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Continuous monitoring of blood pressure, an essential measure
of health status, typically requires complex, costly, and invasive
techniques that can expose patients to risks of complications.
Continuous, cuffless, and noninvasive blood pressure monitor-
ing methods that correlate measured pulse wave velocity (PWV)
to the blood pressure via the Moens−Korteweg (MK) and
Hughes Equations, offer promising alternatives. The MK Equa-
tion, however, involves two assumptions that do not hold for
human arteries, and the Hughes Equation is empirical, without
any theoretical basis. The results presented here establish a re-
lation between the blood pressure P and PWV that does not rely
on the Hughes Equation nor on the assumptions used in the MK
Equation. This relation degenerates to the MK Equation under
extremely low blood pressures, and it accurately captures the
results of in vitro experiments using artificial blood vessels at
comparatively high pressures. For human arteries, which
are well characterized by the Fung hyperelastic model, a simple
formula between P and PWV is established within the range
of human blood pressures. This formula is validated by litera-
ture data as well as by experiments on human subjects, with
applicability in the determination of blood pressure from
PWV in continuous, cuffless, and noninvasive blood pressure
monitoring systems.
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Blood pressure is a critical and highly elusive vital sign that
varies depending on emotional state, physical activity, and

health status. Low and high blood pressures correspond to two
disease states called hypotension and hypertension (1–3), re-
spectively. Roughly 30% of the population has hypertension-
related health issues (4). The traditional method to measure
blood pressure relies on an inflating cuff (5) that imparts an
external pressure to the arm to stop the blood flow. Releasing
this external pressure allows determination of the systolic and
diastolic blood pressure, as pressures that correspond to stages
of initiation and unimpeded flow of blood, respectively. Am-
bulatory blood pressure monitoring (6) based on this scheme
requires an inflating cuff and oscillometric measurement (7, 8).
The possibility for tissue damage due to the repeated blocking
of blood flow in such approaches limits the interval of mea-
surement to between 15 min and 30 min (9, 10). This sampling

frequency fails to offer the time resolution necessary to detect
fluctuations in blood pressure caused by, for example, exercise or
mood swings. Continuous blood pressure monitoring is also es-
sential for the care of critically ill patients and is typically achieved
using invasive techniques based on intraarterial pressure mea-
surements (11). Although considered the gold standard for beat-
to-beat blood pressure monitoring, such methods expose patients to
risks of complications and require intensive care monitoring (12).
Continuous, cuff less, and noninvasive blood pressure moni-

toring by measuring the pulse wave velocity (PWV) is generally
considered to be a promising technique for continuous noninvasive
measurements (13–16). PWV is defined as the velocity of the
propagation for the pulse wave in the artery. The Moens−Korteweg
(MK) (17) + Hughes (18) Equations are generally used to relate
PWV to the blood pressure P,
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MKEquation : PWV=

ffiffiffiffiffiffiffiffiffiffiffiffi
Eh0
2ρR0

,

s
[1a]

Hughes Equation : E=E0 expðζPÞ, [1b]

where E, h0, and R0 are the elastic (tangent) modulus at blood
pressure P and thickness and radius of the artery, respectively, ρ
is the blood density, E0 is the elastic modulus at zero blood pressure,
and ζ is a material coefficient of the artery. As the blood pressure P
increases, the artery stiffens (i.e., increase of the tangent modulus E
based on Eq. 1b), leading to an increase in PWV according to Eq.
1a. The MK Equation [1a] involves two assumptions: (i) The artery
wall is thin such that it can be modeled as a thin shell, and (ii) the
thickness and radius of the artery remain fixed as the blood pressure
changes. For human arteries, however, these two assumptions may
not hold, since the thickness-to-radius ratio h0=R0 = 0.08 to ∼0.22
(19) is beyond the limit h0=R0 < 0.05 (20) for a thin shell, and the
change of the radius of a human artery can reach ∼30% due to
blood pressure (19, 21). In addition, the Hughes Equation [1b] is
completely empirical, without any theoretical foundation.
This paper aims to establish a relation between the PWV and blood

