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Optodynamic simulation of b-adrenergic receptor
signalling
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Optogenetics has provided a revolutionary approach to dissecting biological phenomena.

However, the generation and use of optically active GPCRs in these contexts is limited and it

is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here

we show that a chimeric rhodopsin/b2 adrenergic receptor (opto-b2AR) is similar in

dynamics to endogenous b2AR in terms of: cAMP generation, MAP kinase activation and

receptor internalization. In addition, we develop and characterize a novel toolset of optically

active, functionally selective GPCRs that can bias intracellular signalling cascades towards

either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how

photoactivation of opto-b2AR in vivo modulates neuronal activity and induces anxiety-like

behavioural states in both fiber-tethered and wireless, freely moving animals when expressed

in brain regions known to contain b2ARs. These new GPCR approaches enhance the utility of

optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and

in vivo.
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Over the past decade, optogenetics and chemogenetics have
made significant contributions to probing biological
questions. Traditional optogenetic approaches however,

utilize expression of depolarizing (channelrhodopsins)1–3 and
hyperpolarizing (halorhodopsins and archaerhodopsins)4 ion
channels to selectively turn on/off neurons in the presence of
light. Chemogenetic approaches, such as designer receptors
exclusively activated by designer drugs5, have high utility
for their modulation of GPCR signalling, but similar to other
ligand-mediated responses, can sometimes be limited by
pharmacokinetics and pharmacodynamics making them
difficult to use to examine real-time kinetics of receptor
activity, particularly in vivo. Thus, the development of optically
active G-protein coupled receptors (GPCRs) allows for more fine
tuned modulation of cellular activity. Through manipulation of
the light stimulus, we can modulate the activity of optically active
GPCRs in an ‘optodynamic’ manner. This, in combination with
the spatiotemporal control offered through optogenetics, provides
a more refined in vivo GPCR toolkit than is currently possible
with chemogenetics and traditional pharmacology.

The chimeric rhodopsin/b2 adrenergic receptor (opto-b2AR)
has been shown to activate cAMP, presumably through Gas-
mediated signalling, and to modulate neuronal excitability6–8.
However, it is unclear whether opto-b2AR behaves similarly to
endogenous b2AR. Here we fully evaluated the in vitro activity of
opto-b2AR and b2AR by examining the temporal kinetics of
cAMP and MAP kinase activation in addition to receptor
internalization and desensitization, and demonstrate that opto-
b2AR mimics the dynamic signalling profile of b2ARs.

Over the past few years the tenets of GPCR pharmacology have
been challenged by the concept of ‘functional selectivity’ or
‘biased agonism,’ demonstrating that ligands exert varying levels
of efficacies on intracellular signalling mechanisms and that
G-proteins may not be the sole determinants of intracellular
activity9–11. While arrestin was canonically thought to only
terminate GPCR-mediated signalling through inactivation and
internalization of the receptor, it is now widely accepted that
arrestin acts to scaffold several intracellular signalling cascades,
particularly MAP kinases. Several receptors, including opioid
receptors12–14, angiotensin II15, V2 vasopressin16 and bAR17
display arrestin-dependent MAP kinase activation. In an effort to
combine spatiotemporal control of opto-b2AR with biased GPCR
signalling, we performed site-directed mutagenesis on opto-b2AR
to generate optically active, functionally selective GPCRs.

Mutation of three key residues in b2AR (b2ART68F,Y132G,Y219A or
b2ARTYY) generate an arrestin-biased mutant11, while modification
of C-terminal serines prevents arrestin binding by blocking
G-protein-coupled receptor kinase phosphorylation resulting
in a G-protein-biased mutant (b2ARS355A,S356G or b2ARSS)18–21.
Analogous residues were altered in opto-b2AR to generate
an arrestin-biased receptor, opto-b2ARL72F,Y136G,Y224A or opto-
b2ARLYY and a G-protein-biased receptor, opto-b2ARS362A,S363G
or opto-b2ARSS. Here we determined the dynamic optical
properties of these novel optically active, functionally selective
receptors.

Heterologous expression systems are essential in characteriza-
tion of receptor activity. They offer the ability to dissect receptor
function not possible in more complex environments. However,
to truly understand endogenous activity, it is essential to
ultimately look at in vivo function. To that end, we determined
whether opto-b2AR could be used in vivo since it has yet to be
utilized for inducing a significant behavioural phenotype6. We
expressed opto-b2AR in a biologically relevant neural circuit
known to be under the influence of noradrenergic signalling and
that expresses b2ARs and its signalling moieties, the basolateral
amygdala (BLA). The presence of all nine adrenergic receptor

subtypes within the amygdaloid complex22 has precluded
determination of their roles and signalling pathways in vivo due
to the fact that pharmacological isolation of these receptors is
difficult within the amygdala. These caveats are true for many
GPCRs, due to the lack of spatiotemporal control of receptor
function, isolation of specific cell types, and control of select
noradrenergic or other modulatory inputs. To isolate
noradrenergic GPCR signalling in vivo, we used opto-b2AR and
demonstrated that in vivo photoactivation of b-adrenergic
signalling produced excitation of BLA neurons resulting in
anxiety-like states in both fiber-tethered and wireless, freely
moving animals.

Here we have fully evaluated the utility of opto-b2AR in
mimicking endogenous b2AR activity; we developed novel,
optically active, functionally selective receptors to bias b2AR
intracellular signalling mechanisms and we used opto-b2AR
in vivo and define its ability to initiate a series of real-time
behavioural responses.

Results
Optical control of b-adrenergic signalling. We first fully
characterized a unique optical tool for activating b-adrenergic
signalling and compared its pharmacodynamic properties with
b2-adrenergic receptors (b2AR). The opto-b2AR receptor is a
chimeric protein that includes transmembrane and extracellular
components of bovine rhodopsin, with intracellular domains and
loops of the b2 adrenergic receptor (Fig. 1a)6. Photostimulation
of HEK293 cells expressing opto-b2AR caused a real-time,
light-power-dependent increase in cAMP (cyclic adenosine
monophosphate), a canonical product of the Gas signalling
pathway (Fig. 1b,c), similar to isoproterenol-induced
concentration-dependent cAMP generation (Fig. 1c)23. This
real-time cAMP increase in response to light was absent in
untransfected HEK293 cells (Supplementary Information,
Supplementary Fig. 1a). Furthermore, the kinetics of cAMP
activation (ton) and inactivation (toff) are strikingly similar
between opto-b2AR and endogenous b2AR in HEK293 cells
suggesting that although the extracellular regions of the receptors
differ greatly, the conformational change required to initiate
intracellular signalling are maintained, making these receptors
kinetically similar (Fig. 1d,e). In addition, cAMP triggers
activation of cyclic nucleotide-gated nonspecific cation
channels. Here we show opto-b2AR causes a robust increase in
intracellular Caþ 2 in response to light stimulation, with similar
results obtained for b2AR following isoproterenol bath
application, while untransfected HEK293 cells show no
response to light (Supplementary Fig. 1b).

