
FU
LL P

A
P
ER

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2909wileyonlinelibrary.com

  1.     Introduction 

 3D helical mesostructures hold great 
potential for a broad range of applica-
tions in microsystem technologies, such 
as microelectromechanical systems 
(MEMS), [ 1,2 ]  electrodes for lab-on-a-chip 
systems, [ 3,4 ]  and stretchable electronics. [ 5,6 ]  
To form 3D architectures of helical and 
other relevant topologies at the micro/
nanoscale, several classes of fabrication/
assembly approaches have been developed 
by exploiting different working mecha-
nisms. [ 2,6–35 ]  Representative approaches 
include microcontact printing, [ 15,16 ]  
MEMS lithography/electroplating tech-
niques, [ 17–19 ]  manual winding, [ 20 ]  residual-
stress-induced self-rolling of thin fi lms/
belts, [ 21–24 ]  controlled mechanical buck-
ling, [ 6,32 ]  and 3D additive printing based 
on direct ink deposition, [ 2,25–29 ]  or direct 
laser writing [ 30,31 ]  (sometimes in combi-
nation with liquid metal paste fi lling [ 29 ]  or 
the electrochemical deposition and plasma 
etching). [ 31 ]  Most of these approaches, 
such as lithography/electroplating tech-
niques, [ 17–19 ]  manual winding, [ 20 ]  and 3D 
additive printing, [ 2,25–31 ]  apply directly only 
to certain classes of materials, e.g., metals 
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and/or polymers, and generally not to high-performance 
semiconductors (e.g., single-crystal silicon) or other advanced 
materials that are widely adopted in modern high-quality elec-
tronics and optoelectronics. Although the methods based on 
residual-stress-induced self-rolling [ 21–24 ]  are naturally com-
patible with modern planar technologies and offer yields and 
throughputs necessary for practical applications, they provide 
direct access only to certain classes of hollow polyhedral or 
cylindrical geometries, with the upper length scales limited, 
to a certain extent, by the achievable levels of residual stresses. 
In comparison, approaches that rely on buckling in thin 2D 
ribbons/membranes [ 6,14 ]  allow routes to a broad range of 3D 
topologies, while offering a natural compatibility with essen-
tially all modern planar technologies, thereby suggesting many 
possibilities in building sophisticated classes of 3D electronic, 
optical, and electromagnetic devices. A powerful feature of 
this approach [ 6,14 ]  is the versatility in the applicable materials, 
ranging from soft polymers, to brittle inorganic semiconduc-
tors, to plastic metals, and length scales, ranging from nanom-
eter, to micrometer, to centimeter dimensions. Recent work 
includes demonstrations of silicon and/or metallic helical 
mesostructures in various topologies, including straight helices 
with different chiralities, double helices, nested helices, toroids, 
and conical spirals [ 6 ]  by using variants of fi lamentary serpentine 
microstructures as the initial 2D patterns. The underlying rela-
tions between the 3D confi gurations, fracture-induced failure, 
and fabrication related parameters (e.g., prestrain level, the geo-
metric parameters of the serpentine microstructures) require a 
relevant theory as the basis for the design of structures for spe-
cifi c applications. The mechanics of buckling and postbuckling 
that govern the 2D–3D transformation are, however, complex, 
since the deformation of the ribbon-type structures involves 
not only planar bending, but also twisting and general spatial 
bending type motions. Previous theories developed either for 
postbuckling of straight ribbons [ 36–40 ]  or critical buckling of 
curvy ribbons [ 41,42 ]  cannot be used in the analyses of postbuck-
ling for serpentine microstructures. This paper introduces an 
analytic model of compressive buckling that is capable of pre-
dicting not only the full 3D geometry of helical mesostructures 

but also the strain level of relevance to structural reliability. 
Systematic fi nite element analyses (FEA) and experimental 
measurement on 3D helical mesostructures with different 
geometries validate the utility of the model. The results pro-
vide theoretical insight into the scaling laws of deformation and 
strain with various parameters, including a negligible effect of 
material parameters and a square root dependence of curvature 
on the compressive strain. Furthermore, analytic solutions were 
obtained for the key physical quantities, including the displace-
ment, twist angle, curvature, and strain, which can facilitate 
design optimization in practical applications.  