pressure without the two assumptions involved in the MK Equation
[1a], nor the empirical Hughes Equation [1b], which is replaced by the
linear or nonlinear constitutive models for the artery. The results
are validated by in vitro experiments using thin walled tubes of poly-
dimethylsiloxane (PDMS), as a linear elastic material, for an artificial
blood vessel. For human artery, which is well represented by the Fung
hyperelastic model (21), the newly established relation between the
PWV and blood pressure is much more accurate than the MK +
Hughes Equations, leading to an improved understanding of the
connections between blood pressure and PWV, with relevance in
continuous, cuffless, and noninvasive blood pressure monitoring.

Results
The schematic diagrams in Fig. 1 show the pulse wave propa-
gation in a human artery. The disturbances caused by beating of
the heart propagate as waves along the artery at a finite velocity.
For a long and straight tube (artery) containing incompressible
and nonviscous blood, the PWV is related to P, the inner area of
the artery (A), and ρ by (19)

PWV=

ffiffiffiffiffiffiffiffiffiffiffi
A
ρ

dP
dA

s
. [2]

Fig. 1 B and C illustrates the cross-section of the artery before
(initial thickness h0 and radius of R0) and after (thickness h and

radius of R) the deformation induced by the blood pressure.
Assumption ii in the MK Equation stated above gives the inner
area of the artery fixed at A= πR2

0. The two assumptions i and ii
in the MK Equation, together with the equilibrium of force in
the artery wall, yield dP=dA=Eh0=ð2πR3

0Þ, and its substitution in
Eq. 2 leads to the MK Equation [1a]. In the following, a P−A
relation is established without the two assumptions in the
MK Equation.
Equilibrium of force in the artery wall in the cylindrical co-

ordinates {r,θ,z} along the artery wall requires

dσrr
dr

+
1
r
ðσrr − σθθÞ= 0, [3]

where the stresses σrr and σθθ in the radial and circumferential
directions are no longer uniform after assumption i in the MK
Equation is relaxed; they are related to the corresponding strains
via a constitutive model, such as the Fung hyperelastic model
(21) for the human artery. After assumption ii in the MK Equa-
tion is relaxed, the (logarithmic) strains are obtained in terms of
the (change of) inner area of the artery A. The pressure (P) can
be obtained by integrating Eq. 3 from the inner radius r=R to
the outer radius r=R+ h after the deformation, i.e.,

P =
Z 0

-P
dσrr =

Z R+h

R

1
r
ðσθθ − σrrÞdr. [4]

This equation, together with the constitutive model of the artery,
gives the relation between P and A (see SI Appendix, Note 1 for
details). Its substitution into Eq. 2 yields the relation between the
blood pressure (P) and PWV, which is given separately in Eqs. 6,
7, 9, and 10 for the linear elastic model and Fung hyperelastic
model of the artery, and is validated by the in vitro experiments.

In Vitro Experiments. An in vitro hemodynamic simulator is de-
veloped, as shown in Fig. 2A, to verify the theory. The simulator
includes a pulsatile flow generator, an artificial blood vessel, strain
sensors, pressure sensors, and a water reservoir to define the base
pressure on the tube. Pressurized water controlled by solenoid
valve provides pulsatile flow, while the height of the water reser-
voir determines the diastolic pressure in the tube. Thin PDMS
tubes with various wall thicknesses and elastic properties (con-
trolled by changing the base to curing agent mixing ratio) provide
artificial blood vessels with linear elastic properties within the
range of deformations studied (Fig. 2B). Two strain sensors made
of carbon black-doped PDMS (CB-PDMS) (22) detect the pulses
at two different positions along the tube. The time difference Δt
between the arrival of the pulse at each sensor position together
with the distance L between the two sensors allows calculation of
PWV (Fig. 2C). Fig. 2D shows the voltage signal of the two sen-
sors with the distance L, which gives the PWV (23)

