need to replace the devices. The BioS-
tampRC recorded tri-axial data from an accelerometer
(range: ±4G) and gyroscope (range: ±1000°/s) at a sam-
pling rate of 62.5 Hz. The smart watch recorded tri-axial
accelerometer data using the ResearchKit framework at
an average rate of 50 Hz.
These participants also wore additional BioStampRC

sensors as part of a larger study, with sensors placed bi-
laterally on the arm, hand, and thigh [22]. For simplicity,
we focus all analyses here on the data from the single
hand-worn BioStampRC and smart watch on the pre-
dominantly affected side.
PD symptoms were assessed during 13 different standard-

ized motor tasks, which included functional tasks (e.g., walk-
ing for 60 s), fine upper extremity tasks (e.g., typing), gross
upper extremity tasks (e.g., pouring water), and tasks used in
clinical assessment (e.g., finger to nose). Participants were
given only general instructions for each task to encourage
them to perform each task as naturally as possible. Add-
itional details about these activities are available in [22]. A
trained clinician rated the severity of tremor and bradykinesia
in each arm during the tasks, based on a 0–4 scale using
score descriptions based on the MDS-UPDRS Part III. Clin-
ician ratings from the predominantly affected side (or, for bi-
laterally affected, the dominant side) were considered to be
the ground truth label for machine learning models.

Table 1 Participant demographics and clinical summary

Participant Characteristics Values

Sex (female/male) 4 / 9

Age (years) 62.1 ± 10.7

Time since diagnosis (years) 6.4 ± 4.5

Fluctuator (yes/no) 5 / 8

Side predominantly affected at first assessment (right/left/bilateral) 2 / 8 / 3

MDS part III score, day 1 OFF medication 28.8 ± 10.2

MDS part III score, day 1 ON medication 17.9 ± 6.8

MDS part III score, day 2 ON medication 19.6 ± 6.0

Relevant demographic characteristics of study participants included in this analysis. Values are presented as Mean ± Standard Deviation where applicable. Total
participants (N) was 13.
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Each participant completed seven repetitions of each
task across two clinical visits. During the first visit, par-
ticipants arrived in the OFF medication state (approxi-
mately 12 h after last dose of medication) in order to
maximize motor symptoms. After performing each task
once, participants then took one dose of their medica-
tion and repeated each task five more times at 30-min
intervals as the medication took effect (ON medication
state). The second visit occurred about 2 weeks later at
the same time of day as the first visit; participants ar-
rived in the ON medication state, taking their medica-
tion as usual, and performed each task once. Data from
both visits were included for analysis to capture a broad
range of symptom presentations.

Feature extraction
To correct for occasional dropped samples and non-
uniform sampling rates, data recordings from each task
were interpolated to the intended sampling rate (62.5 Hz
for BioStampRC, 50 Hz for smart watch) using a cubic
spline interpolation. For analyses using data at reduced
sampling rates, these signals were then down-sampled
using a polyphase filtering approach. Accelerometer and
gyroscope recordings were then segmented into 5-s clips
with 50% overlap. This was done to standardize the indi-
vidual clips and provide several clips from each task re-
cording, which ranged in length from about 15 s to 60 s.
Clips with less than 80% of the expected number of sam-
ples in the un-interpolated data were discarded. This

process yielded 16,445 and 14,339 clips from the sensor
and smart watch datasets, respectively (Table 2). To re-
move effect of hand orientation, accelerometer data were
also high-pass filtered with a cutoff at 0.5 Hz.
We computed features for each data clip, which in-

cluded separate features on the three axes of the acceler-
ometer and gyroscope signals, as well as on the
magnitude of the signals. This resulted in 74 features per
sensor type per clip, which we categorized into the 5 fea-
ture categories given in Table 3. These features were
chosen as an expansion of features we had used in a
prior analysis [22].