  2.     An Analytic Model for the Compressive 
Buckling of Serpentine Microstructures 

  Figure    1  a presents a schematic illustration of the process for 
forming three chains of helices with different geometries 
guided by compressive buckling. The initial 2D precursors cor-
respond to thin serpentine microstructures (as shown in the 
left, bottom panel of Figure  1 b) that are strongly bonded, at 
certain locations (black circles), with a prestrained elastomeric 
substrate. Releasing the prestrain imparts compressive forces 
on the serpentine microstructures, thereby lifting the non-
bonded locations out of the plane and into 3D confi gurations. 
A theoretical model is introduced below to analyze such post-
buckling processes, and to determine the full 3D confi guration 
as well as the strain distribution for different initial geometries 
and prestrain levels. 

   2.1.     Geometry, Displacement, and Curvature 

 Due to the structural periodicity, we focus on the analysis of a 
representative unit cell in the serpentine microstructure, which 
consists of two identical arcs, each with a radius of  R  and top 
angle of  θ  0 , as shown in Figure  1 b (top). The top angle must be 
smaller than 5 π/ 3 to avoid self-overlap of the microstructures, 
and in practical applications, this parameter is typically in the 
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 Figure 1.    Illustration of the buckling-guided formation of 3D helical mesostructures and key dimensions associated with the mechanics model.
a) Schematic illustration of the compressive buckling process for 2D serpentine microstructures with three different geometries; b) illustration of the 
mechanics model and coordinate system, showing the undeformed and deformed confi gurations. The black dots denote the sites of strong bonding 
with an elastomeric substrate used in fabrication. A representative unit cell of the serpentine microstructures consists of two identical arcs, each with 
the radius of  R  and top angle of  θ  0 .
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range of [0, 5 π/ 4]. To facilitate buckling, the serpentine micro-
structure usually adopts an ultrathin geometry in which the 
thickness ( t ) is much smaller than the width ( w ), corresponding 
to a large cross-sectional aspect ratio (e.g.,  w / t  > 20). This class 
of serpentine microstructure has been widely explored in var-
ious stretchable bioelectronic devices as a key design strategy to 
achieve system-level stretchability. [ 43–52 ]  

 A Cartesian coordinate system ( X ,  Y ,  Z ) has its origin at the 
joint of two arcs, where the  X  and  Z  axes correspond to the out-
of-plane and axial direction of the serpentine microstructure. 
The unit vectors in such coordinates ( X ,  Y ,  Z ) before defor-
mation are ( 1, 2, 3)iiEE� = . A parametric coordinate  θ  (corre-
sponding to the arc length  S = Rθ ) denotes the location along 
the central axis of the arcs, such that [0, ]0θ θ∈  and [ , 2 ]0 0θ θ  
represent the fi rst and second arcs, respectively. The initial con-
fi guration of the central axis, ( ) ( ) ( ) ( )0 0 1 0 2 0 3X Y Z� � �θ θ θ θ= + +rr EE EE EE , 
can be represented by the following parametric equations,
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   In deformation analyses of curvy ribbons, a local coordinate 
system is usually required to characterize the location of central 
axis, as illustrated in Figure  1 b (top). Before deformation, the 
corresponding unit vectors are denoted by   E    i   ( i  = 1,2,3), where 
  E   3  is the tangential direction;   E   1  and   E   2  lie in the cross-sec-
tional plane, with   E   1  (or equivalently �

1EE ) along the out-of-plane 
direction and   E   2  the radial direction of the arcs. During the 
postbuckling, out-of-plane deformations are induced, thereby 
transforming the central axis into a spatial curve. A material 
point of this central axis denoted by   r   0  before deformation 
moves to � � �

0 1 2 3X Y Zrr rr UU EE EE EE= + = + +  after deformation, where 
  U   is the displacement. The unit vector along the tangential 
direction of deformed central axis is d /d3e srr= , as shown in the 
right, bottom panel of Figure  1 b, where  s  denotes the arc length 
after deformation. The other two unit vectors,   e   1  and   e   2 , involve 
twisting of the cross section along the central axis, and remain 
in the cross-sectional plane according to Kirchhoff assump-
tions. Their derivatives are related to the curvature vector   κ   by 
Love [ 53 ] 

    
ii
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ee

eeκκ
λ
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 where () d()/dS=′ ; λ = d s /d S  is the stretch along the cen-
tral axis;  κ  1  and  κ  2  denote the curvatures in the (  e   2 ,   e   3 )
and (  e   1 ,   e   3 ) surfaces; and the twisting curvature κ 3  is related to 

the twist angle φ  of the cross section by /3κ φ λ= ′ . The unit vec-
tors before and after deformation are related by the direction 
cosine ( a ij  , see the Supporting Information for details): 
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   According to the fi nite-deformation beam theory, [ 39 ]  the 
displacement   U   of the central axis and the twist angle φ  of 
the cross section can fully characterize the deformation of 
a curvy beam. For the serpentine microstructure shown in 
Figure  1 b (top), only the left arc is studied in the following, 
considering its antisymmetric geometry in both the unde-
formed and deformed confi gurations. Release of prestrain 
( ε  pre ) in an elastomeric substrate induces a compressive strain, 

/(1 )appl pre preε ε ε= + , to the serpentine microstructure, leading 
to its buckling. During the postbuckling, the displacement
( 2U� ) of serpentine microstructures along the  Y  axis is negli-
gible, [ 6 ]  since the compression is applied along the  Z  axis and 
the buckling mainly induces out-of-plane displacements (along 
the  X  axis). This characteristic indicates the displacement vector 
can be simplifi ed as 1 1 3 3 1 1 2 2 3 3U U U U U� � � �= + = + +UU EE EE EE EE EE , in 
which 1 1U U� = . During postbuckling, equilibrium requires that 
the out-of-plane displacement  U  1  and twist angle φ  have the 
same order, while the in-plane displacements  U  2  and  U  3  have 
the same order as the square of  U  1  (or φ  ), [ 39 ]  i.e., ~ 1Uφ  and 

~ ~ ( )2 3 1
2U U U . Since the axial displacement ( �

3U ) induced by 
the external compression scales with the applied strain  ε  appl , 
an approximate scaling between the general displacements 
( U i   and φ) and applied strain can be obtained 

    
, , , andappl 1 appl 2 appl 3 applU U Uφ ε ε ε ε∝ ∝ ∝ ∝

  (4) 

   The above relations show remarkable agreement with FEA 
results (Figure S1, Supporting Information). Consistent with 
intuitive expectation, an approximate proportional relation 
between the twist angle (φ ) and parametric coordinate ( θ ) is 
observed in FEA (Figure S2a, Supporting Information), indi-
cating that the twist angle can be given by applaφ θ ε= , with 
the parameter  a  to be determined. FEA results (Figure S2b, 
Supporting Information) show that the normalized displace-
ment [ U  1  ( θ )/ U  1  ( θ  0 )] is approximately a single-variable function 
of  θ / θ  0 , and the distribution of  U  1  can be well characterized by 
(see the Supporting Information for details) 
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 where  b  is a dimensionless parameter to be determined. It 
should be noticed that the boundary conditions pose addi-
tional considerations on the selection of displacement func-
tions in the energy approach. The axial displacement ( �

3U ) is 
comprised of two parts, a uniform part [ � = ( )3uniform appl 0U Zε θ− ] 
due to the global compression from two ends, and a nonuni-
form part ( �

3nonuniformU ) due to local bending and twisting. Since 
the boundary conditions are expressed directly in terms of 
the displacement components in the local coordinate system 
(See Supporting Information for details), the constructions of 
displacement functions for 2nonuniformU  and 3nonuniformU  are more 
straightforward. Together with FEA calculations on a wide 
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range of serpentine geometries (Figure S3, Supporting Infor-
mation), a set of functions that can both satisfy the boundary 
conditions and fi t well the FEA results are adopted, which read 
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 where  c  1  and  c  2  are two dimensionless parameters to be deter-
mined by the energy minimization detailed in Section 2.2. 
As shown by Su et al., [ 39 ]  the work conjugate of the bending 
moment and torque is κκ κκλ=ˆ . It can be given in terms of  U i   
and  φ  by 
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 where the terms higher than the third power of the displace-
ment components are neglected. Insertion of Equation  ( 5)  , (6) 
and applaφ θ ε=  into Equation (7) then gives the distribution 
of curvature components along the 3D helical mesostructures 
(See Supporting Information for details).  

  2.2.     Energy Approach 

 Due to the ultrathin geometry of the serpentine microstruc-
tures, the local strain usually remains at a low level, such that 
linear elastic constitutive relations can be adopted. As such, the 
total strain energy ( totΠ ) mainly consists of in-plane bending 
energy, out-of-plane bending energy, and twisting energy, and 
can be written as 
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 for a unit cell of the serpentine microstructure, where 
 EI  1  = ( Ew  3  t )/12 and  EI  2  = ( Ewt  3 )/12 are the in-plane and out-
of-plane bending stiffness, respectively,  GI p   ≈ ( Gwt  3 )/3 is the 

twisting stiffness for thin ribbons, and   ν   is the Poisson ratio. 
Since the serpentine microstructures are highly fl exible, the 
membrane energy is neglected in Equation  ( 8)  , which can be 
introduced as a constraint during the energy minimization. 
Such constraint can be written in the following form 
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   For any prescribed geometries ( w/t ,  w/R , and  θ  0 ) and external 
strain ( ε  appl ), minimization of the total energy by searching over 
a reasonable range for each dimensionless parameter ( a ,  b ,  c  1 , 
and  c  2 ) then gives solutions for the four unknowns. The pro-
cess can be implemented numerically (e.g., using commercial 
software MAPLE or MATLAB). After the determination of dis-
placement components ( , , , and1 2 3U U Uφ ), the coordinates 
of every material point in the serpentine microstructure can 
be obtained, thereby giving the full 3D helical confi guration 
during postbuckling. Equation  ( 8)   indicates that the change of 
in-plane bending curvature should be much smaller than the 
counterpart of out-of-plane bending and twisting, for ultrathin 
(i.e.,  w / t  > 20) geometries of 2D precursors, because of the large 
coeffi cient ( w  2 / t  2 ) in the corresponding energy term.  

  2.3.     Validation of the Model by Experiments and FEA 

 Two different sets of experiments (see the Experimental Sec-
tion for details) using microscale structures in a photodefi nable 
epoxy (SU8) and millimeter-scale features in plastic, as well as 
3D FEA serve to validate the models.  Figure    2  a and Figure S4 
(Supporting Information) present the model predictions, FEA 
calculations, and experimental results on the deformed con-
fi gurations under three different levels of applied strain for a 
wide range of serpentine geometries (with the arc angle from 
30° to 210°). The extent of twisting increases evidently with 
the arc angle increasing from 30° to 210°. Good agreements 
can be observed for all of the different geometries and loading 
levels. Figure  2 b–d illustrates the distribution of dimension-
less displacement components ( / , / , and /0 1 3U L U L� �φ θ , with 
 L  =  Rθ  0  denoting the arc length) for a representative 3D helical 
mesostructure (with  θ  0  = 150°) under different levels of applied 
strain, which provides quantitative evidence on the accuracy 
of analytic model. Both the out-of-plane displacement ( � /1U L)
and twist angle (φ/θ 0 ) reach their maximum magnitudes at 
the center of 3D helical mesostructures. The distribution of 
dimensionless in-plane displacements ( U  2 / L  and  U  3 / L ) in 
the local coordinate system appears in Figure S5 (Supporting 
Information). 

