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A B S T R A C T   

Atrial fibrillation is a heart arrhythmia strongly associated with other heart-related complications that can in-
crease the risk of strokes and heart failure. Manual electrocardiogram (ECG) interpretation for its diagnosis is 
tedious, time-consuming, requires high expertise, and suffers from inter- and intra-observer variability. Deep 
learning techniques could be exploited in order for robust arrhythmia detection models to be designed. In this 
paper, we propose a novel hybrid neural model utilizing focal loss, an improved version of cross-entropy loss, to 
deal with training data imbalance. ECG features initially extracted via a Convolutional Neural Network (CNN) 
are input to a Long Short-Term Memory (LSTM) model for temporal dynamics memorization and thus, more 
accurate classification into the four ECG rhythm types, namely normal (N), atrial fibrillation (AFIB), atrial flutter 
(AFL) and AV junctional rhythm (J). The model was trained on the MIT-BIH Atrial Fibrillation Database and 
achieved a sensitivity of 97.87%, and specificity of 99.29% using a ten-fold cross-validation strategy. The pro-
posed model can aid clinicians to detect common atrial fibrillation in real-time on routine screening ECG.   

1. Introduction 

According to the World Health Organization (WHO), cardiovascular 
diseases are the number one worldwide cause of death, enumerating 
around 17.9 million victims on a yearly basis [1]. Atrial fibrillation 
(AFib) is the most common arrhythmia diagnosed in clinical practice 
[2]. It is characterized by a rapid, irregular and heterogeneous electrical 
activity of the heart that is caused by ineffective atrial contractions [3]. 
In the general population, AFib is closely related to increased mortality 
and can trigger ischaemic strokes, secondary thromboembolic events, 
sometimes even heart failure [4]. It mainly affects male patients and its 
prevalence increases analogously to age [5]. In fact, it is estimated that 
due to overaging the total number of AFib patients will double by the 
year 2050 [6]. 

Electrocardiography is the most frequently used tool for diagnosing 
AFib [7]. Electrocardiogram (ECG) is a digital signal recorded by placing 
electrodes on the surface of the human body in order that voltage 
changes caused by the electrical activity of the heart can be detected [8]. 
Traditional diagnosis usually employs ECG interpretation, which makes 

a demand of using very accurate devices and high expertise from the 
doctors’ perspective [9]. Conventionally, cardiologists visually inspect 
the 12-lead ECGs waveforms in a digital image format. Nonetheless, it is 
quite often that ECG signals lasting many hours even days need to be 
analysed. As it can be easily noted, this is a very time-consuming and 
wearing procedure that significantly limits the diagnosis’ impartiality. 
This limitation can be lifted by using computational techniques for 
automated arrhythmia detection and ECG classification. 

In the last decades there has been a significant growth of interest in 
the field of automated classification of various heart arrhythmias based 
on ECG signals proposing machine learning (ML) techniques including 
support vector machines (SVM) [10], k-nearest neighbors algorithm 
(KNN) [11], principal component analysis (PCA) [12] and adaptive 
backpropagation neural network among others [13]. These techniques 
though had a number of constraints including computational limitations 
in the learning process which would restrict their adaptation capacity in 
personalized health systems. 

Convolutional neural networks (CNN), which perform both feature 
extraction and classification, are widely applied in studies that 
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implement deep learning (DL) techniques [14]. Regarding the structure 
of a typical CNN, numerous convolutional and pooling layers are placed 
in succession forming a deep network that is capable of extracting the 
underlying features of a single input and reducing its dimensionality at 
the same time. These render them ideal for studies with huge compu-
tational demands such as ECG classification [15,16]. 

Besides CNN, Long Short-Term Memory (LSTM) networks [17] are 
another type of DL techniques frequently used for time series analysis 
[18], including speech recognition [19] and language processing [20]. 
LSTM networks are a subcategory of the recursive neural networks 
(RNN) and constitute an evolution of the classic RNN. The advantage of 
using LSTM networks against other types of neural networks (NN) is 
twofold – they can not only learn the temporal dynamics of the input 
data, but also can selectively remember or forget information checking 
the current memory state – and that made them popular for ECG signal 
classification [18,21]. 

The purpose of the present study is to propose a hybrid DL model 
architecture that combines CNN and LSTM in order to classify different 
types of cardiovascular arrhythmias. The main idea behind this 
approach is to use the CNN part as feature extractor that supplies the 
LSTM part with the most discriminative features of the input achieving 
in parallel dimensionality reduction. In addition, the proposed model 
utilizes the focal loss (FL) function to achieve both prediction error 
reduction and data imbalance handling. Training and evaluation of the 
model are performed on ECG signals originating from the well-known 
MIT-BIH Atrial Fibrillation Database [22,23] and besides normal 
beats, three types of arrhythmias are detected, namely atrial fibrillation 
(AFIB), atrial flutter (AFL) and junctional rhythm (J). 