PWV=
L
Δt
. [5]

PDMS (base polymer: curing agent = 15:1, 17:1, and 19:1) is
used to fabricate the tube for the in vitro experiment. SI Appen-
dix, Fig. S1 shows the storage and loss moduli (E′ and E″) of the
17:1 PDMS measured by dynamic mechanical analysis at fre-
quencies between 0.1 Hz and ∼10 Hz. The dynamic modulus isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E′2 +E″2

p
. The moduli of the 15:1, 17:1, and 19:1 PDMS at 10

Hz are 650, 540, and 420 kPa, respectively, for the samples used
in the experiment shown in Fig. 2F. SI Appendix, Fig. S2 shows
the relation between the true stress and logarithmic strain of the
17:1 PDMS measured by tensile testing, which displays good
linearity for strain less than 30%. The tube in the in vitro exper-
iment is, therefore, linear elastic with the modulus of E (i.e., the
dynamic modulus

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E′2 +E″2

p
at 0 Hz).
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Fig. 1. (A) Schematic diagram of pulse wave propagation in a human ar-
tery. (B and C) The cross-sectional dimensions of the artery (B) before and (C)
after deformation due to the blood pressure.
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The Relation Between Pressure and PWV for Linear Elastic Tube Walls.
The linear stress−strain relation for the PDMS tubes, together
with Eq. 4, gives the relation between the pressure P and inner
area A as (see SI Appendix, Note 1 for details)

P=
E
4

�
dilog

�
A+Awall

A0 +Awall

�
− dilog

�
A
A0

��

+
E
8

"
ln
�
A+Awall

A0 +Awall

�2

− ln
�
A
A0

�2#
,

[6]

where E=E=ð1− ν2Þ is the plane strain modulus; ν = 0.5 is the
Poisson’s ratio for PDMS; A0 = πR2

0 and Awall = πðR0 + h0Þ2 −
πR2

0 are the inner area of the artery and the area of artery
wall, respectively, without pressure; and dilog is the dilogarithm
function (24). Substitution of Eq. 6 into Eq. 2 gives the PWV as

PWV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EA
4ρ

�
A0

AðA−A0Þ ln
A
A0

−
A0 +Awall

ðA+AwallÞðA−A0Þ ln
�
A+Awall

A0 +Awall

��s
.

[7]

Eqs. 6 and 7 are parametric equations for the relation between
the pulse wave velocity PWV and pressure P; elimination of the

intermediate variable A yields the following scaling law between
the normalized PWV and pressure P:

PWVffiffiffi
E
ρ

q = g
�
P
E
,
h0
R0

�
, [8]

where g is a nondimensional function shown in Fig. 2E. It is clear
that PWV displays a strong dependence on P. For comparison, the
MK Equation [1a] predicts a constant PWV (independent of the
pressure), and is also shown in Fig. 2E. Fig. 2F indicates that,
without any parameter fitting, the relation between PWV and P
obtained from Eq. 8 agrees well with the in vitro experiments for
15:1, 17:1, and 19:1 PDMS and fixed R0 = 6.3 mm, h0 = 0.63 mm,
and ρ = 1,000 kg/m3 for water. The effect of liquid viscosity is
shown in SI Appendix, Note 2 and Fig. S3. Similarly, Fig. 2G shows
excellent agreement with experimental results for two thicknesses
(h0 = 0.63 and 0.29 mm) of the tube made of 19:1 PDMS and fixed
R0 = 6.3 mm, and ρ = 1,000 kg/m3, without any parameter fitting.
The experimental data all display strong dependence on the pres-
sure, which clearly do not support the MK + Hughes Equations.