     3.     Results and Discussions 

 The model can be used to analyze the effects of various geo-
metric and material parameters on the 3D helical mesostruc-
tures, aiming to establish useful scaling laws that can facilitate 
the design optimization in practical applications. In general, 
the fi nal 3D helical confi gurations might be affected by three 
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groups of fabrication-related parameters: (1) loading parameter 
( ε  appl ); (2) material parameters ( E  and   ν  ); (3) geometric param-
eters ( w/t ,  w/R , and  θ  0 ). The theoretical analyses in Section 2.1 
already reveal the dependence [Equation  ( 4)  ] of displacement 
components on the applied strain. Furthermore, the expression 
[Equation  ( 8)  ] of total strain energy indicates that the modulus 
( E ) has essentially no effect on the minimization process, and 

hence, makes no difference on the 3D confi gurations. While 
the Poisson ratio ( ν ) infl uences the twisting energy in Equa-
tion  ( 8)  , both analytic and FEA results show that this material 
parameter has negligible effects on the primary displacements
( / and /0 1U Lφ θ ) during postbuckling, as shown in Figure  3 a 
and Figure S6a (Supporting Information), for   ν   varying in a 
wide range of [0, 0.5]. This feature is also in accordance with 
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 Figure 2.    Experimental, numerical, and analytical studies of the buckling deformations. a) Modeling, FEA, optical images (millimeter-scale experiment), 
and colorized scanning electron microscope (SEM) (microscale experiment) images of 3D helical mesostructures with different arc angles (30°, 90°, 
150°, and 210°) under different levels of compressive strains (0%, 20%, 40%, and 60%). The color of the FEA results represents the magnitude of 
maximum principal strain. All of the scale bars in the micro- and millimeterscale experiments are 500 µm and 5 mm, respectively. b–d) Analytic and FEA 
results on the distribution of dimensionless pop-up displacement, axial displacement, and twist angle for the helical mesostructures (with  θ  0  = 150°) 
under different levels of compressive strains. The geometric parameters include ( w / R  = θ  0 /17,  t  = 75 µm and  w  = 900 µm) for modeling, FEA, and mil-
limeter-scale experiment, and [ w / R  =  θ  0 /17,  t  = 7 µm and  w  ≈ 61 µm for  θ  0  = 30°, 90°, and 150° (or  w  ≈ 65 µm for  θ  0  = 210°)] for microscale experiment.
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the experiment results in Figure  2 a, where two different types 
of materials (epoxy and plastic) result in nearly the same helical 
confi gurations. For thin, slender serpentine microstructures, 
e.g., with  w / t  > 20 and  w / R  < 0.3, the cross-sectional geometric 
parameters ( w / t  and  w / R ) also play negligible roles on the pri-
mary displacements (Figures S6b,c and S7, Supporting Infor-
mation), in accordance with our intuitive expectations. The 
relatively large discrepancy between analytic and FEA results 
for relatively wide serpentine precursors (e.g.,  w / R  ≈ 0.4) is 
attributed to the neglect of transverse shear effect in the cur-
rent analytic model. Based on the above analyses, it can be 
deduced that the dimensionless parameters ( a ,  b ,  c  1 , and  c  2 ) 
are merely dependent on a single geometric parameter ( θ  0 ) for 
thin, slender serpentine microstructures. As such, approximate 
solutions to the parameters ( a  and  b ) related to the primary dis-
placements (φ and 1U ) can be obtained by fi tting the analytic 
results for a wide range of arc angle ( θ  0 ) as 

    1.72 0.29 , 1.23 0.140 0 0 0 0a bθ θ θ θ θ) ) )( ( (= − = −   (10) 

    Thereby, approximate solutions of and 1Uφ  are given by 
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   The predictions of Equation  ( 11)   agree reasonably well with 
the precise model calculations (according to energy minimiza-
tion) and FEA results, as shown in Figure  3 b, c and Figure S6d, e
(Supporting Information). Taking the limit 00θ →  by fi xing 

0L Rθ= , the 2D serpentine precursor degenerates into a straight 
ribbon, and the resulting out-of-plane displacement ( U  1 / L ) and 
twist angle (φ) approach the counterparts for buckled struc-
tures that arise from straight ribbons [Figure  3 c and Figure S6e 
(Supporting Information)]. 