The remainder of this paper is structured as follows: In Section 2, 
background knowledge for atrial fibrillation is presented and related 
state-of-the-art deep learning techniques for ECG classification are 
reviewed. In Section 3, the research methodology is described in detail, 
in Section 4 the performance evaluation procedure of the proposed 
model is presented and, in Section 5, its performance is discussed and 
numerically compared to relevant recent studies. Finally, in Section 6 
conclusions of the study are summarized. 

2. Literature review 

2.1. Atrial fibrillation 

Atrial fibrillation (AFib) is a cardiovascular disease in which the atria 
beat out of control and coordination with the ventricles [24]. It is the 
most common arrhythmia in clinical practice, which justifies the fact 
that many countries, especially these of the western world, allocate high 
budgets for handling it [25]. In fact, recent studies have predicted that 
AFib will affect 6-12 million of people in the USA by the year 2050 and 
around 18 million in Europe by the year 2060 [26–28]. 

AFib is closely associated with other heart complications and can 
significantly increase the risk of strokes, transient ischemic attack (TIA) 
and heart failure [29,30]. Risk factors that increase its prevalence 
include hypertension, coronary artery disease, cardiomyopathy, dia-
betes, obesity, hyperthyroidism, excessive alcohol consumption and the 
personal history of other cardiovascular diseases. Also, age, family 
medical history, reduced body mass and height can as well contribute to 
the development of AFib [31]. 

There are several types of AFib depending on the extent to which it 
affects each patient. More precisely, there is paroxysmal AFib, a tem-
poral episode of AFib that lasts less than a week and usually does not 
require treatment, persistent AFib that lasts longer than a week or less, if 
proper medication is taken, long-standing persistent AFib, where the 
heart beats abnormally for longer than a year, and, finally, permanent 
AFib [32]. 

2.2. Automated arrhythmia detection 

Cardiovascular arrhythmias detection based on ECG signals is 
apparently a critical issue. As of now, a considerable number of studies 
has been carried out regarding the automated classification of heart 
arrhythmias by using wavelets [33], filter banks [34], support vector 
machines (SVM) [35], and other ML techniques [36,37]. 

ML techniques facilitate scientists’ efforts by significantly reducing 
computational time needed to train a machine (e.g. personal computer) 
in order that it can learn data and make predictions on new ones by 
using three types of learning, namely supervised, unsupervised and 
reinforcement [38]. However, traditional ML techniques require manual 
feature extraction, which is a challenging task, especially for scientists 
with low expertise. On the other hand, models that implement DL 
methods are considered a more suitable approach for ECG classification, 
especially when large datasets are available. 

DL techniques can overcome the problem of feature extraction, as 
they do not make a demand on selecting specific features manually, but 
automatically extract the most significant features from their input [39]. 
A DL model, usually, consists of a body of processing layers that can 
interpret data features via multiple stages of subtraction [40]. Hence, 
during the last few years, many scientists have concentrated their efforts 
on developing robust and highly accurate neural network models for the 
classification of arrhythmias, such as CNN or LSTM. 

2.3. Convolutional neural networks 

Convolutional neural networks (CNN) are deep learning algorithms 
that are highly inspired by the way that biological neural systems (e.g. 
human brain) work. CNN are capable of learning step by step the spatial 
hierarchy of the data by memorizing high- and low-level patterns. 

Typically, a CNN is a mathematical structure that consists of three 
types of layers that are lined up: convolutional, pooling and fully- 
connected layers. Convolutional and pooling layers perform feature 
extraction and dimensionality reduction, respectively, while fully- 
connected layers map the extracted features to predict a final output 
(e.g. the class that the input belongs to). 

Regarding the CNN architecture, each layer feeds its output into the 
next one. Layer outputs become more complex as the information passes 
deeper into the network. This process is called training and its purpose is 
to minimize the difference between network predictions and ground 
truth labels via an optimization algorithm that combines back propa-
gation and gradient descent among others. 