In addition to cAMP, extracellular-signal regulated kinase
(ERK) 1/2 phosphorylation has been examined extensively in
b2AR, showing a rapid, yet transient peak within 2–5min of
isoproterenol-induced activation11,17,24–26. To determine whether
opto-b2AR also activates ERK 1/2 kinases, we stimulated opto-
b2AR with a 1min light pulse and generated a time course of ERK
phosphorylation (pERK). Similar to isoproterenol-induced pERK
in b2AR, opto-b2AR showed a rapid and transient increase in
pERK that peaks within 2–5min and then rapidly declines
(Fig. 1f,g, Supplementary Fig. 2a for full time course). The kinetic
effects seen in b2AR were the same whether in the continued
presence of isoproterenol (Fig. 1f,g) or following a 1min pulse
with isoproterenol (Supplementary Fig. 2b,c). We also show that
levels of total ERK in b2AR remain constant over a two-hour trial
period, suggesting the kinetics of pERK are not due to
degradation of total ERK (Supplementary Fig. 2d,e). In
addition, the extent of ERK activation in opto-b2AR displayed a
light-power-dependent relationship that was absent in
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untransfected HEK293 control cells (Supplementary Fig. 2f,g).
The frequency of the light pulse showed the most effect on pERK
at full (not pulsed) light or at 5 s on/5 s off (Supplementary
Fig. 2h), while light pulse length had little effect (Supplementary
Fig. 2i), suggesting that opto-b2AR activity can be modulated via
manipulation of the light stimulus (that is, optodynamic). These
kinetically parallel data sets suggest that photoactivation of opto-
b2AR induces rapid and transient increases in receptor signalling
known to be mediated through b-adrenergic, Gas-dependent
pathways11.

Previous studies have shown that rhodopsin and some
chimeric GPCRs display dark activity, or are constitutively active
in the absence of light7,27–29. To test this, we quantified levels of
pERK in HEK293 cells stably expressing opto-b2AR and
untransfected controls. In the absence of light stimulation, both
cell types showed similar levels of pERK, suggesting that the
presence of opto-b2AR does not induce constitutive activity
(Supplementary Fig. 2j)6,30,31.

Opto-b2AR internalization and desensitization. We also
determined if opto-b2ARs are regulated through their receptor
internalization and desensitization kinetics in a manner similar to
b-adrenergic receptors32,33. Photostimulation (1min) of opto-
b2AR resulted in rapid receptor internalization within 2–5min
following light exposure (ton¼ 2.8min) that peaked within
15min and returned to baseline levels 90min later (Fig. 2a–c,
Supplementary Fig. 3a). In the continued presence of
isoproterenol (1 mM), b2AR internalization was temporally
matched (ton¼ 2.8min) to opto-b2AR and yielded values
similar to those obtained by other groups (Fig. 2a–d,

Supplementary Fig. 3a,b)23,34. To better mimic the
optodynamic stimulation of opto-b2AR, b2AR cells were treated
with a 1min isoproterenol pulse. b2ARs internalized with similar
kinetics (ton¼ 2.2min) as opto-b2AR, yet in contrast to
continuous agonist exposure, b2ARs return to baseline more
rapidly following a 1-min pulse of agonist (Supplementary
Fig. 3c,d). If we compare Fig. 2d and Supplementary Fig. 3d,
there are significant differences at the 60, 90 and 120min time
points suggesting that b2ARs return faster to the membrane in the
absence of agonist, than in its presence (Supplementary Fig. 3e).
These kinetic differences in receptor internalization and recycling
highlight a significant limitation of traditional pharmacological
approaches, as it can be difficult to rapidly remove ligand from
the cell media/bath, or in particular following in vivo infusion.
This dynamic function of the optically active GPCR, highlights
the utility of these types of optical approaches that mimic GPCR
activity at time scales matched to endogenous neuromodulator
(NE) uptake and degradation35,36.

We next determined the functional recovery from desensitiza-
tion of opto-b2AR in a real-time cAMP assay. Following an initial
light pulse (P1), cells produced less cAMP in response to a second
light pulse (P2) at short interstimulus intervals (ISI; Fig. 2e).
Varying ISIs showed complete functional recovery of cAMP over
time (trec¼ 49min) (Fig. 2e–g). We also observed that the
reduced cAMP responses seen at short ISIs are not due to
degradation of the 9-cis chromophore, but rather internalization
and desensitization of the receptor (Supplementary Fig. 3f)7.
These results suggest that opto-b2AR has optodynamically
matched kinetics and signal transduction profiles to b2AR and
is a useful tool for spatiotemporal control of b-adrenergic
signalling.
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Figure 1 | Opto-b2AR and b2AR exhibit similar G-protein signaling mechanisms. (a) Both b2AR (ligand) and opto-b2AR (light) activate intracellular
cAMP and pERK pathways. (b) Representative traces show light-induced activation of cAMP in response to increasing powers of light (5 s pulse) in
HEK293 cells expressing opto-b2AR. (c) Power response curve of cAMP of opto-b2AR (blue) (EP50¼0.9±0.1Wcm# 2; n¼4 experiments). Isoproterenol
increase cAMP in b2AR (black) expressing cells (EC50¼ 14±6 nM; n¼6 experiments). (d) Opto-b2AR (blue, n¼ 14 experiments) and endogenous b2AR
in HEK293 cells (black, n¼4 experiments) display similar kinetics of cAMP activation and deactivation in response to photostimulation (5 s pulse) and
isoproterenol (1 mM) respectively (mean¼ solid line, s.e.m.¼ shaded area). (e) Time constants of cAMP activation (ton) and deactivation (toff) fit from
traces in d for opto-b2AR (blue) and b2AR (black). Activation (opto-b2AR¼0.86±0.12min; n¼ 18 experiments and b2AR¼0.77±0.14min; n¼4
experiments) and deactivation (opto-b2AR¼0.85±0.03min; n¼ 15 experiments and b2AR¼0.88±0.09min; n¼4 experiments) time constants are not
statistically different. (f) Representative pERK immunoblots in response to isoproterenol (1mM) in b2AR and photostimulation (1min) in opto-b2AR.
(g) Quantification of immunoblots for both b2AR (black, n¼ 5 experiments) and opto-b2AR (blue, n¼8 experiments) displayed over time. All data are
expressed as mean±s.e.m. All light pulses are 473 nm, 1Wcm# 2 unless otherwise noted.
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Functionally selective opto-b2ARs receptors. Rhodopsin and
bARs are both Class A GPCRs and hence share similar sequence
homology (Supplementary Fig. 4). It is this high homology that
facilitated the generation of chimeric opto-b2ARs to mimic bARs
intracellular signalling. In an effort to combine the spatio-
temporal control of opto-b2AR with biased intracellular signalling
cascades, we performed site-directed mutagenesis on opto-b2AR
to generate optically active, functionally selective, G-protein-
coupled receptors.