 Since the 3D helical mesostructures studied above are 
formed from compressive buckling that includes both bending 
and twisting deformations, a physical quantity, namely, the 
mode ratio ( ρ ), is introduced as a metric to classify the resulting 
3D mesostructures into two different groups, i.e., the bending 
dominated and bending-twisting mixed modes. [ 6 ]  This quan-
tity is defi ned by the ratio of the average twisting curvature
(| ˆ |3 avgκ ) to the average out-of-plane bending curvature (| ˆ |2 avgκ ),

recognizing the negligible change of in-plane bending curva-
ture for ultrathin (i.e.,  w / t  > 20) 2D precursors. For the serpen-
tine microstructures used as 2D precursors, the out-of-plane 
bending and twisting curvatures can be solved by inserting 
Equation  ( 11)   into Equation (7), leading to 
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   The mode ratio can be obtained accordingly as 
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 which is a single-variable function independent of the applied 
strain. Equations  ( 12a)   and  ( 12b)   show that the twisting curva-
ture remains almost unchanged in the helical mesostructures, 
while the bending curvature varies systematically, reaching its 
peak at the inner region of the mesostructures. These fi ndings 
capture the distribution features of both curvature components 
(Figure S8, Supporting Information). Figure  4  presents the vari-
ations of dimensionless average curvatures ( | ˆ |2 avgR κ  and | ˆ |3 avgR κ )
and the mode ratio with two key parameters (applied strain  ε  appl  
and arc angle  θ  0 ). The results confi rm the square root scaling of 
average curvatures with the applied strain, as well as the strain-
independent feature of mode ratio. With increasing the arc 
angle ( θ  0 ), the twisting curvature decreases almost in a linear 
manner, while the bending curvature decreases much faster 
(Figure  4 d,e). Both FEA and theoretical results (Figure  4 f) indi-
cate a nearly proportional dependence of mode ratio on the arc 
angle, i.e., 0.41 0ρ θ≈ , in which the coeffi cient of proportion-
ality is determined from the Taylor expansion of Equation  ( 13)  .
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 Figure 3.    Infl uence of various geometric and material parameters on the out-of-plane displacement. Results of precise model calculation, approximate 
solution, and FEA for the dimensionless maximum out-of-plane displacement versus a) the Poisson ratio and b) applied strain for helical mesostruc-
tures with three different arc angles ( θ  0  = 90°, 150°, and 210°). c) Dimensionless maximum out-of-plane displacement versus the arc angle for helical 
mesostructures with three different applied strains ( ε  appl  = 10%, 20%, and 30%). The parameters adopted in the calculations include  w / R  = 0.05,
 w / t  = 50, and  ε  appl  = 20% for (a), and  w / R  = 0.05,  w / t  = 50, and   ν   = 0.27 for (b) and (c).
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Therefore, the use of a large arc angle for the serpentine pre-
cursor can enhance the contribution of twisting deformation 
evidently. Figure S9 (Supporting Information) presents addi-
tional results of FEA and model predictions for the curvatures 
and mode ratio, which illustrate the negligible effects of Poisson 
ratio, cross-sectional aspect ratio, and normalized width for the 
geometries of our current interest. 

  The curvatures decide not only the mode ratio but also the 
maximum strain in the helical mesostructures, which is directly 
related to material failure (e.g., brittle fracture for silicon or 
plastic yield for metals). Specifi cally, the maximum normal 
strain bendingε  and shear strain twistingγ  of a certain cross section 
correlate with the curvature components by | ˆ | /2bending 2tε κ=  
and | ˆ |twisting 3tγ κ= . According to FEA and model calculations, 
the maximum strain typically occurs at the center of the helical 
mesostructures. Hence, the maximum magnitude of the prin-
cipal strain in the helical mesostructure can be obtained as 