During the last few years, CNN are widely implemented to deal with 
ECG classification and arrhythmia detection. More precisely, Li et al. 
[41] designed a six-layered 1D CNN to classify different types of cardiac 
arrhythmias consisting of an input layer, two convolutional layers, two 
down-sampling layers, one fully-connected layer and an output layer, 
using the MIT-BIH Arrhythmia Database [42,43]. Acharya et al. [45] 
made use of the same database in order to achieve beat classification by 
a CNN containing three convolutional, three max-pooling and three 
fully-connected layers. Ochiai et al. [44] developed a seven-layered 1D 
CNN model to classify the same ECG signals using three sets of a con-
volutional and a pooling layer, one flatten layer and two fully-connected 
layers. Furthermore, Savalia and Emamian (2018) trained a six-layered 
CNN using the MIT-BIH Normal Sinus Rhythm Database [23] and the 
MIT-BIH Arrhythmia Database in order to separate normal and 
abnormal heartbeats, while Pourbabaee et al. [46] suggested a 
five-layered CNN to detect paroxysmal AFib using the PAF Prediction 
Challenge Database [47]. 

On the other hand, several authors made an attempt to classify ECG 
signals by transforming ECG beats into 2D images. Thus, Jun et al. [48] 
designed an eleven-layered 2D CNN for ECG image classification by 
using three sets of two convolutional and one pooling layers, one dense 
and one output layer, while Xu et al. [49] implemented Modified Fre-
quency Slice Wavelet Transform (MFSWT) to construct images out of 
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1-sec ECGs from the MIT-BIH Atrial Fibrillation Database [22] and fed 
them into a twelve-layered 2D CNN. 

2.4. Long short-term memory networks 

Long short-term memory networks (LSTM) are a subcategory of 
recursive neural networks (RNN) that are capable of learning the long- 
term dependencies between data, which makes them perfect for cases 
where information must be maintained for a long time in order for ac-
curate predictions to be made⋅ a problem that classic RNN cannot 
overcome easily. 

LSTM can also solve the vanishing gradient problem [50], that is to 
say the saturation of past layer neurons as the information passes deeper 
into the network. This means that neurons that hold valuable informa-
tion, but lie in remote time points, stop contributing to the network 
resulting in inefficient learning and, finally, performance saturation. 

Regarding the LSTM structure, each network consists of memory 
blocks, also called cells. Each cell transfer two states to the next one, cell 
and hidden state. Notwithstanding that the cell state enables unalterable 
forward data-flow, data can be modified by several types of trans-
formation. More precisely, data can be added or removed from the cell 
state via sigmoid gates. A gate acts as a layer of neurons that contain 
different weights. In this way, LSTM can solve the problem of long-term 
dependencies, as they implement gates to control the process of 
memorization. 

Conventionally, ECG is a time series strongly characterized by long- 
term dependencies between its values at different time points. Many 
scientists have tried to make the most of it by designing LSTM models in 
order to classify cardiovascular arrhythmias based on these de-
pendencies. More in detail, Gao et al. [51] implemented a network 
consisting of a LSTM layer and two fully-connected layers to classify 
beats from the MIT-BIH Arrhythmia Database into eight categories. 
Yildirim [52] fed the same database into two bidirectional LSTM and 
two fully-connected layers to detect five types of ECG beats, while Kim 
and Pyun [53] tested the performance of six different LSTM network 
architectures in order to achieve ECG classification for the MIT-BIH 
Normal Sinus Rhythm and the MIT-BIH Arrhythmia Databases. 

2.5. Data augmentation 

In general, data imbalance constitutes a major problem during the 
training process as it can cause overfitting. This means that the model 
fits perfectly to the training data, but still cannot generalize to new data. 
During the last few years, there has been a great deal of interest in 
solving this problem, mainly by using several oversampling techniques. 

The most known oversampling technique is random oversampling 
and undersampling (ROU). Nonetheless, the main disadvantage with 
this approach is that it can by itself lead to overfitting for high imbal-
anced datasets. Synthetic Minority Over-sampling Technique (SMOTe) 
[54] is another widely used oversampling technique. It is based on the 
calculation of the nearest neighbors by implementing the Euclidean 
distance between data and is capable of creating synthetic data by 
multiplying nearest neighbors by a vector containing values between 
0 and 1. Last but not least, recently proposed oversampling techniques 
include generative oversampling method (GenOMe) [55], that creates 
new data based on known distributions (beta, gamma, gaussian), Syn-
thetic Minority Oversampling Technique with random undersampling 
(SMOTe + RU) and distribution-based balancing (DBB) [56]. 

3. Methodology 

3.1. MIT-BIH Atrial Fibrillation Database 

In the present study, ECG signals from the MIT-BIH Atrial Fibrillation 
have been used. This database includes 23 long-term 2-lead ECG re-
cordings of subjects with AFib (mostly paroxysmal) with a sampling 

frequency of 250 Hz. The data collection was carried out at the Boston’s 
Beth Israel Hospital. Expert cardiologists prepared separate rhythm 
annotation files in which they marked 4 types of ECG rhythms, namely 
normal (N), atrial fibrillation (AFIB), atrial flutter (AFL) and AV junc-
tional rhythm (J) as shown in Table 1. 