Opto-b2AR was altered to generate the putative arrestin-biased,
opto-b2ARL72F,Y136G,Y224A or opto-b2ARLYY, and the putative
G-protein-biased, opto-b2ARS362A,S363G or opto-b2ARSS (Fig. 3a,
Supplementary Fig. 4). It has been proposed and demonstrated by

several groups that G-protein-mediated signalling is rapid and
transient while arrestin-mediated signalling is slow and pro-
longed10,11,17 (Fig. 3b). Here we show that activation of
endogenous bAR in HEK293 cells with isoproterenol shows a
rapid and transient increase in cAMP (Fig. 3c). In contrast,
HEK293 cells overexpressing the arrestin-biased, b2ARTYY shows
a marked reduction in cAMP. This reduction is suggestive of a
decrease in G-protein interaction, and may also indicate a
potential dominant negative effect of the mutant receptor on
endogenous bAR. In contrast, HEK293 cells overexpressing the
G-protein-biased b2ARSS had an exaggerated response in the
continued presence of isoproterenol (Fig. 3c). Interestingly,
HEK293 cells overexpressing b2ARWT show a longer and
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sustained cAMP response in the presence of isoproterenol as
compared to endogenous bAR in HEK293 cells. These kinetic
differences are also clearly seen when repeated at 25 !C
(Supplementary Fig. 5a). Further, all three receptor types show
similar kinetic responses to forskolin, a general activator of
adenylate cyclase (Supplementary Fig. 5b), suggesting these

kinetic differences are mediated through Gas signalling and not
due to cAMP sensor expression.

In response to a 5-s pulse of blue light, opto-b2AR shows a
rapid and transient increase in cAMP, while the arrestin-biased,
opto-b2ARLYY, shows an attenuated response to photostimula-
tion (Fig. 3d). When we repeat this experiment at 25 !C,
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opto-b2ARLYY does show a small response (Supplementary
Fig. 5c), yet is still significantly reduced from opto-b2AR, similar
to the differences we and others have seen with b2ARTYY
following agonist treatment11. We next used an inhibitor of the
Gas subunit (NF 449). Using a concentration shown to effectively
reduce isoproterenol-induced cAMP in b2ARWT cells
(Supplementary Fig. 6a), we show that NF 449 (100 mM)
reduces peak cAMP (Supplementary Fig. 6b,d). However, due
to the potential for off target activity at purinergic receptors, we
used a nonselective P2 purinergic antagonist, suramin (100 mM),
and showed no reduction in peak cAMP (Supplementary
Fig. 6c,d), suggesting the effect is not due to purinergic receptor
interaction but likely to Gas inhibition. This reduction in real-
time cAMP activity is similar to the profile of opto-b2ARLYY
(Supplementary Fig. 5c), and suggests that the reduction in cAMP
is likely due to reduced association between the Gas subunit and
the receptor.

In contrast, the G-protein-biased, opto-b2ARSS yields an
exaggerated and prolonged cAMP response following photo-
stimulation (Fig. 3d); an effect that is also reproduced at 25 !C
(Supplementary Fig. 5c). Comparatively, b2ARSS and opto-
b2ARSS show a significant robust enhancement of cAMP
responses when compared to WT, whereas both b2ARTYY and
opto-b2ARLYY show a significant reduction (Fig. 3e).

The differences seen between receptors in activation (ton) and
deactivation (toff) time constants attest to the unique kinetics of
each receptor type at both 37 !C (Fig. 3f) and 25 !C
(Supplementary Fig. 5d). These kinetic differences may be
amplified at cooler temperatures due to a reduction of cellular
metabolism, and/or variations in the temperature sensitivity of
the ligand-induced conformation versus photoisomerization of
retinal. However, we did identify significant differences in the
deactivation time constants (toff) for both b2ARSS and opto-
b2ARSS, which were significantly slower when compared with
b2ARWT and opto-b2AR, respectively (Fig. 3f,g, Supplementary
Fig. 5d). These slower rates suggest a lack of G-protein coupled
receptor kinase and arrestin recruitment to the membrane
prolonging the activity of the receptor and yielding more cAMP
output. In contrast, the reduced cAMP levels produced by both
b2ARTYY and opto-b2ARLYY is potentially due to inefficient
coupling to the G-proteins that are required to initiate cAMP
production. It is also unlikely that these kinetic differences are
due to different light transduction properties of each receptor
type as all three opto-b2ARs light power response curves yield
similar EP50 values (Supplementary Fig. 5e,f), although we did
note that the efficacy for generation of cAMP by opto-b2AR is not
completely recapitulated comparedwith b2AR. This is most likely
due to the presence of endogenous b-adrenergic receptors
expressed in HEK293 cells.

To confirm that the kinetic cAMP differences observed
between opto-b2AR, opto-b2ARLYY and opto-b2ARSS are due to
biased intracellular signalling and not receptor expression levels,
we quantified cell surface receptor expression. Using on-cell
westerns37,38 with a rhodopsin antibody, we show that rhodopsin
expression is not only significantly elevated in the three cell lines
in comparison to untransfected HEK293, but are also equal
(Supplementary Fig. 5g,h). We also calculated receptor surface
expression as a percent of total fluorescence and show that
both opto-b2ARLYY and opto-b2ARSS have increased surface
expression compared to opto-b2AR (Supplementary Fig. 5i).
The reduction in opto-b2AR surface fluorescence is most likely
due to the higher levels of diffuse internalized receptor at baseline
(see 0-min time point in Fig. 2b,c).