    
,2 0 applF
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 where  F  2  is a function given by 
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   Equation (14) shows that the maximum strain ( ε M  ) is 
determined by the applied strain ( ε  appl ), arc angle ( θ  0 ), and 
normalized thickness ( t / R ), and is independent of the other 
parameters (Poisson ratio   ν   and normalized width  w / R ), which 
is in accordance with FEA results (Figure S10, Supporting 
Information). Figure  5 a–c demonstrates that the predictions 

of analytic solution [Equation (14)] exhibit reasonable agree-
ment with the FEA and precise model calculations, with both 
in support of the proportional scaling of maximum strain with 
the square root of applied strain and the normalized thickness. 
Here, the discrepancy between theoretical predictions and FEA 
can be mainly attributed to the overestimate of the bending 
curvature (Figure S8, Supporting Information). The increase in 
the arc angle results in a substantial reduction in the maximum 
strain, e.g., by ≈ 0.6 times from  θ  0  = 90° to 180°, suggesting an 
effective route to enhancing the compressibility of the helical 
mesostructures. 

  As mentioned previously, the buckling guided fabrication 
process relies on the release of prestrain in the elastomeric sub-
strate to provide compressive forces to the serpentine precur-
sors. An excessively large prestrain can, thereby, lead to failure 
in the constituent material. Here, a failure criterion based on 
the maximum principal strain is adopted for simplicity, in 
which the threshold ( ε  threshold ) is assumed to be independent 
of thickness. Based on Equation  ( 14a)  , the applied strain–pre-
strain relation, /(1 )appl pre preε ε ε= +  and the failure criterion of 

thresholdMε ε= , the maximum prestrain ( pre
maxε ) that can be used to 

avoid material failure is determined as 
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   When ( )/threshold 2 0tF Rε θ≥ , there is no upper limit for the 
prestrain, and any level of prestrain would not lead to mate-
rial failure. In the following analyses, the threshold strain
( ε  threshold ) is taken as the fracture limit for brittle materials 
(e.g., 2% for silicon), or the yield strain for metallic materials 
(e.g., 0.3% for gold). Figure  5 d shows the predicted maximum 
prestrains for silicon and gold helical mesostructures with a 
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 Figure 4.    Infl uence of geometric parameters on the curvature and mode ratio. Results of precise model calculation, approximate solution, and FEA
a,b) for dimensionless average curvatures and c) mode ratio versus the applied strain for helical mesostructures with three different arc angles ( θ  0  = 90°, 
150°, and 210°). d,e) Dimensionless average curvatures and f) mode ratio versus the arc angle for helical mesostructures with three different applied 
strains ( ε  appl  = 10%, 20%, and 30%). The parameters adopted in the calculations include  w / R  = 0.05,  w / t  = 50, and  ν  = 0.27.
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representative normalized thickness ( t / R  = 0.001) and a broad 
range of arc angles. Both the analytic and FEA results show 
a higher pre

maxε  at a larger  θ  0 , and hence, that a more compact 
helical mesostructures can be achieved (Figure  5 e). When the 
arc angle is suffi ciently large, e.g., > 192° (corresponding to the 
vertical dashed line in Figure  5 d), such that ( )/threshold 2 0tF Rε θ≥  
holds true, the gold helical mesostructures are always safe from 
yield, for any level of prestrain. 

 Due to the mechanical and electromagnetic properties, the 
helical mesostructures can be exploited as stretchable intercon-
nects or functional components (e.g., inductors or antennas), 
which could yield a stretchability higher than the prestrain ( ε  pre ) 
used in the assembly, in the case when no solid encapsulates 
the devices. When a helical mesostructure is axially stretched 
( ε  stretch  ≤  ε  pre ), the out-of-plane displacement, the curvature 
components, as well as the maximum principal strain still 
follow a similar square root scaling 
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   This scaling agrees well with the FEA results in Figure S11 
(Supporting Information).  