The Relation Between Blood Pressure and PWV for Human Artery
Walls. The human artery walls are well characterized by the
Fung hyperelastic model (21), which has the strain energy density

W =
C
2
ea1E

2
θθ+a2E

2
zz −

C
2
, [9]

where Eθθ and Ezz are the Green strains in the circumferential and
axial directions of the artery, respectively, and a1, a2, and C are the
material parameters, which are related to the elastic modulus (at
zero pressure) by E0 =Ca1. Following the same analysis, but with
the linear elastic model replaced by the Fung hyperelastic model
for human arteries, yields parametric equations for the relation
between the pulse wave velocity and pressure, similar to Eqs. 6
and 7, as (see SI Appendix, Note 1 for details)

P=
1
4
Cea2E

2
zz

ffiffiffiffiffiffiffi
πa1

p �
erfi

�
A−A0

2A0

ffiffiffiffiffi
a1

p �
− erfi

�
A−A0

2ðA0 +AwallÞ
ffiffiffiffiffi
a1

p ��
,

[10]

PWV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cea2E2

zz a1A
4ρ

2
4 1
A0

e
a1ðA−A0Þ2

4A2
0 −

1
A0 +Awall

e
a1ðA−A0Þ2

4ðA0+AwallÞ2
3
5

vuuut . [11]

where erfi is the imaginary error function (25). Elimination of
the intermediate variable A in Eqs. 10 and 11 yields the following
scaling law between the normalized pulse wave velocity PWV
and blood pressure P:

PWVffiffiffiffiffiffiffiffiffiffiffi
Cea2E

2
zz

ρ

q = f
�

P
Cea2E2

zz
, a1,

h0
R0

�
, [12]

where f is a nondimensional function, and is shown in Fig. 3A for
a1 = 0.97 (26) and h0=R0 = 0.15 (19) for the human artery. Fig.
3B examines the effect of artery stretching Ezz by comparing the
limit Ezz = 0 of Eq. 12, which takes the form

PWVffiffiffi
C
ρ

q = f
�
P
C
, a1,

h0
R0

�
, [13]

to the scaling law in Eqs. 10 and 11 for a representative a2 = 2.69
(21) and Ezz = 0.1 and 0.2. The effect of artery stretching is
negligible even for 20% stretching.
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The scaling law in Eq. 13 degenerates to the MK Equation
[1a] in the limit of low blood pressure, which gives A→A0;
therefore ea1ðA−A0Þ2=ð4A2

0Þ =∼ 1 and ea1ðA−A0Þ2=½4ðA0 +AwallÞ2� =∼ 1.
Eq. 11, at the limit Ezz = 0, then becomes PWV=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca1Awall=½4ρðA0 +AwallÞ�

p
, which is identical to the MK Equa-

tion [1a] for a thin artery wall [i.e., Awall=ðA0 +AwallÞ=∼ 2h0=R0]
at zero blood pressure.
The artery thickness, in general, is not a constant even for the

same human artery; the thickness-to-radius ratio h0=R0 has an av-
erage of 0.15 and a variation of 40% (19). Fig. 3C shows the nor-
malized pressure P=C versus PWV=

ffiffiffiffiffiffiffiffiffi
C=ρ

p
for h0=R0 = 0.09, 0.12,

0.15, 0.18, and 0.21, corresponding to ±20% and ±40% variations of
h0=R0 = 0.15. Even for 40% variations, the curves in Fig. 3C are
different by only ∼6%. For a1 = 0.97 and a normal distribution of
h0=R0 with the mean 0.15 and SD σ, the mean PWV is obtained as