3.2. Data preprocessing 

The first step of data preprocessing usually involve a noise removal 
technique. In general, there are two major types of noise that can corrupt 
an ECG signal, high-frequency, such as powerline interference and 
Guassian white noise, and low-frequency noise, including baseline 
wander noise among others. 

During the last decades, several noise removal techniques have been 
proposed. More specifically, FIR and IIR filters are widely used for signal 
denoising, mainly because of their capability of cutting off specific fre-
quency bands where noise is present [57,58]. They are uniquely char-
acterized by their frequency response H(ω) in the frequency domain, 
that is to say the discrete Fourier transform (DFT) of their time response 
h(t) in the time domain [59]. 

Butterworth filters are one of the most common types of digital filters 
[60]. They were firstly proposed in 1930 and are widely known for their 
flat frequency response. The magnitude-squared function of a normal-
ized lowpass Butterworth filter with a cutoff frequency ωc  = 1 rad/sec is 
defined as follows: 

|H(ω)|2 = 1
1 + ω2n (3.2.1)  

where n is the filter’s order. Given the magnitude-squared function, the 
transfer function of a Butterworth filter can be found as follows: 

H(s) H(–s) =
1

1 + (–s2)
n (3.2.2) 

Moreover, wavelet transform (WT) has multiple applications in non- 
static signal processing [61,62] and that made it a very popular tool for 
ECG processing [63]. WT comprises a generalization of the short-time 
Fourier transform (STFT). It could be described as the process of 
finding the projection of a signal on a set of base functions, known as 
wavelets. However, in contrast to STFT which analyzes the signal using 
square windows in the time-frequency domain, WT provides high fre-
quency resolution for the low frequencies and high temporal resolution 
for the high frequencies of the signal. 

Discrete wavelet transform (DWT) of a signal x(n) is defined based on 
the approximation coefficients, Wφ(j0,k), and the detail coefficients, 
Wψ(j,k), as follows: 

Wφ(j0, k) =
1̅̅
̅̅̅

M
√

∑

n
x(n) φj0 ,k(n) (3.2.3)  

Wψ(j, k) =
1̅̅
̅̅̅

M
√

∑

n
x(n) ψj,k(n)for j ≥ j0 (3.2.4) 

while the inverse discrete wavelet transform (IDWT) is given by: 

x(n) =
1̅̅
̅̅̅

M
√

∑

k
Wφ(j0, k) φj0 ,k(n) +

1̅̅
̅̅̅

M
√

∑J

j=j0

∑

k
Wψ (j, k) ψj,k(n) (3.2.5) 

Table 1 
The MIT-BIH Atrial Fibrillation Database.  

Label class number of beats 

0 N 619345 
1 AFIB 345241 
2 AFL 5241 
3 J 182 
Total  970009  
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where n = 0, 1, 2, …, M–1, j = 0, 1, 2, …, J–1, k = 0, 1, 2, …, 2j–1 and M 
the number of samples that are about to be transformed. This number is 
defined as M = 2j, where J declares the number of the transform levels. 
The base functions φj,k(n) and ψj,k(n) are given by:  

φj,k(n) = 2j/2 φ(2jn–k)                                                                 (3.2.6)  

ψj,k(n) = 2j/2 ψ(2jn–k)                                                                 (3.2.7) 

where φ(n) is the scaling function and ψ(n) the wavelet function. In 
essence, DWT is a hierarchical algorithm that uses highpass and lowpass 
filters and signal downsampling at the same time, in order to decompose 
the signal in different scales. In this way, the signal is divided into two 
parts at each transform level, one containing the lower half of the fre-
quency band and the other the upper half. The output of the lowpass 
filter corresponds to the approximation coefficients, while the output of 
the highpass filter represents the detail coefficients. Fig. 1 presents the 
ECG preprocessing method that has been applied on the ECG signals so 
that clean beat signals are extracted and fed to the deep learning model. 

In this study, a 7th order Butterworth highpass filter with a cutoff 
frequency of 0.5 Hz was implemented to remove baseline wander noise 
and a 6th order Butteworth lowpass filter was applied to remove pow-
erline interference and other high frequency components of the noise. 
Regarding Gaussian white noise, a 3-level DWT using db4 wavelet of the 
Daubechies family and soft thresholding was implemented. Fig. 2a 
presents the result of applying the denoising method on the ECG data. 

To detect the R peaks of the ECG signal, a 4-level DWT was applied. 
More specifically, the sum of level 3 and 4 detail coefficients can effi-
ciently locate the area where each QRS complex is present. Therefore, by 
applying a peak detection algorithm on the sum of D3 and D4 co-
efficients, the R peaks can be accurately detected, as shown in Fig. 2b. 