  4.     Conclusion 

 The work presented here represents systematic studies toward 
buckling-guided formation of 3D helical mesostructures, 
through combined analytic modeling, FEA, and experiment. 
The analytic models, validated by FEA and experiment, suggest 
negligible roles of material parameters ( E  and   ν  ) and cross-
sectional geometric parameters ( w / t  and  w / R ), with dominant 

roles of applied strain ( ε  appl ) and arc angle ( θ  0 ), on the fi nal 3D 
confi gurations. The resulting scaling laws enable predictions 
of key physical quantities, including displacement, curvature, 
mode ratio, and strain, using approximate analytic solutions. 
A demonstrative example based on analytic solutions illus-
trates how to select key design parameters (e.g., the prestrain 
of substrate and geometry of serpentine microstructures), such 
that brittle fracture or plastic yield can be avoided. Further 
work could follow by extension of the scaling laws to 2D pre-
cursors with membrane confi gurations. These results can be 
used as design references for future optimizations in practical 
applications.  

  5.     Experimental Section 
 Preparation of 3D helical mesostructures began with thermal oxidation 
to form a layer of silicon dioxide (SiO 2 , 500 nm in thickness) on 
a silicon wafer. Next, spin casting and photolithography formed 
patterns of photodefi nable epoxy (SU8, 7 µm in thickness) on the 
SiO 2 . Immersion in hydrofl uoric acid (HF) removed the buried SiO 2  
layer from the exposed regions and also slightly from under the edges 
of the SU8. Spin casting and photolithography created patterns of 
photoresist (AZ 5214, 4 µm in thickness) on top of the SU8 layers to 
defi ne the bonding sites. Immersion in HF eliminated the remaining 
SiO 2  by complete undercut etching. The techniques of transfer printing 
enabled retrieval of the 2D precursors and their delivery to a piece of 
water soluble tape (polyvinyl alcohol, PVA). A thin sheet (≈ 0.5 mm) of 
silicone elastomer (Dragon Skin, Smooth-On) served as the substrate, 
stretched to well-defi ned levels of prestrain using a customized stage. 
Exposing the prestrained elastomer and the 2D precursors (on PVA) 
to UV-induced ozone yielded hydroxyl termination on their exposed 
surfaces. Laminating the tape onto the elastomer substrate with the 
exposed SU8 side down, followed by baking in an oven at 70 °C for 
10 min yielded strong covalent bonds via condensation reactions of 
surface-enriched hydroxyl groups between the elastomer substrate 
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 Figure 5.    Strain analyses for avoiding failure of helical mesostructures during postbuckling. Results of precise model calculation, approximate solution, 
and FEA for maximum principal strain of material versus a) the applied strain, b) normalized thickness, and c) arc angle. d) Maximum prestrain that 
can be used in the elastomeric substrate, to avoid brittle fracture in the silicon helical mesostructures (according to  ε M   = 2%) or to avoid plastic yield in 
the gold helical mesostructures (according to  ε M   = 0.3%). e) Deformed confi gurations of six different helical mesostructures when the maximum strain 
reaches the corresponding failure threshold in which the color of FEA results represents the magnitude of maximum principal strain. The parameters 
adopted in the calculations include  t / R  = 0.001 for (a), (c), (d), and (e), and  ε  appl  = 20% for (b).
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and the exposed regions of 2D precursors. Washing with hot water 
and then acetone dissolved the PVA tape and the photoresist. Slowly 
releasing the prestrain completed the process for assembly of 3D 
helical mesostructures. 

 Preparation of helical mesostructures in plastic fi lms began with 
mechanical cutting of a thin layer (≈75 µm in thickness) into desired 
serpentine patterns, followed by cutting of bonding locations in a thin 
sheet of paper (≈90 µm in thickness). The pattern of bonding locations 
corresponds to a certain level of compressive strain applied to the 
serpentine microstructure. Adhering this paper layer onto a rigid plastic 
substrate through thin, double-coated tape (9080A, 3M, Minnesota, 
USA) exposed adhesive bonding locations for purposes of assembly. 
Adhering the 2D serpentine microstructure at the exposed bonding 
locations yielded the corresponding 3D helical mesostructures.  
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 Supporting Information is available from the Wiley Online Library or 
from the author.  
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