Classification models
We used random forest (RF) machine learning models
to classify PD symptoms. RF models are advantageous
due to their high performance, low number of hyper-
parameters, and ability to reduce overfitting. We have
also previously explored convolutional neural networks
for symptom detection, but did not see any substantial
improvement relative to the RF models [22]. The num-
ber of trees in each RF model was set to 50, based on a
prior analysis of out-of-bag training error using another
subset of data from this study [22].
Models were built using a population-based, leave-one-

participant-out (LOPO) approach – that is, applying training
data from all participants but one to classify tremor and bra-
dykinesia in the left-out participant. Cross-validation across
all possible LOPO folds was used to estimate the distribution
of performance metrics. Model performance was evaluated
by Area Under the Receiver Operator Characteristic curve
(AUROC), where values closer to 1.0 indicate the model is
better able to distinguish the presence or absence of the
symptom classification, and values closer to 0.5 indicate per-
formance closer to chance.
We examined two types of RF models (binary and

multiclass) for each PD symptom examined (tremor and
bradykinesia), resulting in four models total:

� A binary model classifies the presence or absence of
the PD symptom. A symptom was determined to be
present if the clinician gave a 1–4 rating in the MDS-
UPDRS, and considered absent if the clinician gave a
0 rating. Model performance was determined by the
AUROCs computed from each participant’s data.

� A multiclass model scores the PD symptom on the
same 0–4 scale used by the clinician based on the
MDS-UPDRS. Model performance was determined
by the weighted average of AUROCs computed on
each of the classes, 0–4, for each participant’s data.

Comparison of sensor types
To evaluate the relative contribution of data from the accel-
erometer and gyroscope sensors of the BioStampRC, we

Fig. 1 Wearable device placement. Participants wore a flexible
BioStampRC sensor recording accelerometer and gyroscope data on
the dorsal aspect of the hand, secured with adhesive dressing. They
also wore an Apple Watch recording accelerometer data on
the wrist
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compared AUROCs using the 74 features derived from ei-
ther accelerometer (Accel) or gyroscope (Gyro) data alone,
or using the 148 features combined from both sensor types
(Combo). We also examined a model using the 74 acceler-
ometer features from the smart watch (Watch). Comparisons
were made for both binary and multiclass models trained to
classify either tremor or bradykinesia. For each of these
model categories, a one-way repeated measures analysis of
variance (rmANOVA) tested for significant effect of sensor
type on model performance. The significance level α was set
to 0.05 for this test. If a significant effect was found, paired t-
tests were applied to make the following post-hoc pairwise
comparisons: Combo vs. Accel, Combo vs. Gyro, Combo vs.
Watch, and Accel vs. Watch. One-tailed tests were ap-
plied to assess whether the Combo condition provided
any significant benefit over the other conditions. A
two-tailed test was applied to compare Accel vs. Watch,
testing for significant differences in performance result-
ing from accelerometer hardware (BioStampRC vs.
Apple smart watch) or location (hand vs. wrist). For
each set of comparisons for a single model type/symp-
tom combination, the Holm-Bonferroni correction was
used to control the family-wise error rate at α =0.05.

Comparison of sampling rates
To evaluate the effect of reduced sampling rate, we in-
terpolated signals from the BioStampRC and smart

watch to eight lower frequencies: 50 (skin-adhesive sen-
sor only), 40, 30, 20, 10, 7.5, and 5 Hz. As with the pre-
ceding analysis, a one-way rmANOVA was used to
assess for significant effect of resampled rate on the per-
formance of symptom models (α =0.05). If a significant
effect was observed, one-tailed paired t-tests were used
to make pairwise comparisons to assess significant de-
crease in performance from the original sampling rate to
all lower frequencies. The Holm-Bonferroni correction
was again applied to control the family-wise error rate
(α =0.05).

Comparison of feature categories
The trade-off between the cost of computing more fea-
tures and the potential increase in model performance
enabled by these features, becomes particularly salient
for online computations and real-time monitoring. To
examine this relationship, we trained models using all
possible combinations of the feature groups listed in
Table 3. As a proxy for computational cost, we used the
average computation time for each combination of fea-
tures. Features were computed in Python 3.6 using
NumPy and SciPy libraries on a desktop computer run-
ning Windows 10. These values will not necessarily
translate to other contexts, particularly embedded sys-
tems, but can be illustrative for a general examination of
the relationship between feature complexity and

Table 2 Number of data clips scored for tremor and bradykinesia used in the supervised machine learning models

Score No. Clips with Tremor Score (%) No. Clips with Bradykinesia Score (%)

BioStampRC Watch BioStampRC Watch

0 12,143 (73.8%) 10,485 (73.1%) 5487 (45.0%) 4845 (44.8%)