3.3. Convolutional neural networks 

In general, neural networks are consisted of layers of neurons that 
use weights. Each neuron receives a body of inputs and calculates a 
scalar product followed by a non-linear operation. This process is 
repeated for every layer up to the output layer, where the network 
makes prediction for the input data. 

CNN are a special type of deep learning algorithms that are widely 
used in research studies. They are named after the convolution, which is 
the mathematical operation they apply on their input data. The convo-
lution between two time-series is a linear operation that is given by: 

y(t) = x(t)∗w(t) =
∫∞

− ∞

x(τ)w(t − τ)dτ (3.3.1) 

In the CNN terminology, most of the times, the first argument (x) 
represents the input, while the second one (w) the kernel or filter. The 
result (y) is commonly known as feature map. The convolutional layer 
constitutes the main structural element of the CNN, as it is the one that 
carries out the most complex network operations. It includes a set of 
filters and, as already noted, is responsible for producing feature maps 
by calculating the convolution of its input with these filters. 

A filter is usually a two-dimensional grid of discrete numbers that is 
capable of recognizing specific patterns in the input data. In essence, the 
convolutional layer performs matrix multiplications between the layer’s 
input and the selected filters by shifting the filters on the input data 
matrix. In particular, firstly the filter is appropriately adjusted to the 
upper left edge of the input matrix, so that the element by element 
multiplication between the two matrices is feasible. The result of this 
operation corresponds to the first element of a new matrix that repre-
sents the layer’s output, and its value defines whether the desired 
pattern is present or not. 

The above procedure is repeated for all the input matrix elements 
with right shift of the filter till the input’s feature map is extracted. 
Besides convolutional layers, the CNN architecture also includes pooling 
and fully-connected layers. The pooling layers are usually placed right 
after each convolutional layer in order to simplify the collected infor-
mation. They are responsible for reducing the feature map size by 
creating a condensed version of the initial map that holds only the most 
significant information. On the other hand, the fully-connected layers 
are conventionally placed at the end of the network and they are in 
charge of categorizing the input data based on the features that are 
extracted from the sequence of convolutional and pooling layers. 

Finally, it is worth mentioning that, as often as not, also other types 
of layers are implemented, such as dropout and normalization layers. 
The dropout layers disable some of the network’s neuron in order to 
minimize the classification error and the network overfitting, while the 
normalization layers use batches to normalize the input data to accel-
erate the training process. 

3.4. Long short-term memory networks 

Recursive neural networks (RNN) are suitably designed networks 
that analyse flows of data by deploying hidden units for memorizing 
information regarding previous inputs. However, their main disadvan-
tage is their failure to preserve information for long time periods. 

Long short-term memory networks (LSTM) are the most common 
RNN variation and are capable of recognizing and retaining the long- 
term dependencies between the data of an input time-series for long 
time periods as well as the non-linear dynamics of the data. A LSTM 
network is composed of cells or blocks that are placed in order. 

Each cell transfers two states to the next cell, the cell state and the 
hidden state, and includes three kinds of gates, the forget, the input and 
the output gate, respectively. By using these gates, the network can 
handle the process of adding or removing information from its cells. The 
following equations describe the inner functioning of a LSTM cell: 

ft = σ
(
Wf [ht− 1, xt] + bf

)
(3.4.1)  

it = σ(Wi[ht− 1, xt] + bi ) (3.4.2)  

C̃t = tanh(Wc[ht− 1, xt] + bc ) (3.4.3)  

Ct = ftCt− 1 + itC̃t (3.4.4)  

ot = σ(Wo[ht− 1, xt] + bo ) (3.4.5)  
Fig. 1. Block diagram of the data preprocessing technique: at first ECG signal 
are being denoised by using digital filters and DWT, next a R peak detection 
technique that implements DWT is applied and, finally, ECG beats are extracted 
using 250 ms before and 500 ms after each R peak. 
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ht = ottanh(Ct) (3.4.6) 

More specifically, the forget gate is in charge of removing redundant 
information from the cell state. It receives two inputs, the previous cell’s 
hidden state (ht− 1) and the current cell’s input (xt), then multiplies their 
values with a weight matrix (Wf ) and adds a bias factor (bf ) to this result, 
as given by (3.4.1). Next, a sigmoid function, that produces a vector of 
values between 0 and 1, is applied to the output (ft) in order to assign 
these values to the cell state. 

In essence, this function decides which values of the cell state are 
about to be retained and which to be forgotten. In this way, if 0 is 
assigned to the cell state, the gate asks the network to completely forget 
the cell state. Equally, 1 means that the gate makes a request of 
completely memorizing the cell state. This procedure is repeated for the 
entire output, ft, which is then multiplied to the cell state. 