PWVffiffiffi
C
ρ

q = f
�
P
C
, a1 = 0.97,

h0
R0

∼N
	
0.15, σ2


�
, [14]

and is shown in Fig. 3D for several values of σ. The curve based
on the mean h0=R0 gives an accurate relation between the PWV
and blood pressure.
Fig. 4 A and B compares the present model (in Eq. 13) to the

classical MK + Hughes Equations (in Eqs. 1a and 1b) for a human
artery characterized by the Fung hyperelastic model with C = 39 kPa,
a1 = 0.97, and h0=R0 = 0.15 (19, 26). The arterial stiffness, or the
equivalent tangent modulus E, is shown in Fig. 4A versus the blood
pressure P. In the range of human blood pressure (5 kPa to ∼20 kPa),
the arterial stiffness is used to determine the material parameters in
the Hughes Equation [1b] as E0 = 563 kPa and ζ = 0.121 kPa−1,
which yields good agreement between the Hughes Equation and the
present model. However, for the same range of blood pressure, Fig.
4B shows that the MK + Hughes Equations overestimate the PWV
by a factor of ∼2 compared with the present model. This large dis-
crepancy results from the large change of radius and thickness of the
artery wall (>50%), which is neglected in the MK Equations (due to
assumption ii) but is accounted for in the present model.

Another important clinical application of PWV is to determine
the arterial stiffness (equivalent tangent modulus) of the artery wall
as the elastic properties of arteries are affected by aging and car-
diovascular diseases, therefore providing useful prognostic in-
formation (27). The blood pressure P is shown in Fig. 4C versus the
PWV. In the range of human blood pressure (5 kPa to ∼20 kPa), the
pressure−PWV relation is used to determine the material parame-
ters in the Hughes + MK Equations (Eqs. 1a and 1b) as E0 =
145 kPa and ζ = 0.117 kPa−1, which yields good agreement between
the MK + Hughes Equations and the present model. However, for
the same range of PWV, Fig. 4D shows that the MK + Hughes
Equations significantly underestimate the equivalent tangent mod-
ulus by a factor of ∼3 compared with the present model. The main
reason for this large discrepancy is the same as that shown in Fig.
4 A and B.
For the human artery characterized by the Fung hyperelastic

model with C = 39 kPa, a1 = 0.97, and h0=R0 = 0.15 (19, 26), the
range of human blood pressure (5 kPa to ∼20 kPa) gives A=A0 =
2.46 to ∼3.55, which is relatively large such that the function erfi
in Eq. 10 can be approximated by erfiðxÞ≈ ex

2
=ð ffiffiffi

π
p

xÞ (28). Eqs.
10 and 11, at the limit Ezz = 0, have the asymptotes for large
A=A0 (see SI Appendix, Note 3 for details),

P≈
C
2

A0

A−A0
e
a1ðA−A0Þ2

4A2
0 , [15]

PWV2 ≈
Ca1
4ρ

A
A0

e
a1ðA−A0Þ2

4A2
0 . [16]

Eliminating the variable A yields the following relation (see SI
Appendix, Note 3 for details):

A B

C D

Fig. 3. (A) Normalized blood pressure P versus normalized PWV for the
human artery characterized by the Fung hyperelastic model. (B–D) Normal-
ized P versus normalized PWV for (B) different axial stretching of the artery,
(C) different thickness-to-radius ratio h0=R0 of the artery, and (D) different
SD σ for a normal distribution of h0=R0.

0 5 10 15 20
0

2000

4000

6000

8000

0 5 10 15 20
0

10

20

30

0 5 10 15 20
0

10

20

30

0 10 20 30
0

2000

4000

6000

8000

Human blood 
pressure 

E
(k

Pa
)

P (kPa)

A
Hughes

P
(k

Pa
)

B

PWV (m/s)

MK + Hughes

Present model

P
(k

Pa
)

C

Human blood 
pressure 

MK + Hughes

E
(k

Pa
)

D
Present model

MK + Hughes

Fung

Present model

Human blood 
pressure 

Human PWV
PWV (m/s)

Human PWV
PWV (m/s)