Activation of MAP kinase cascades also shows dramatic kinetic
differences reminiscent of the model proposed by Luttrell and
Getsey–Palmer (Fig. 3b)10. In the presence of isoproterenol,

b2ARWT and b2ARSS show a marked increase in ERK
phosphorylation that peaks within 2–5min and is rapidly
attenuated, suggesting a G-protein phase of activation, while
b2ARTYY, shows a significantly reduced level of pERK that is
prolonged and sustained (Fig. 3h, Supplementary Fig. 7a).
Likewise, opto-b2AR and opto-b2ARSS show a comparable
temporal profile in the initial phase of ERK activation while
opto-b2ARLYY remains significantly slower and sustained (Fig. 3i,
Supplementary Fig. 7b), in a similar manner to the kinetics of
b2ARTYY. Further, when examined as fold increase over baseline,
the effects on pERK by b2ARWT and b2ARSS, show a marked
increase in ERK phosphorylation that peaks within 2–5min and
is rapidly attenuated, while b2ARTYY shows a reduced and
sustained level of pERK (Supplementary Fig. 7c). Likewise, opto-
b2ARSS and opto-b2ARLYY differed significantly from opto-b2AR,
particularly in the initial stages of ERK activation (Supplementary
Fig. 7d). The kinetics of both cAMP and ERK activity are
remarkably similar between b2AR, opto-b2AR, and their
respective G-protein-biased and arrestin-biased mutants
strongly supporting the current proposed model of rapid and
transient G-protein-mediated signalling, and slower sustained
arrestin-mediated signalling.

Functionally selective opto-b2AR mutant internalization.
Activity of GPCRs is usually terminated following phosphoryla-
tion via G protein-coupled receptor kinases (GRK) followed by
subsequent recruitment of arrestin, leading to receptor inter-
nalization via clathrin coated pits39. To ascertain the
characteristics of optically active, functionally selective mutant
opto-b2ARs following desensitization we captured a time course
of receptor internalization following photostimulation. Opto-
b2ARSS did not internalize at any time point tested following light
stimulation, suggesting that the ability of arrestin to initiate
internalization is significantly compromised in this receptor
(Fig. 4a,b, Supplementary Fig. 8). Conversely, the arrestin-biased
mutant, opto-b2ARLYY was able to internalize rapidly following
light stimulation, peaking at 15min (Fig. 4c,d). In comparison to
opto-b2AR at the 15-min time point, we see that opto-b2ARLYY is
significantly slower in reaching maximal internalization
suggesting less efficient coupling with G-protein subunits
that facilitate GRK recruitment (Fig. 4e). In addition, previous
studies looking at b2ARTYY also demonstrated a decrease in
recruitment of arrestin which could also explain why opto-
b2ARLYY does not reach the same levels of internalization as
opto-b2AR11.

In addition to demonstrating a lack of internalization for opto-
b2ARSS, we determined whether opto-b2ARSS receptors function-
ally desensitize. Following an initial pulse of light (P1), opto-
b2ARSS displayed a typical real-time cAMP response (Fig. 4f).
Following a subsequent light pulse (P2), opto-b2ARSS showed a
mild reduction in cAMP, only at the earliest time point tested (P1
versus P2 at 5min, P¼ 0.0308 via Student’s paired t-test).
However, overall opto-b2ARSS did not show a significant
reduction in P2-mediated cAMP (Fig. 4f–h). In comparison,
opto-b2AR displayed a significant reduction in cAMP suggesting
that the receptor functionally desensitized, and eventually
recovered function within 120min (Figs 2e–g and 4g). Opto-
b2ARSS also did not lose its ability to generate cAMP at most time
points tested, unlike opto-b2AR, which had a dramatic loss in
cAMP signalling at shorter interstimulus intervals. Due to the
absence of a detectable cAMP signal at 37 !C, no functional
recovery data were collected for opto-b2ARLYY. These data
suggest that the putative G-protein-biased opto-b2ARSS does not
couple to arrestin as it is not internalized and desensitized
following photostimulation, yet the putative arrestin-biased
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opto-b2ARLYY mutant interacts with arrestin since it is robustly
internalized following photostimulation.

Photostimulation of opto-b2AR promotes neuronal firing. This
series of in vitro data allowed us to illustrate that b2AR and opto-
b2AR share similar properties of cAMP generation, MAP kinase
activation and receptor internalization. In addition, utilizing
optically active, functionally selective receptors, we gained addi-
tional insight into how these tools bias receptor function towards
G-protein or arrestin-mediated signalling effects in cAMP, MAP
kinase activation, and receptor internalization/desensitization.
Therefore, we next examined how opto-b2AR functions in a
biologically relevant neuronal context known to be modulated
through endogenous noradrenergic activation.

We first determined whether photoactivation of opto-b2AR in
cells known to express wild-type bARs, the BLA, could promote
time-locked signalling effects in vivo and subsequent excitation of
BLA neurons. We virally targeted opto-b2AR-mCherry to
excitatory neurons under the control of the CaMKIIa promoter
to the BLA (opto-b2ARBLA/CaMKIIa) (Fig. 5a–d). Utilizing a
16-channel optrode array in the BLA for single-unit extracellular
recordings we delivered light stimulation (20-s pulse) in vivo and

demonstrated a significant increase in neuronal firing of BLA
neurons (Fig. 5e–j). Repeated light pulses (both 5- and 20-s
constant light) also showed sustained activity over time
(Supplementary Fig. 9a,b), whereas photostimulated cells in
control virus (empty-vector lenti-virus) injected mice showed no
effect on neuronal firing (Fig. 5i,j). In some instances, cells did not
respond to light stimulation or showed inhibitory effects of
photoactivation of opto-b2ARBLA/CaMKIIa (5% and 9%, respec-
tively; Fig. 5g, Supplementary Fig. 9c). These differences in
neuronal activity may potentially be due to lack of expression of
the viral construct, or lateral inhibition from local inhibitory
neurons in this region40–42. In addition, we show that activation
of opto-b2ARBLA/CaMKIIa in vivo showed a slow onset of
activation (ton) and inactivation (toff), similar to previous
reports (Supplementary Fig. 9d)6. We also confirmed that the
presence of opto-b2ARBLA/CaMKIIa in vivo does not induce
constitutive activity and alter neuronal activity as baseline firing
rates between opto-b2ARBLA/CaMKIIa (n¼ 41 units) and viral
control (n¼ 11 units) neurons are not different (P¼ 0.2593 via
unpaired Student’s t-test) (Fig. 5j). These results demonstrate that
photoactivation of opto-b2ARBLA/CaMKIIa signalling can robustly
increase neuronal activity, in a time-locked and spatially
restricted manner in vivo.
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Figure 4 | Opto-b2ARSS and opto-b2ARLYY internalization and desensitization. (a) Representative images show opto-b2ARSS–YFP (pseudocoloured red)
in response to photostimulation (1min). Scale bar, 10mm. (b) Quantification of internalized opto-b2ARSS–YFP (red; (n¼ number of cells per time point).
(c) Representative images show internalization of opto-b2ARLYY–YFP (pseudocoloured green) following light exposure (1min). Arrowheads denote
internalized receptor. Scale bar, 10mm. (d) Quantification of internalized opto-b2ARLYY–YFP (green; (n¼ number of cells per time point; ***Po0.001 via
One-Way ANOVA followed by Dunnett’s multiple comparison test to 0-min control). (e) Comparison of internalization at 15min post photostimulation for
opto-b2AR (dark blue; n¼ 32 cells), opto-b2ARLYY (dark green; n¼ 26 cells) (****Po0.0001 via Student’s unpaired, two-tailed t-tests). (f) Representative
traces show recovery from desensitization in opto-b2ARSS expressing cells. P1 is cAMP response to initial light. P2 is cAMP response to second light pulse
following different interstimulus interval. (g) Comparison of recovery from desensitization between opto-b2AR (dark blue) and opto-b2ARSS (dark red) at
low interstimulus intervals (n¼ number of of experiments; *Po0.05 via Student’s unpaired, two-tailed t-tests). (h) Quantification of opto-b2ARSS recovery
from desensitization in (f) (*Po0.05, paired two-tailed t-tests comparing P2 with P1 at each time point; (n¼ number of experiments). All data expressed as
mean±s.e.m. All light pulses are 473 nm, 1Wcm# 2.
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two-tailed t-test). (q) Opto-b2AR animals (blue) spend more cumulative time in the dark box than viral controls (black; *Po0.05; multiple Student’s
unpaired, two-tailed t-tests). All data expressed as mean±s.e.m. All light pulses are 473 nm, 1Wcm# 2.
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Photostimulation of opto-b2AR promotes anxiety-like behaviour.
We next explored whether spatiotemporal activation of
b-adrenergic signalling in vivo was sufficient to promote robust
behavioural effects. We bilaterally expressed opto-b2ARBLA/CaMKIIa