The input gate is responsible for adding new information to the cell 
state. It receives the same two arguments, ht− 1 and xt. The process of 
adding new information to the cell state is conducted in two stages. 

At the first stage, the two arguments are multiplied with a new 
weight matrix, Wi, and a new bias factor, bi, is added to this result. 
Subsequently, a new sigmoid function is applied in order that the input 
gate’s output, it, is calculated, (3.4.2), and a decision is made regarding 
the values that should be added to cell state or not. 

At the second stage, the arguments are multiplied with another 
weight matrix, Wc, and a new bias factor, bc, is added to this result. By 
applying a tanh function, which gives values between -1 and 1, to the 
result of the above operations, a new vector, C̃t , is formed, as given by 
(3.4.3). C̃t includes all the new candidate values that could be added to 
the cell state. 

Next, the result of the multiplication between these two vectors, it 
and C̃t, is added to the vector that resulted from the multiplication be-
tween the forget gate’s output and the cell state, as defined by (3.4.4). In 
this way, the procedure of adding new information to the cell state is 
concluded and the cell state is updated. 

The output gate is in charge of selecting the information that will be 
passed as the cell’s output. Much as the addition of new information to 
the cell state, this process can also be divided into two stages. 

At the first stage, the two input arguments, ht− 1 and xt , are multiplied 
with a new weight matrix, Wo, and a new bias factor, bo, is added, as 
given by (3.4.5). Hereupon, this result is multiplied with a new sigmoid 
function and the output gate’s output, ot , is calculated. This vector de-
fines which values will be passed as the output to the next cell. 

At the second stage, a tanh function is applied to the cell state. 
Finally, these two vectors are multiplied in order that the cell’s output is 
calculated by (3.4.6). 

3.5. Loss function 

Loss function is one of the most important components of a neural 
network. It is used to measure the error between the model’s predictions 
and the desired outputs. The main objective of implementing a loss 
function is to try minimizing this error, so that the model can accurately 
predict new input data. The most common loss functions are mean 
squared error (MSE), that is regularly used for regression models, and 
cross-entropy (CE) loss, which is applied to classification tasks. 

In the present study, due to the high imbalance between the data, the 
focal loss function was implemented [64]. Focal loss (FL) is an improved 
version of the CE loss given by the following equation: 

FL = –
∑M

i=1
yi(1 − ŷi)

γ log (ŷi), γ ≥ 0 (3.5.1)  

where γ is the focusing parameter and (1 − ŷi)
γ the modulating factor. 

The advantage of using FL is twofold: it can accurately measure the 
classification error which is necessary when training deep learning 
models, and efficiently deal with data imbalance. This is because FL 
reduces the weights that correspond to the bigger classes, which are 
easily detected, so that their total contribution to the loss value is small. 
In this way, the model focuses on the smaller classes that traditionally 
are hard classified. 

3.6. The proposed model 

In the present study, a hybrid CNN-LSTM network that uses FL 
function to deal with data imbalance is proposed. The network receives 
ECG beats as inputs and classifies them into four distinct classes, namely 
N, AFIB, AFL and J. 

More specifically, each ECG signal is divided into separate beats 
using the following procedure: firstly, all R peaks are detected and, then, 
each beat is defined as the 250 ms before the R peak and the 500 ms after 
the R peak. 

Regarding the model’s architecture, an input layer, thirteen hidden 
layers and one output layer, that predicts classes, are placed in succes-
sion, as shown in Fig. 3. In this way, the input layer receives one- 
dimensional ECG signals with a length of 187 samples. Firstly, the 
signal is passed through the CNN part of the network that is composed of 
triplets of layers. Each triplet includes one convolutional, one batch 
normalization and one max-pooling layer. 

Three triplets with the above architecture are placed in order so that 
feature extraction is made possible. At the same time, dimensionality 
reduction takes place as the input passes deeper through the network. 
Next, the result is fed into the LSTM part of the network, that is in charge 
of recognizing and memorizing the long-term dependencies between the 
data. 

Fig. 2. ECG denoising (a) and R peak detection (b) processes.  
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The LSTM part is composed of one LSTM layer, one flatten layer that 
creates one-dimensional output from multidimensional input, one fully- 
connected layer, one dropout layer, and, finally, one output layer that 
predicts one of the four classes for each input ECG beat. 