> 0 4302 (26.2%) 3854 (26.9%) 6697 (55.0%) 5979 (55.2%)

1 2684 (16.3%) 2346 (16.4%) 4764 (39.1%) 4213 (38.9%)

2 1274 (7.7%) 1233 (8.6%) 1835 (15.1%) 1676 (15.5%)

3 344 (2.0%) 275 (1.9%) 98 (0.8%) 90 (0.8%)

4 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Total 16,445 14,339 12,184 10,824

Number of 5-s clips for tremor and bradykinesia symptoms, by score and device type. Fewer clips are available with bradykinesia scores because not all tasks
involved enough movement for the clinician to assess bradykinesia

Table 3 Feature categorization for supervised machine learning models

Feature
category

Abbreviation Features No. Tri-axial
features

No. Magnitude
features

Time T Root mean square, range, mean, variance, skew, kurtosis 18 6

Frequency F Dominant frequency, Relative magnitude, Moments of power spectral density (mean,
standard deviation, skew, kurtosis)

18 6

Entropy E Sample entropy 3 1

Correlation C Cross-correlation peak (XY,XZ,YZ), Cross-correlation lag (XY,XZ,YZ) 6 0

Derivative D Moments of the signal derivative (mean, standard deviation, skew, kurtosis) 12 4

Total for each sensor type 57 17

Features extracted from both accelerometer and gyroscope data signals and used as inputs for symptom models. Features are shown split into the categories
used during the analysis of feature types
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performance. We chose to perform selection on feature
categories rather than individual features for two main
reasons: (1) individual ranking of features would poten-
tially give spurious results for some features that do not
generalize well beyond our data, and (2) for some feature
categories, such as frequency-domain measures, a portion
of the computational cost stems from a shared preliminary
computation, such as a Fourier transform. Thus, it may be
more practical to discuss relative contributions of feature
categories with shared or similar computations.
Any feature set that did not have higher average

AUROC than all sets with lower computation time was
discarded to identify the subset of feature combinations
with only increasing performance for greater computa-
tion time. We used one-way rmANOVA to assess for
significant effect of feature combination within each
model category (α =0.05). If significant, one-tailed paired
t-tests with Holm-Bonferroni correction were used to
compare performance of the feature set with highest
computation time to the performances of each other
available feature set (family-wise α =0.05).

Comparison of tri-axial and magnitude-based features
Computational costs could also be reduced by using fea-
tures based only on signal magnitude, rather than on tri-
axial signals. We repeated the above analysis using only
the magnitude-based features from each group, except

the cross-correlation features were kept as before since
no magnitude-based features were available for this fea-
ture category. The peak performance when using magni-
tude features only was compared to performance when
using both magnitude and tri-axial features using a
paired t-test for each model category.

Code availability
All data processing and analysis for this study was done
using custom code run using the Anaconda distribution
of Python 3.6. The code used along with example data is
available as a GitHub repository (https://github.com/
nshawen/DataCharacteristics_PD).

Results
Sensor type analysis
We first examined differences in model performance
when trained using data obtained from different sets of
sensors. Receiver operating characteristic (ROC) curves
for each model are shown in Fig. 2, and AUROC for
each sensor group is detailed in Table 4. Models esti-
mating tremor symptoms showed no significant differ-
ences in performance across data sources for either
Binary or Multiclass models (rmANOVA: Binary: F =
0.57, p = 0.63; Multiclass: F = 1.17, p = 0.34). The range
of AUROC values across these models was also small
(Binary: 0.02, Multiclass: 0.03), and there was no

Fig. 2 Effect of sensor set. ROC curves for (a) Binary and (b) Multiclass models of tremor and bradykinesia with average AUROC. Accelerometer
data is sufficient to classify tremor, whereas the combination of gyroscope and accelerometer data improves detection of bradykinesia
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apparent trend between sensor type and performance.
For Binary models of bradykinesia symptoms, models
using data from the gyroscope sensor (Combo, Gyro)
performed significantly better than models using only
Watch or accelerometer data (rmANOVA: F = 4.98, p =
0.01; paired t-tests: Combo vs. Watch: p = 0.001, Combo
vs. Accel: p = 0.007). The effect of sensor type on
AUROC was also somewhat larger in magnitude for this
symptom (range: 0.05). There were no significant differ-
ences in performance between combined sensors and
gyroscope alone (p = 0.38) or sensor accelerometer and
smart watch (p = 0.39). No significant differences due to
sensor type were observed for Multiclass models (rmA-
NOVA, F = 2.09, p = 0.12), although models including
gyroscope data still performed better than models using
only accelerometer data (ΔAUROC: 0.01–0.04).
From this analysis, we found that pairing gyroscope