in the BLA (Fig. 5a–d, Supplementary Figs 10a,b and 11) and
photoactivated (5 s on, 5 s off) animals during two different
yet widely used rodent anxiety-like behavioural models, the
elevated zero maze (EZM) and the light–dark box (LDB)43,44.
Photoactivation of opto-b2ARBLA/CaMKIIa signalling in the BLA
produced rapid and sustained anxiogenic-like behaviour with mice
spending significantly more time in the closed arm of the EZM
(Fig. 5k,l), with no changes in locomotor activity (Fig. 5m,
Supplementary Fig. 10c,d). We next examined the effects of opto-
b2ARBLA/CaMKIIa activation on rapid acute anxiety-like behaviour
using the LDB45. In this 10min assay, rapid entry into a dark box
from a light chamber and increased time spent in the dark box are
measures of anxiogenesis46. This model consists of an enclosed dark
environment with a small doorway inaccessible to fiber optic
implants, we therefore utilized our recently developed wireless
optogenetic approach to drive microscale inorganic light emitting
diodes (m-ILEDs)47,48 (Fig. 5n, Supplementary Fig. 12a–d). Here we
developed and utilized a ‘wireless 2.0’ version, that is much smaller
allowing for even more unrestricted animal activity, to remotely
photoactivate opto-b2ARBLA/CaMKIIa injected mice. In these
experiments, photoactivation of opto-b2ARBLA/CaMKIIa caused
mice to rapidly enter the dark chamber as demonstrated by both
a significant decrease in latency to enter the dark, and significantly
more time spent in the dark during the trial (Fig. 5o–q) with no
effect on locomotor behaviour (Supplementary Fig. 12e,f).
Altogether, these results demonstrate that activation of opto-b2AR
signalling in vivo can robustly modulate behavioural responses in
bAR expressing regions. Furthermore, this can be done in a
wireless manner, providing a unique method for spatiotemporal
engagement of GPCR signalling in vivo in an unrestricted manner,
such as the home cage, or other more diverse behavioural
environments.

Discussion
Manipulation of endogenous intracellular GPCR signalling
in vivo has historically required pharmacological techniques. To
some degree, optogenetics has filled this niche by allowing cell-
type specificity in addition to spatiotemporal control49. However,
a vast majority of optogenetic studies utilize light sensitive ion
channels or pumps providing only binary control of neural
activity. Here we show for the first time, that a chimeric
rhodopsin/b2-adrenergic receptor (opto-b2AR) behaves in a
kinetically similar manner, in a host of signalling readouts, to
the human b2AR. We show that opto-b2AR activates GPCR
signalling in a power dependent manner, mimicking the
concentration dependence of isoproterenol on b2AR.
Importantly, we also report that the kinetic responses of these
two receptors are similar and that opto-b2AR not only
internalizes following stimulation, but also functionally
desensitizes, sharing the same kinetics as b2AR. Taken together
these data strongly support using opto-b2AR as a tool to mimic
b2AR activity (see summary data in Supplementary Table 1). In
addition to modelling b2AR at the receptor level, incorporation of
opto-b2AR as a tool allows for modelling the kinetics of
endogenous NE release as the activation and deactivation of
this receptor is controlled instantly through optogenetic
techniques. In contrast, small molecules may confound analysis
at the circuit level, as drug clearance becomes an issue and
systemic half-life makes conclusions regarding kinetics of
behavioural onset/offset difficult to interpret. Conversely, it
must be taken into account that opto-b2AR is not identical to

b2AR, and it is not currently known whether the trafficking and
recycling pathways are the same in vivo. Future studies will need
to further characterize the intracellular dynamics of opto-b2AR
in vivo using real-time imaging approaches.

In addition to showing the utility of optically activated GPCRs,
we show here for the first time, optically active, functionally
selective GPCRs. The concept of functional selectivity or biased
agonism is becoming increasingly important to understand
GPCR biology and in the development of novel therapeu-
tics9,50,51. Here we show two functionally distinct receptors: the
arrestin-biased, opto-b2ARLYY, and the G-protein-biased, opto-
b2ARSS. Through an array of biochemical analyses we show that
opto-b2ARLYY: mobilizes less cAMP, shows reduced and
prolonged activation of ERK and internalizes in response to
light stimulation in comparison to opto-b2AR. Conversely, opto-
b2ARSS: shows enhanced and transient cAMP signalling, shows
elevated transient activation of ERK, lacks internalization, and
shows little desensitization as compared with opto-b2AR. These
optically sensitive, functionally selective GPCRs provide the
advantages of not requiring a biased ligand and have direct
spatiotemporal control over receptor activation and deactivation
(see summary data in Supplementary Table 2).

The information gathered from in vitro studies regarding the
intracellular characteristics of opto-b2AR in a heterologous
expression system provided confidence that opto-b2AR closely
mimics the pharmacological properties of b2AR. To expand on
this potential utility, we further validated this approach in vivo, in
a biologically relevant anxiety circuit known to be modulated
through noradrenergic activation, the BLA. Given that the BLA is
composed mostly of excitatory neurons52,53, we packaged
opto-b2AR under the control of the CaMKIIa promoter to
drive robust expression in the BLA (opto-b2ARBLA/CaMKIIa).
Photostimulation of opto-b2ARBLA/CaMKIIa in vivo altered the
baseline firing properties of BLA neurons and revealed a
heterogeneous population of cells. While the majority of cells
increased firing rate, some exhibited no change and some showed
a reduction in firing rate. Utilizing traditional pharmacological
approaches would not allow for the isolation of a cell type within
a given anatomical region and hence the roles of individual cell
types, and adrenergic receptor subtypes were not previously
possible.