The non-linear function ReLU is implemented as the activation 
function used in the convolutional and the fully-connected layers. 
Regarding the output layer, softmax activation function is applied. 
Softmax is a generalization of the logistic function that is widely used in 
the output layer of multiclass classification networks⋅ for binary classi-
fication problems sigmoid function is implemented. The ReLU and 
softmax activation functions are given by the following equations: 

R(x) =

{
0, x < 0
x, x ≥ 0 (3.6.1)  

σ(z)i =
ezi

∑K

j=1
ezi

(3.6.2)  

where z is a vector containing K real numbers. The model was evaluated 
using 10-fold cross validation. The data were fed into the network using 
a batch size of 128, while the learning rate was set in 0.001. Fig. 4 
presents the proposed method regarding the model’s training and 
evaluation phase using 10-fold cross validation. 

4. Results and Discussion 

The design and implementation of the deep learning model for the 
automated detection of AFib were held in a Python 3.6 environment 
using the deep learning tool Keras. Tensorflow 2.0 was used as the 
backend of the Keras library. All experiments were performed on a 
desktop computer featuring an Intel Core i5-9600 K 3.70 GHz CPU, a 16 
GB RAM memory and a 8GB NVIDIA GeForce RTX 2070 GPU. 

Regarding the evaluation of the model, stratified 10-fold cross vali-
dation was employed. This means that the dataset was split into ten 
groups ensuring that each group has the same proportion of observations 
with a given categorical value. For each of the ten folds, the model was 
trained using the nine folds as training data and the resulting model was 
validated on the remaining part of the data (the 10th fold). The training 
process was concluded in 100 epochs and the best weights were restored 
for each training phase. The average epoch duration was 42 s while the 
model’s performance evaluation on unseen data (10th fold) lasted 2 s. 
Fig. 5 presents the curves of the overall loss and accuracy during the 
training of the model using all data. As it can be easily noted, the 
network converges for both values after 100 epochs. 

Furthermore, the model’s confusion matrix was calculated. A 
confusion matrix, also known as an error matrix, is a C array with cij 
elements, where cij is the number of samples that belong to the i class 
and have been classified to the j class. The main diagonal of the matrix 

represents the true positive predictions of the model. The overall 
confusion matrix for the 10-fold cross validation is presented in Fig. 6. 

The confusion matrix establishes that most of the data are correctly 
classified, except for the J class, which includes an extremely small 
percentage of the overall data, though. Moreover, the network has a 
slight difficulty discriminating some of the data belonging to the N and 
the AFIB class. 

Nonetheless, the confusion matrix is not capable of quantifying the 
model’s performance, thus the calculation of some well-known evalua-
tion metrics, as follows, is required: 

precision =
TP

TP + FP
(4.1)  

accuracy = recall = sensitivity =
TP

TP + FN
(4.2)  

Fig. 3. The architecture of the proposed model: the input signal is transformed by using combinations of convolutional and max-pooling layers to extract its main 
features, then the output is passed through a LSTM layer that memorizes the long-term dependencies between the extracted data and, finally, the output layer makes 
predictions for the class to which its input belongs to. 

Fig. 4. Block diagram of the proposed method including pseudocode: at first FL 
function is defined and data are shuffled, then stratified 10-fold CV is being set 
and the training process is repeated for all groups of folds. In each loop the 
model is trained for the first 9 folds and then tested on the 10th fold. Next, the 
confusion matrix is calculated and the values of the sensitivity and specificity 
are extracted. As soon as training is finished for all folds, average sensitivity and 
specificity are calculated. 
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specificity =
TN

TN + FP
(4.3)  

F1 − score = 2 x
recall x precision

recall + precision
(4.4) 

In this way, given the above equations, the evaluation metrics for 
each one of the four classes can be calculated, as given by Table 2. 

The selection of the focusing parameter γ is a really critical issue for 
the calculation of the FL. Table 3 presents the overall sensitivity and 
specificity of the proposed model for different values of the γ parameter. 
FL with γ = 0 corresponds to the CE loss. As it can be noted, the model 
reaches its maximum sensitivity and specificity values for γ = 2 and 
except for γ = 3 all the other γ values give equal or better results than the 
CE loss regarding the network’s performance. 

Finally, a comparison between the evaluation metrics of the pro-
posed model and recent studies for the automated detection of AFib 
using the MIT-BIH Atrial Fibrillation Database is presented in Table 4. 
The proposed CNN-LSTM model with FL achieves higher specificity 
(99.29%) than every other previous study of the last five years for the 

same dataset, while the sensitivity value that corresponds to the overall 
accuracy of the network is higher than most of the relevant studies 
(97.87%), but lower than a few studies of the last two years. 