and accelerometer data improved detection of bradyki-
nesia (Combo), whereas accelerometer data alone was
sufficient for detecting tremor (Accel and Watch). For
simplicity, the subsequent analyses were performed
using only the sensor set identified here, as well as the
smart watch data as a continued comparison.

Sampling rate analysis
Using the sensor types determined from the sensor type
analysis, we next sought to assess the minimum neces-
sary sampling rate required to detect each PD symptom.
We simulated lower sampling rate by downsampling the
data to a target rate, then calculated features for training
and testing the RF models. One-way rmANOVA and
paired t-tests were then applied to determine at which
sampling frequencies model performance differed sig-
nificantly from AUROC at the original (maximum) sam-
pling rate (Table 5).
All models of tremor symptoms showed significant ef-

fect of sampling rate on performance (p < 0.001 for all
combinations of Binary/Multiclass and sensor/smart
watch). Though AUROC initially increased with sam-
pling frequency, there seemed to be a plateau effect at
higher sampling frequencies, with sampling rates above
10–20 Hz showing little to no improvement in average
AUROC. Statistically significant differences from peak
performance were observed for frequencies below 30 Hz

(p ≤ 0.011) for Binary models and 20 Hz for Multiclass
models (p ≤ 0.003). Tremor models based on data from
the smart watch showed a similar trend, with statistically
significant decreases occurring at sampling frequencies
below 20 Hz (p ≤ 0.006).
For Binary models of bradykinesia, performance ini-

tially decreased then increased with lowering sampling
rate. There was no significant effect of sampling rate on
performance for bradykinesia models (p ≥ 0.48). Even
sampling frequencies as low as 5 Hz resulted in no sig-
nificant drop compared to peak performance (Fig. 3).
Based on these results, the subsequent analysis of fea-
tures sets was implemented on data downsampled to 30
Hz for all models.

Feature analysis
Finally, we examined the trade-off between feature com-
putation time and the performance of PD symptom
models trained using those features. Feature categories
were time-domain (Time), frequency-domain (Fre-
quency), sample entropy (Entropy), cross-correlations
(Correlation), signal derivative features (Derivative). Fea-
tures were categorized this way to assess types of fea-
tures, rather than the specific individual features selected
here, and to group features requiring similar pre-
processing computations (e.g., applying a discrete Fou-
rier transform to compute frequency-domain features).
We wished to broadly assess the effect of increased com-
putational cost of feature sets – represented by average
computation time – on the performance of PD symptom
models, while also providing some insight into the rela-
tive value of different feature types for training these
models. For clarity, the results are presented only for
models based on data from the skin-adhesive sensors.
Among the features sets, Correlation features had the

lowest computation time, but also poor performance
across all model categories. Entropy features had by far
the largest computation time for any single feature set
(54.9 ms) and the lowest performance when used alone,
but led to potentially meaningful improvements in per-
formance when combined with other feature types
(Fig. 4).
To assess the extent to which feature computation

time could be reduced before significantly impacting

Table 4 Effect of sensor set on model performance

Sensor
Set

Tremor Bradykinesia

Binary Multiclass Binary Multiclass

Combo 0.78 (0.70–0.86) 0.76 (0.68–0.83) 0.67 (0.61–0.74) 0.65 (0.59–0.71)

Accel 0.77 (0.67–0.87) 0.74 (0.65–0.82) 0.63 (0.57–0.70) 0.63 (0.57–0.68)

Gyro 0.79 (0.74–0.85) 0.77 (0.72–0.82) 0.68 (0.61–0.75) 0.64 (0.59–0.70)

Watch 0.79 (0.69–0.89) 0.77 (0.68–0.86) 0.63 (0.56–0.69) 0.61 (0.56–0.66)