When opto-b2ARBLA/CaMKIIa was activated in vivo, mice
exhibited an anxiety-like phenotype. Anxiogenesis was demon-
strated in two commonly used models of anxiety-like behaviour
in rodents, the EZM43 and the LDB46. Utilization of the LDB was
only possible due to new wireless optogenetic technology recently
developed47,48. Here we also demonstrate for the first time, real-
time wireless control of GPCR signalling. Opto-b2ARBLA/CaMKIIa

expressing mice, when stimulated wirelessly, displayed an
anxiety-like phenotype in the LDB assay. This technology
allowed us to use a common model of anxiogenic behaviour,
but also sets the stage for important future work utilizing wireless
manipulation of GPCR signalling in vivo allowing for a large
expansion of GPCR-mediated behaviours that can be paired with
current optogenetic techniques. That being said, optogenetics
comes with certain caveats. It is possible that photostimulation in
the BLA also activates axon collaterals, and hence confound
subsequent behavioural output, or that more complex cell types
and expression patterns are needed to truly hone in on b2AR
signalling in real-time, in vivo. However, this is a unique first
approach, and as additional mouse genetic tools and targeting
schemes become available54, further isolation of cell types and
GPCR signalling in neural circuits will become increasingly
possible.

Taken together our data demonstrate that chimeric, optically
active GPCRs can behave in a similar manner to their
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endogenous counterparts, making them particularly useful for
both in vitro and in vivo applications. Future studies will utilize
these tools to engage the diversity of GPCR signalling in vivo and
determine if spatiotemporal control of biased signalling promotes
a series of pluridimensional behavioural phenotypes. In this
report, we were able to show that the integration of the excitatory
noradrenergic influence in the BLA is mediated via activation of
b-adrenergic pathways that ultimately promotes anxiogenic-like
behavioural states. Some exciting additional extensions include
using them for examining the role of signalling inside cells, since
the light used to activate these receptors can penetrate the cell
membrane. Recent work from von Zastrow and colleagues has
shown that Gas-coupled receptors have multi-phasic signalling
properties, one that is membrane bound, and another that occurs
from endosomes55,56. Other uses of these receptors include a
means to better understand the process of G-protein activation
without confounds of ligand binding. These findings have broad
implications for our understanding of the mechanisms of GPCR
signalling in vivo and in the development of novel therapeutics
that depend on interactions with GPCRs.

Methods
Chemicals. Isoproterenol (10mM dimethyl sulfoxide (DMSO) stock), forskolin
(10mM DMSO stock) and NF 449 (10mM water stock) were obtained from Tocris
Biosciences. 9-cis-retinal (10mM DMSO stock and shielded from light) was
obtained from Sigma. Vehicle controls were used in all cases.

Light stimulation. All light stimulation was constant at 473 nm, at powers and
pulse lengths indicated in figure legends. Light was delivered via a 100-mW,
473-nm diode-pumped solid-state laser (OEM Laser Systems)4,57.

Cell culture. HEK293 cells (ATCC, CRL-1573) were grown in DMEM supple-
mented with 10% fetal bovine serum containing 1$ pen/strep (Invitrogen) and
maintained at 37 !C in a humidified incubator with 5% CO2. Stable HEK293 cell
lines expressing pcDNA3.1 containing opto-b2AR, b2AR and their respective
mutants were generated by transfecting HEK293 cells with identical amounts of
cDNA (10 mg in 100-mm dishes) for 4 h using JetPrime (Polyplus) reagent per
manufacturer’s instructions. Cells were placed under selective pressure with G418
(400 mgml# 1) and FACS (Washington University FACS Sorting Facility) sorted
for equal yellow fluorescent protein (YFP) fluorescence to ensure equivalent
receptor expression. All experiments utilizing opto-b2AR and its mutants were
performed in the dark in the presence of 1 mM 9-cisretinal (Sigma).

Site-directed mutagenesis. Human adrenergic receptor beta 2 (ADRB2), Gene
Bank Accession Number: NM_000024.3 was purchased from cDNA.org.

b2AR–YFP fusion protein was created using human ADBR2 as a template in a
high fidelity PCR using the following primers: with primers EcoRI-b2AR-forward
(50-AGT GTG GTG GAA TTC GAT TAT CCA CC-30) and XhoI-b2AR-reverse
(50-CCT CTA GAC TCG AGT aAC AGC AGT GA-30) with the stop codon
mutated to leucine. The PCR product was then digested and cloned into the
50 EcoRI and 30 XhoI sites of pcDNA3–YFP (Addgene Plasmid 13033).

b2ARSS–the ‘G-protein biased’ mutation (S355A/S356G) was created using
human ADBR2 as a template in a high fidelity PCR using the following primers:
internal primers containing point mutations in lower case, forward (50-TAT GGG
AAT GGC TAC gCC gcC AAC GGC AAC ACA GG-30) and reverse (50-CCT GTG
TTG CCG TTG gcG GcG TAG CCA TTC CCA TA-30) with external primers
EcoRI-b2AR-forward (50-AGT GTG GTG GAA TTC GAT TAT CCA CC-30) and
XhoI-b2AR-reverse (50-CCT CTA GAC TCG AGT aAC AGC AGT GA-30) with
the stop codon mutated to leucine. The PCR product was then digested and cloned
into the 50 EcoRI and 30 XhoI sites of pcDNA3–YFP (Addgene Plasmid 13033).

b2ARTYY–the ‘arrestin biased’ mutation was obtained from Robert Lefkowitz
(Duke University). We created a fusion protein between b2ARTYY and YFP.
b2ARTYY was amplified via high fidelity Taq with the following primers: EcoR1-
b2ARTYY-forward (50-TAC AAG GAC GAT GAa ttC atg GGG CAA CCC GGG
AAC GGC A-30) and XhoI-b2ARTYY-reverse (50-GCG GCC GTT ctc gag tgc CAG
CAG TGA GTC ATT TGT ACT-30) with stop codon changed to an alanine. The
PCR product was then digested and cloned into the 50 EcoRI and 30 XhoI sites of
pcDNA3–YFP (Addgene Plasmid 13033).