Fig. 4. (A) The arterial stiffness (equivalent modulus) E versus the blood
pressure P for a human artery characterized by the Fung hyperelastic model; the
Hughes Equation is also shown, where its parameters E0 and ζ are determined by
fitting the arterial stiffness within the range of human blood pressure (5 kPa to
∼20 kPa). (B) The blood pressure P versus the PWV of the human artery, given by
the present model and by the MK + Hughes Equations, where the parameters
E0 and ζ are determined from A. (C) The blood pressure P versus the PWV for
the human artery characterized by the Fung hyperelastic model; the MK +
Hughes Equations are also shown, where the parameters E0 and ζ in the
Hughes Equation are determined by fitting within the range of human
blood pressure (5 kPa to ∼20 kPa). (D) The artery stiffness (equivalent modulus)
E versus the PWV of the human artery, given by the present model and by the
Hughes Equation, where the parameters E0 and ζ are determined from C.
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[17]

which, as shown in Fig. 5A, is in reasonable agreement with the P
versus PWV curve at large pressure, and their difference is ap-
proximately a constant (i.e., a shift along the vertical axis). The
above equation suggests that the blood pressure scales with
PWV2, i.e., P≈ αPWV2, and the scaling coefficient α is approx-
imately a constant since the logarithmic term lnðP=CÞ has a very
weak dependence on the pressure. Accordingly, the relation be-
tween P and PWV can be represented by

P= αPWV2 + β, [18]

where β represents the constant shift between the two curves in
Fig. 5A, and α and β depend on the material properties and
geometry of the artery (C, a1, ρ, R0, and h0) and are to be de-
termined from the experiments.
For the human artery characterized by the Fung hyperelastic

model with C = 39 kPa, a1 = 0.97, and h0=R0 = 0.15 (19, 26), the
constants are α = 0.18 kPa·s2·m−2 and β = 2.7 kPa, which show
excellent agreement (Fig. 5B) with the P versus PWV relation
obtained from Eqs. 10 and 11 in the range of human blood
pressure (5 kPa to ∼20 kPa). Fig. 5C further compares Eq. 18
with literature data (29) of the experimental diastolic blood
pressure (DBP, measured by an invasive method) versus PWV
(obtained from the ear and toe pulses) during and after anes-
thesia for surgery. For α = 0.046 kPa·s2·m−2 and β = 5.1 kPa, Eq.
18 agrees reasonably well with the experimental data.
SI Appendix, Fig. S4A, Inset shows a multimodal wearable

sensor called the BioStamp (MC10 Inc.) (30), which contains
electrodes and an optical sensor for collection of electrocardio-
gram (ECG) (31) and photoplethysmograph (PPG) (32) signals
simultaneously. The BioStamp mounts on the torso in the sub-
clavicular region (SI Appendix, Fig. S4A) or, alternatively, on the
posterior side overlaying the scapula (SI Appendix, Fig. S4B).

These two positions allow collection of ECG and PPG signals
concurrently, and exploit the temporal relationship between
these two signals to compute pulse arrival times (PVW=L=Δt:
pulse arrival distance, L, pulse arrival time, Δt). Evaluations of
the correlations between these Δt measurements and blood
pressure rely on episodic measurements of blood pressure with a
conventional cuff device with the subject instrumented with
the BioStamp. The Δt and DBP versus time are measured dur-
ing the postexercise period. The 1=Δt and DBP both decrease
during the first 300 s (after sprinting), then approach a stable
resting value as shown in SI Appendix, Fig. S5. Their relation can
be described by substituting Eq. 5 into Eq. 18,

P= α
L2

Δt2
+ β. [19]

The 1=Δt and DBP response during the first 300 s are shown in
Fig. 5D, together with Eq. 19 and αL2 = 0.064 kPa·s2 and β = 5.8
kPa, which shows reasonable agreement with the experimental
data. In general, once β and α in Eq. 18 (or αL2 in Eq. 19) are
determined, then the continuous, cuffless, and noninvasive blood
pressure can be monitored by measuring the PWV.