Average and 95% confidence intervals of model performance (AUROC) to classify PD symptoms using different sensor sets
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symptom detection, we performed statistical analyses on
the effect of feature sets on model performance. Before
these analyses, we removed any feature sets that showed
a drop in performance for increasing computation time,
since these would have no practical value when trying to
reduce the computational cost of the features used.
For all four symptom/classification models, one-way

rmANOVA identified a significant effect of feature set
on model performance (p < 0.001). Peak performance for

each model type was achieved with very similar feature
sets - each peak set included Entropy and Time features,
with Correlation and Frequency features often included
as well (Table 6). Performance varied widely across fea-
ture sets for all models, with AUROC changing by at
least 0.07 across feature sets for each model type. Most
of this difference can be accounted for by the earliest
added features. Near-peak performance (within 0.02
AUROC) could be obtained with sets of only one or two

Table 5 Effect of sampling rate on model performance

Sampling
Rate (Hz)

Tremor Bradykinesia

Binary Multiclass Binary Multiclass

62.5 0.77 (0.67, 0.87) 0.74 (0.65, 0.82) 0.67 (0.61, 0.74) 0.65 (0.59, 0.71)

50 0.77 (0.67, 0.87) 0.74 (0.66, 0.83) 0.68 (0.61, 0.74) 0.65 (0.59, 0.70)

40 0.77 (0.67, 0.87) 0.75 (0.66, 0.84) 0.68 (0.61, 0.74) 0.65 (0.59, 0.70)

30 0.76 (0.66, 0.86) 0.74 (0.66, 0.83) 0.68 (0.61, 0.74) 0.65 (0.59, 0.70)

20 0.75 (0.65, 0.85)* 0.73 (0.64, 0.81) 0.67 (0.61, 0.74) 0.65 (0.59, 0.70)

10 0.73 (0.64, 0.82)* 0.70 (0.62, 0.78)* 0.68 (0.61, 0.74) 0.64 (0.58, 0.70)

7.5 0.72 (0.63, 0.81)* 0.69 (0.61, 0.77)* 0.69 (0.62, 0.75) 0.65 (0.60, 0.70)

5 0.70 (0.62, 0.79)* 0.70 (0.62, 0.78)* 0.67 (0.60, 0.74) 0.65 (0.60, 0.71)

Average and 95% confidence intervals of model performance (AUROC) to classify PD symptoms using different sampling rates for the Accel (tremor) or Combo
(bradykinesia) sensor types. Asterisk (*) indicates significant difference from performance at the original sampling rate. Bolded results indicate the sampling rate
selected for subsequent analyses

Fig. 3 Effect of sampling rate. Model performance (AUROC) for (a) Binary and (b) Multiclass models of tremor and bradykinesia, using the
previously determined sensor set for each symptom. Shaded regions depict a 95% confidence interval on the average AUROC centered at the
original sampling rate. Decreasing sampling rate reduces ability to classify tremor beyond 20–30 Hz, with only slight impact on classifying
bradykinesia. A 30-Hz sampling rate is sufficient to classify both symptoms using the BioStampRC sensor (Sensor) or smart watch (Watch)
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feature types and without the addition of computation-
ally intense sample entropy features.
Using only features based on signal magnitude could be a

method to provide greater richness of features with reduced
computational cost. When features were computed from
signal magnitude only (for applicable feature categories),
the resulting models generally met or exceeded perform-
ance of full feature sets with similar computation times.
The peak performance of magnitude-based feature sets was
lower than the peak performance among full feature sets
for each model category (Fig. 5), with the differences in
peak performance more pronounced for Multiclass models.
However, none of these differences were statistically signifi-
cant (p ≥ 0.11) and represented at most a change of 0.02 in
the mean AUROC.