Opto-b2ARSS–the ‘G-protein biased’ mutation (S362A/S363G) was created
using a COBALT alignment against human b2AR (S355A/S356G). Opto-b2AR was
obtained from Karl Deisseroth (Stanford University) and used as the template in a
high-fidelity PCR using the following primers: internal primers containing point
mutations in lower case, forward (50-TCC AAA GCG TAC GGA AAT GGC TAT
gCA gga AAC AGC AAC GGA AAG ACT GAT TAT-30) and reverse (50-ATA

ATC AGT CTT TCC GTT GCT GTT tcc TGc ATA GCC ATT TCC GTA CGC
TTT GGA-30) with external primers HindIII- opto-b2ARWT-forward (50-CCA
AGC TGG CTA GTT AAG CTT GCC ACC-30) and NotI–opto-b2ARWT–rev
(50-GCT CAC GGC GGC CGC GGC CGG AGC GAC-30). PCR product was then
digested and cloned into the 50 HindIII and 30 NotI sites of pcDNA3.1–YFP
(generously provided by Deisseroth Lab).

Opto-b2ARTYY, the ‘arrestin biased’ mutation was created using a COBALT
alignment between opto-b2AR and b2ARTYY point mutations: L72F, Y136G,
Y224A were generated using the opto-b2ARWT as a template in a high-fidelity PCR
using the following primers: opto-b2ARL72F-forward (50-CTC CAA ACC GTG TTt
AAC TAC ATA CTC CTT-30), opto-b2ARL72F-reverse (50-AAG GAG TAT GTA
GTT aAA CAC GGT TTG GAG-30); opto-b2ARY136G-forward (50-TTG GCC ATA
GAG AGG ggC GTG GTG GTC ACA-30), opto-b2ARY136G-reverse (50-TGT GAC
CAC CAC Gcc CCT CTC TAT GGC CAA-30); opto-b2ARY224A-forward (50-ATC
TTT TTC TGT gcC GGC AGG GTG TTC CAG-30), opto-b2ARY224A-reverse
(50-CTG GAA CAC CCT GCC Ggc ACA GAA AAA GAT-30) with the external
primers HindIII- opto-b2ARWT-forward (50-CCA AGC TGG CTA GTT AAG
CTT GCC ACC-30) and NotI- opto-b2ARWT-rev (50-GCT CAC GGC GGC CGC
GGC CGG AGC GAC-30). PCR product was then digested and cloned into the
50 HindIII and 30 NotI sites of pcDNA3.1–YFP (generously provided by Deisseroth
Lab).

All mutations were confirmed by DNA sequencing (AGCT Inc., Wheeling, IL).

Real time cAMP assay. Stable HEK cell lines containing opto-b2AR, b2AR and
their respective mutants were transfected with the pGloSensor-22F cAMP plasmid
(Promega E2301) using JetPrime (Polyplus) transfection reagent per manu-
facturer’s instructions. Stable co-transfected cells were maintained under both
G418 (400 mgml# 1) and hygromycin (200 mgml# 1) selective pressure. The day
before an experiment, cells were plated on 96-well tissue culture treated plates
(Costar) and allowed to recover overnight at 37 !C, 5% CO2. Optimal results were
obtained when b2AR (and respective mutants) were plated at 20 K cells per well
and when opto-b2AR (and respective mutants) were plated at 100 K cells/well. The
next day, media was replaced with 2% GloSensor reagent (Promega) suspended in
CO2-independent growth medium (Gibco) and incubated for 2 h at 37 !C or 25 !C
depending on experiment. For real time cAMP, a baseline was first obtained with
no treatment by recording relative luminescent units (RLUs) every 6 s for 1min
using a SynergyMx microplate reader (BioTek; Winooski VT; USA). Drug or light
would then be used to stimulate the cells, and subsequent RLUs recorded every 6 s
for 5–10min depending on experiment. For data expressed as cAMP (fold base-
line), RLUs for 1min of baseline were averaged and all subsequent RLUs were then
divided by this average. For data expressed as cAMP (% max), raw RLUs were
entered into GraphPad Prism (v5.0d, GraphPad Software, San Diego California
USA) and the normalization function used to assign the lowest RLU a value of 0%
and the highest RLU a value of 100%. Time constants were calculated in GraphPad
Prism using one-phase association (Y¼Y0þ (Plateau#Y0)$ (1# exp(#K$ x)))
and one-phase decay (Y¼ (Y0# Plateau)$ exp(#K$X)þ Plateau) nonlinear
regression analyses yielding a time constant value (t).

Concentration/power response curves. For b2AR experiments, baseline relative
luminescence recordings were taken and cells exposed to varying concentrations of
isoproterenol in serial half log dilutions diluted from 10mM stock in DMSO. Raw
RLUs were normalized to the peak response evoked by isoproterenol and repre-
sented as cAMP (% max). Subsequent concentration response curves were fit using
standard nonlinear regression to obtain EC50 values using GraphPad Prism and
expressed as mean±s.e.m., with triplicate data points averaged per experiment
with a total of six individual experimental replicates. For opto-b2AR experiments,
individual wells were exposed to a 5-s blue light pulse (473 nm) at varying powers
to generate a power response curve with data normalized to maximal cAMP
response. Subsequent power response curves were fit with standard nonlinear
regression to obtain EP50 values using GraphPad Prism. Data are expressed as
mean±s.e.m.

Recovery from desensitization. Opto-b2ARWT and opto-b2ARSS cells grown in
96-well plates were individually exposed to a single 5-s blue light pulse (473 nm,
1Wcm# 2) called P1 (pulse 1) with the subsequent cAMP response recorded.
After varying interstimulus intervals (0, 2.5, 5, 15, 30, 60, 120, 180 and 240min)
each well was then re-exposed to a second light pulse (P2), and subsequent cAMP
response recorded. Peak RLU for P2 were then divided by peak RLU for P1.
These points were then fit with a one-phase association (Y¼Y0þ (Plateau#Y0)$
(1# exp(#K$ x))) curve in GraphPad Prism to obtain a time constant of recovery
from desensitization (trec). Data are expressed as mean±s.e.m.