Conclusions
This paper establishes a relation between the blood pressure P
and pulse wave velocity PWV that does not rely on the Hughes
Equation or on assumptions in the MK Equation. This relation
degenerates to the MK Equation in a regime of extremely low
blood pressures. An in vitro hemodynamic simulator is de-
veloped to collect PWV and pressure data using liquid flow
through a PDMS (with linear stress−strain relation) tube. These
in vitro experiments show that the PWV depends strongly on
pressure, unlike expectations based on the MK equation but in
excellent, quantitative agreement with the newly established
relation without any parameter fitting. For human arteries,
which are well characterized by the Fung hyperelastic model, a
simple formula P= αPWV2 + β is established within the range
of human blood pressure. This formula is validated by literature
data as well as by experiments on human subjects, and can be
used to determine the blood pressure from the measured PWV in
continuous, cuffless, and noninvasive blood pressure monitoring.

Methods
Hemodynamic Simulator. A pressurized bottle filled with water driven by a
12-V solenoid valve (Adafruit Industries) produced pulse wave flow by
opening of a given repeatable pressure in the water reservoir. Two factory-
calibrated pressure sensors (HHP886; OMEGA Engineering) with measure-
ment accuracy of ±1.5%were located before strain sensor #1 and after strain
sensor #2 as shown in Fig. 2A. Strain sensors were placed on the surface of a
PDMS tube at a specific distance. Resistance difference during pulse wave by
data acquisition system at 1-kHz sampling rate (Powerlab 8/35; ADInstru-
ments) provided the detection of the peak of resistance change from strain
sensors. The water reservoir controlled the diastolic pressure in the tube by
adjusting the water height. The water generated from the pulse generator
flowed out from the tube to maintain the pressure in the tube before and
after pulse generation.

Fabrication of Thin CB-PDMS Strain Sensor. Spin coating 30:1 PDMS (Sylgard
184 Silicone Elastomer; Dow Corning) at 1,000 rpm on a Si wafer generated a
substrate. Spin coating polyimide (PI2545; HD Microsystems) at 3,000 rpm
for 30 s followed by baking at 110 °C for 1 min, 150 °C for 4 min, and 250 °C
for 5 min produced a thin layer. Spin coating AZ4620 (AZ Electronic Mate-
rials) at 2,000 rpm for 30 s and developing generated a mold for the strain
sensor. Fabrication of thin CB-PDMS began with mixing 25 wt% carbon black
(VULCAN XC72R; Cabot Corporation) and 30:1 PDMS. A doctor blade
method formed a thin CB-PDMS layer in the opening region in the mold.
After baking at 70 °C for 2 h, immersion in acetone removed the photoresist
to leave only the patterned CB-PDMS on a PI layer. Spin coating and baking
at 70 °C for 2 h of 30:1 PDMS generated a uniform encapsulation layer.

A B

C D

Fig. 5. (A) The normalized blood pressure P versus the normalized PWV
given by the present model (in Eqs. 10 and 11) and its asymptote (in Eq. 17).
(B and C) Comparison of P = αPWV2 + β to (B) the present model (Eqs. 10 and
11) and (C) literature data (29). (D) Comparison of P = αL2=Δt2 + β to the
experiments of blood pressure P versus 1=Δt, where Δt is pulse arrival time.
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Fabrication of Thin PDMS Tube. Pouring a precursor to PDMS (Sylgard 184
Silicone Elastomer; Dow Corning) with a specific mixing ratio into the inside of
clear poly(ethylene terephthalate)-glycol tube with 12.7-mm inner diameter
(McMaster-Carr) to cover all of the inside of the tube and curing it overnight
while held in a vertical position at room temperature at 20 °C generated one
layer of thin PDMS. The tube was then reversed before pouring a second layer
to reach an approximately homogeneous thickness along the length of the
tube (thickness variation is less than 10%). The number of repetitions of this
process determined the thickness of the tubing. A week of additional curing
process reached a stable state of the PDMS in terms of elastic properties.

Measurement of Elastic Properties. Elastic properties of each PDMS tube
were measured using a RSA3 dynamic mechanical analyzer, within a
few hours after the pulse wave velocity measurement to avoid any
aging effect.
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