Discussion
Pairing novel wearable sensors with machine learning al-
gorithms is a promising approach to automated detection
of PD symptoms, including tremor and bradykinesia. As
monitoring strategies continue to develop, it is important
to understand the trade-offs between simplified data col-
lection strategies and model accuracy. Our goal was to
simplify the data measurement characteristics within our
dataset by assessing the effects of sensor type and the sam-
pling rate (which drain battery and data storage of the sen-
sors), as well as the number and type of features (which
are costly to compute and may lead to overfitting).
First, we found that the effect of sensor types depends

on the symptom that is being monitored. For detecting
tremor, models trained on data from an accelerometer

only – whether from a smart watch on the wrist or a
flexible sensor on the hand – performed comparably to
models trained using combined data from an accelerom-
eter and gyroscope. Conversely, symptoms of bradykine-
sia were better detected using both sensors (combined
accelerometer-gyroscope data) than accelerometer data
alone. A possible explanation is in the way symptoms of
tremor and bradykinesia are defined. PD tremors have
characteristic frequency and severity scores of tremor
are defined in the MDS-UPDRS based on certain ampli-
tudes. These fluctuations are captured by both gyroscope
and accelerometer sensors and seem to be detected simi-
larly when using either sensor type alone. Bradykinesia is
defined as slowness to voluntarily initiate movement,
with decreasing speed and amplitude over time [23, 24].
In addition, bradykinesia-focused items in the MDS-
UPDRS generally have more subjective descriptions of
different scores than tremor-focused items. Since the de-
scription and scoring of bradykinesia is dependent on
the intended movement, richer movement data may be
necessary to improve detection and scoring of bradyki-
nesia. Angular velocity signals from gyroscope may also
better capture changes in speed and amplitude charac-
teristic of bradykinesia. These results align with previous
studies finding high correlation between gyroscope fea-
tures and clinical scores of bradykinesia [25, 26].
Second, we found that a minimal sampling rate of 30

Hz was needed to classify the presence and severity of
tremor, whereas altering sampling rate between 5 and
60 Hz did not significantly impact ability to classify bra-
dykinesia. Bradykinesia models need to identify low-

Fig. 4 Feature set performance and computation time. Combinations of feature categories for the symptom models, ordered by total
computation time. Model performance (AUROC) is computed for each model type and feature category combination. Generally, there is a trade-
off between feature complexity and model performance, as more comprehensive feature sets improve AUROC but take longer to compute
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frequency and low-amplitude movements, while tremor
models must distinguish relatively high-frequency move-
ments from non-tremor movements, which mirrors our
findings. Typical human movements have peak frequen-
cies in the range of 0–5 Hz [27], and would be captured
reasonably well across the sampling rates tested here.
Previous studies have noted that characteristic PD
tremor frequency is 4–6 Hz [28, 29], but may have add-
itional frequency components in the range 1–30 Hz [29].
According to the Nyquist sampling theorem [30], the 30
Hz sampling rate determined here is only sufficient to
analyze signal frequencies up to half that rate, or 15Hz.
An ideal sampling rate captures the characteristic frequen-
cies of tremor as well as just enough additional informa-
tion to separate tremor from other movements with
similar peak frequencies. Higher frequency components
may not have been necessary to characterize the tremors
and other movements of participants in this study.
Third, we considered the application of real-time

symptom monitoring, where features are computed by
the wearable device system and computational cost must

considered. Real-time monitoring of symptoms could be
useful for providing feedback to patients (such as help-
ing them recognize activities that prompt symptoms) or
for prompting patient feedback to improve the model
(such as verifying that model predictions are correct or
incorrect) [31]. Appropriate choices of features and
models help to maintain accuracy while minimizing
power drain on the device and resulting instances of
missing data [15, 31, 32]. In the current study, we exam-
ined the effect of feature complexity (as measured by
computation time) on classification of symptoms. Com-
putation time varied among features, with entropy fea-
tures taking substantially longer to compute. We found
that models monitoring tremor symptoms showed sig-
nificantly decreased performance once entropy features
were removed, while significant performance drops were
not observed for bradykinesia models until reaching
lower computation times. For tremor detection, complex
features such as entropy can boost accuracy as long as
computational cost is not a limiting factor. In contrast,
bradykinesia was sufficiently estimated by simpler

Table 6 Computation time and model performance for select feature sets

TREMOR (Binary) BRADYKINESIA (Binary)

Features Computation Time (ms) AUROC p Features Computation Time (ms) AUROC p

C 4.41 0.68 < 0.001* C 4.41 0.61 0.001*

D 6.47 0.73 < 0.001* D 6.47 0.64 0.006*

T 8.15 0.73 0.001* CD 7.55 0.65 0.005*

DT 11.29 0.74 0.018† T 8.15 0.67 0.099

DF 18.42 0.75 0.022† DT 11.29 0.68 0.174

FT 20.09 0.75 0.004* ET 63.02 0.68 0.222

CDFT 24.31 0.76 0.040† DET 66.17 0.68 –

CE 59.29 0.77 0.126

EF 70.15 0.77 0.155

EFT 74.98 0.77 0.071

CEFT 76.05 0.77 –

TREMOR (Multiclass) BRADYKINESIA (Multiclass)