Nonetheless, the performance of a deep learning model depends both 
on its capability of predicting correctly the class in which the data 
belong to (sensitivity) and its capability of rejecting wrong classes 
(specificity). This practically means that some models can accurately 
predict the correct class for the majority of the data (TP, FP), but fail to 
reject the wrong classes for some of the data (TN, FP). For this reason, 
the two metrics, sensitivity and specificity, should be simultaneously 
high enough in order that the model performs well for unseen data. 

The hybrid CNN-LSTM model has been selected after a series of ex-
periments regarding the number or the type of layers that have been 
implemented. More specifically, it has been found that by omitting some 
of the network’s layers, the training time could be reduced as the total 
network calculations were significantly fewer. Nonetheless, it was noted 
that by dropping layers, the average sensitivity and specificity has been 
decreased, namely by using only the CNN part of the network sensitivity 
and specificity values were 97.48% and 99.16%, and by using only the 
LSTM part of the network the above values were 96.30% and 98.77%, 
respectively. This means that the hybrid network outcompetes both 
versions as it combines their capabilities to reach its full potential, 
despite the fact that the training time is slightly reduced in both cases 

Fig. 5. Training of the CNN-LSTM model with FL: loss (a) and accuracy (b) curves.  

Fig. 6. The overall confusion matrix for the CNN-LSTM model with FL.  

Table 2 
The evaluation metrics for the CNN-LSTM model with FL.  

classes precision recall specificity F1-score number of beats 

N 98.36% 98.48% 97.09% 98.42% 619345 
AFIB 97.11% 96.98% 98.4% 97.05% 345241 
AFL 91.14% 86.76% 99.95% 88.9% 5241 
J 55.36% 34.07% 100% 42.18% 182  

Table 3 
Overall sensitivity and specificity of the proposed model for different γ 
parameters.  

γ parameter 0 0.5 1 2 3 
sensitivity 97.63% 97.77% 97.22% 97.87% 97.63% 
specificity 99.21% 99.26% 99.07% 99.29% 99.21%  

Table 4 
Comparison between the proposed model and relevant studies.  

study method sensitivity specificity 

Islam et al. [65] Affine normalization of RR 
intervals 

96.39% 96.38% 

Kennedy et al. [66] RF 
KNN 

92.8% 
68% 

98.3% 
95.1% 

Andersen et al. 
[67] 

SVM with Inter Beat Intervals 96.81% 96.20% 

Cui et al. [68] RR intervals dissimilarity 97.04% 97.96% 
Kumar et al. [69] WT with RF 95.8% 97.6% 
Xu et al. [49] MFSWT and CNN 74.96% 86.41% 
Faust et al. [70] LSTM 98.32% 98.67% 
Andersen et al. 

[71] 
CNN and RNN 98.96% 86.04% 

Czabanski et al. 
[72] 

LSVM 98.94% 98.39% 

This work CNN-LSTM with FL 97.87% 99.29%  
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(34 s and 33 s respectively). Conversely, by using more CNN layers the 
overall sensitivity and specificity remained stable and the training time 
increased to about 1 min per epoch. 

In general, the achievements of the present study are the following: 
the hybrid CNN-LSTM approach provides the best combination of per-
formance (sensitivity, specificity) in comparison with all previous rele-
vant studies, the proposed model performs well for highly imbalanced 
datasets, focal loss function delivers better results than the classic cross- 
entropy function for ECG classification and the proposed method could 
be used for real-time arrhythmia detection as the prediction phase lasts 
only a few seconds. 

On the other hand, the limitations of the present study could be 
summarized as follows: the proposed network was tested only on four 
beat types, classes AFL and J represent only an extremely small per-
centage of the total dataset and the model’s training by using 10-fold 
cross validation is very time consuming and makes a demand for use 
of high-tech computers. 

Although, the present study was concentrated to the detection of 
cardiovascular arrhythmias in ECG signals using only data from the MIT- 
BIH Atrial Fibrillation Database, in the future we intent to test the per-
formance of the proposed method on new data from other databases as 
well. 

5. Conclusions 

The capability of CNN to extract the most significant features from a 
body of data and reduce their dimensionality at the same time can be 
harmoniously combined with the capability of the LSTM networks to 
recognize and memorize the long-term dependencies between the 
extracted data to design robust models for the automated detection of 
arrhythmias in a time-series ECG. In this study, a hybrid CNN-LSTM 
model that implements FL to deal with data imbalance was proposed 
in order to detect arrhythmias in ECG signals deriving from AFib 
patients. 

To the best of our knowledge, this is the first study that combines the 
methodology of the CNN and LSTM network with FL for the automated 
detection of arrhythmias in ECG signals. The proposed model receives 
ECG beats as input and predicts accurately (sensitivity 97.87%, speci-
ficity 99.29%) the class to which each beat belongs to. 
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