Features Computation Time (ms) AUROC p Features Computation Time (ms) AUROC p

C 4.41 0.67 0.001* C 4.41 0.59 < 0.001*

D 6.47 0.71 < 0.001* D 6.47 0.62 0.010*

DT 11.29 0.72 0.001* CD 7.55 0.62 0.001*

F 15.28 0.73 0.014† T 8.15 0.64 0.011*

CF 16.35 0.73 0.015† DT 11.29 0.65 0.152

DF 18.42 0.74 0.037† FTE 74.98 0.65 0.189

EF 70.16 0.75 0.234 DEFT 78.11 0.66 –

DEF 73.30 0.75 0.226

CEFT 76.05 0.75 –

Total computation time and average AUROC for each combination of feature categories (includes tri-axial and magnitude features). Only features combinations
showing improved performance with increasing computation time were included. T = Time, F = Frequency, C = Correlation, D = Derivative, E = Entropy. Asterisk (*)
indicates significant difference after Holm-Bonferroni correction (α = 0.05) from the best performing feature set, marked in italic. Dagger (†) indicates additional
significant differences when not controlling the family-wise error rate
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features capturing the amplitude and variability of move-
ments. The features considered here were certainly not
exhaustive – new, novel types of features may be crucial
to improve the observed AUROC values. Nor did we at-
tempt to select the individual features for each model
type that would maximize the AUROC. Future work
may consider pairing feature selection techniques with
an analysis of computational costs.
Across analyses we found comparable performance of

models using only accelerometer data, whether obtained
from the BioStampRC or the smart watch device.
Though these devices were placed in slightly different lo-
cations (dorsal hand vs. wrist) and worn in different
ways (adhered to the skin vs. wristband), these factors
did not impact our conclusions. The changes in model
performance we observed are therefore likely to be gen-
erally applicable to wearable sensors worn at the distal
upper extremity and not only specific to the exact de-
vices used in this study.
We chose to use AUROC as a performance metric be-

cause it captures model performance across all possible
decision thresholds. Though a balance between sensitiv-
ity and specificity is generally preferable, different
thresholds may be useful in certain clinical contexts (e.g.

favoring sensitivity over specificity for screening tests).
The actual impact of differences in AUROC will be
highly dependent on the clinical context. However, per-
formance of 0.7–0.8 is often considered “acceptable”
while performance greater than 0.8 is considered “excel-
lent” [33]. For our purposes here, we qualitatively con-
sider a change of 0.05 in the AUROC to be potentially
meaningful in a clinical context. By that criterion, most
of our models showed little to no meaningful impact of
simplifying the data collection parameters – except after
fairly substantial reductions in sampling rate and num-
ber of feature types. We refrain from making specific
recommendations about the minimum data collection
parameters for PD symptom detection, since different
modeling approaches and data sets are likely to yield
higher or lower performance metrics and different sensi-
tivities to these parameters. However, our general find-
ing of diminishing returns to expanded data collection
parameters when using wearable devices to monitor PD
symptoms suggests that the cost of using additional
hardware, higher sampling rates or numerous real-time
feature computations should be carefully balanced
against the potential impact on recording duration and
participant adherence.

Fig. 5 Effect of magnitude-only features. Relationship between feature computation time and model performance (AUROC) for (a) Binary and (b)
Multiclass models of tremor and bradykinesia. Shaded regions depict a 95% confidence interval of the mean AUROC. Features derived from the
signal magnitude alone can achieve similar performance to combined tri-axial and magnitude features at a fraction of the computation time
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Though previous studies have explored the feasibility of
wearable data for symptom monitoring, much less attention
has been given to identifying the relative contributions of
various settings and data to model performance. An excep-
tion is in examining the number and placement of devices
for detecting symptoms. Previous studies have demon-
strated that relative utility of data is highly dependent on
body location and the intended application [22, 34]. For in-
stance, sensors collecting data from a distal limb location
are most effective for identifying symptoms in that limb
[24], whereas more proximal sensor locations may be help-
ful for monitoring gait and posture [35]. This study focused
on motor symptoms of the upper limb using a flexible sen-
sor on the hand, but other sensor placements may be rele-
vant for monitoring global presentations of symptoms.
Incorporating additional types of sensors may improve
detection accuracy, such as utilizing EMG data in tremor
classification [36]. Note that the optimal data collection
strategy may vary for other symptoms of PD (e.g., freezing
of gait, postural instability, muscle rigidity, dystonia).
We believe that our strategy for simplifying data measure-

ment characteristics can be applied broadly for different ap-
plications and performance requirements. However, the
minimal characteristics may differ with the intended use of
the system technology. Applications demanding higher diag-
nostic accuracy could benefit from increased measurement
resolution. Furthermore, while we evaluated changes via
AUROC statistics, this methodology can also be imple-
mented for alternative metrics of model performance (e.g.
F1-score, positive predictive value, etc.). We encourage inves-
tigators to use metrics that are most appropriate for their
studies. Future work will determine whether the specific re-
sults presented here are replicated for other metrics.
The level at which computational burden becomes

prohibitive can vary depending on the symptom and
mode of operation. In one scenario, a clinician perform-
ing infrequent laboratory assessments has access to
offline computational processing and may not be con-
cerned about battery depletion or wired sensors during
controlled, short-duration tasks. In another scenario, a
patient wearing a continuous monitoring device in the
community would benefit from real-time tracking of
their symptoms, enabling them to have more data-
driven discussions with their physician regarding experi-
enced PD symptoms and their medication regimen. To
achieve the second case, careful consideration of both
the data measurement characteristics and the accuracy
of the results is necessary. Here we have presented an
initial analysis of how sensor type, sampling rate, and
feature complexity might be taken into account, depend-
ing on the monitoring target. Future studies using larger
amounts of data suitable for deep learning approaches
may demonstrate additional benefit to high-resolution
data or feasibility of lower-resolution approaches.

Limitations
A primary limitation of this study is the small sample
size. More data for training would likely improve the ac-
curacy of the machine learning models to classify the
presence and severity of tremor or bradykinesia. How-
ever, because we examined the relative contributions of
data measurement characteristics to symptom detection
accuracy for individuals with varying symptom severity,
we expect the general trends to hold for larger training
sets. However, future work may consider larger, separate
training sets to determine data collection parameters for
different levels of symptom severity. This would likely
improve the resolution and accuracy for estimating the
presence and severity of a targeted motor symptom.
Across these analyses it is important to note that the lack

of a statistically significant difference between two model
training datasets does not imply equivalence between the
two models. Generally, when we did not find performance
differences between a pair of models to be statistically sig-
nificant, the magnitude of those differences was also small
(< 0.02 AUROC). However, this does not mean that data
with those measurement characteristics are equivalent in all
possible modeling contexts. The basic trends in model per-
formance across changing data measurement characteris-
tics are still likely to apply more widely.
Another limitation is that training data for the machine

learning model was collected during a standardized motor
assessment, and patients were performing selected tasks
in a supervised, clinical environment. This is relevant
when considering a system for real-world monitoring of
PD. We have previously shown that models trained on ac-
tivities performed in a lab do not always generalize to ac-
tivities performed at home [37]. Though the study tasks
were designed to approximate naturalistic behavior, it is
still critical to validate the performance of the any symp-
tom detection model during day-to-day activities in the
community. Indeed, a recent review of wearable technol-
ogy to detect bradykinesia and rigidity found that very few
studies investigate symptom detection in unsupervised,
free-living settings [38]. Future work will examine in
greater detail methods to adapt models trained on in-
clinic data collected during specific tasks to symptom
monitoring during free-living behaviors.

Conclusions
To facilitate continuous, real-world monitoring of PD symp-
toms, wearable sensors should be unobtrusive and able to
record the movement data for days and up to weeks without
need for removal and replacement. Data measurement char-
acteristics can be selectively reduced without significantly
impacting model performance. This approach demonstrates
a crucial step to improve power consumption and memory
usage for new classes of remote health monitoring and auto-
mated diagnostic systems.
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