Immunoblots. Western blots for phospho-MAPKs were performed as described
previously58. Cells were grown overnight in 6- or 12-well plates, then serum-
starved a minimum of 4 h before treatment to avoid serum growth factor-induced
MAPK activation. Cells were treated at various time points at 37 !C and then
collected in lysis buffer (50mM Tris-HCl, 300mM NaCl, 1mM EDTA, 1mM
Na3VO4, 1mM NaF, 10% glycerol, 1% Nonidet P-40, 1:100 of phosphatase
inhibitor mixture set 1 (Calbiochem), and 1:100 of protease inhibitor mixture set 1
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(Calbiochem) on ice. Lysates were sonicated for 15 s, centrifuged for 20min
(14,000 rcf at 4 !C), then stored at # 20 !C. Protein concentration was determined
by Pierce BCA (Thermo Scientific) with bovine serum albumin as the standard.
Each gel contained the same amount of total protein and varied between 20–40 mg,
depending on experiment. Nondenaturing 10% bisacrylamide precast gels
(Invitrogen) were run at 180V for 1 h. For determination of molecular weights,
pre-stained molecular weight ladders (Life Technologies; Novex Sharp Protein
Standard; LC5800) were loaded along with protein samples. Blots were transferred
to nitrocellulose (Whatman, Middlesex, UK) for 1.5 h at 30mV, blocked in 5%
bovine serum albumin in tris-buffered saline (TBS) for 1 h, incubated overnight at
4 !C with goat anti-rabbit phospho-ERK 1/2 (Thr-202/Tyr- 204) antibody (1:1,000,
Cell Signaling) and mouse b-actin (1:20,000, Abcam). Membranes were then
washed 4x for 10min in TBST (Tris-buffered saline, 1% Tween 20) and then
incubated with the IRDyeTM 800 (1:5,000, donkey anti-rabbit) and 700 (1:20,000,
donkey anti mouse) conjugated affinity purified IgG in a 1:1 mixture of 5% milk/
TBS and Li-Cor blocking buffer (Li-Cor Biosciences, Lincoln, NE) for 1 h at room
temperature in the dark. Membranes were then washed three times for 10min in
TBST then once for 10min in TBS to remove Tween. Immunoblots were scanned
using the Odyssey infrared imaging system (Li-Cor Biosciences). Band intensity
was measured using Odyssey software following background subtraction and
integrated intensity measured for each band in high-resolution pixels. All pERK
bands were normalized to b-actin, as an equal protein loading control. For data
expressed as pERK (fold baseline), raw pERK/actin values were normalized to the
0-min time point. For data expressed as pERK (% max), raw pERK/actin values
were entered into GraphPad Prism (v5.0d, GraphPad Software, San Diego CA,
USA) and the normalization function used to assign the lowest pERK/actin a value
of 0% and the highest raw pERK/actin a value of 100%. Data are expressed as
mean±s.e.m. Concentration-response data were fit using nonlinear regression in
GraphPad Prism. Positive controls are cell lysates obtained from HEK293 cells
stably expressing the Nociceptin/Orphanin FQ Opioid Peptide Receptor (NOPR)
harvested following a 5-min incubation in nociceptin (1 mM)58. These independent
positive controls are to ensure successful execution of western blots and in no way
affect the data presented. Full unaltered scans of all western blot images with
corresponding molecular markers can be found in Supplementary Figs 13–16.

On cell western. On cell westerns were performed following previously published
protocols37,38. HEK293 cells stably expressing opto-b2AR, opto-b2ARSS, opto-
b2ARLYY and untransfected control HEK293 cells were plated on 24-well tissue
culture treated plates at 200K cells/well and grown in DMEM containing 10% fetal
bovine serum and penicillin/streptomycin at 37 !C in 5% CO2. Plate was placed on
ice, media removed and cells immediately fixed with 4% paraformaldehyde for
30min at room temperature. Cells were washed five times for 30min in PBS,
blocked for 90min in Li-COR Odyssey Blocking Buffer at room temp with gentle
rocking. Cells were incubated overnight at 4 !C in mouse rhodopsin antibody
(4D2) (Novus NBP1–48334) diluted 1:1,000 in Odyssey Blocking Buffer. Wash five
times in Tris-buffered saline containing 0.1% Tween-20 (TBST) for 30min.
Incubate in Li-Cor IRDye 680RD (donkey a mouse), diluted 1:1,000 in Odyssey
bufferþ 0.1% TWEEN-20 at room temperature for 1 h. Wash five times in TBST
for 30min. After final wash, remove solution from wells, tap or blot gently on
paper towels to remove traces of wash buffer and scanned using the Odyssey
infrared imaging system (Li-Cor Biosciences). Well intensity was measured using
Odyssey software following background subtraction and integrated intensity
measured for each well in high-resolution pixels. Data were analysed in GraphPad
Prism and are expressed as mean±s.e.m.

Receptor internalization. b2AR–YFP, opto-b2ARWT–YFP, opto-b2ARSS–YFP
and opto-b2ARLYY–YFP were plated on collagen/poly-D-lysine coverslips in
24-well plates at 50K cells per well and placed in 37 !C, 5% CO2 humidified
incubator overnight. Following treatment the following day, cells were washed
three times with PBS and then fixed in 4% paraformaldehyde for 20min, washed
three times in PBS, washed twice in PB and then mounted with VECTASHIELD
(Vector Laboratories, Burlington, CA). All imaging was performed within the
Washington University Pain Center Confocal Imaging Center. Images, cells, and
treatment groups were chosen and analysed in a blinded fashion. Semi-quantitative
analysis of internalization was calculated as previously described using Metamorph
(Molecular Devices, CA, USA) analysis algorithm for pixel intensity measurements
of internalized fluorescence measures58. To determine internalized percentages,
equal cell shapes and sizes were always chosen; concentric circles around the
fluorescence, background internal fluorescence (untreated controls) or internalized
(treated) portions of the entire cell were drawn in Metamorph, integrated pixel
intensities were recorded for each using the Metamorph algorithm for integrating
intensity and internalized receptors were calculated using: Inside F/Total F to
produce the internalization ratio. Data are expressed as mean±s.e.m.

In vitro calcium imaging. Cells were plated on collagen/poly-D-lysine glass cov-
erslips, loaded with Fura-2 acetoxymethyl ester (2.5–5mM), and incubated for
60min at room temperature in 1.5mM of pluronic acid (Molecular Probes,
Eugene, OR) in a HEPES-buffered saline (2mM Ca2þ ). Coverslips were placed in
a laminar flow perfusion chamber (Warner Instrument Corp.) and constantly

perfused with HEPES-buffered saline (2mM Ca2þ ). Images of Fura-2-loaded cells
with the excitation wavelength alternating between 340 and 380 nm were captured.
Following subtraction of background fluorescence, the ratio of fluorescence
intensity at the two wavelengths was calculated. Ratio levels were analyzed using
MetaFluor (Universal Imaging Corporation).

Animals. Adult (25–35 g or 2 to 3 months old) male C57BL/6J mice were used in
all in vivo experiments. Mice were group-housed, given access to food and water ad
libitum and maintained on a 12 h:12 h light:dark cycle. All animals were held in a
facility in the lab 1 week before surgery, post-surgery and throughout the duration
of the behavioural assays to minimize stress from transportation and disruption
from foot traffic. All procedures were approved by the Animal Care and Use
Committee of Washington University and conformed to US National Institutes of
Health guidelines.

Viral preparation. Plasmid encoding pLenti-CaMKIIa-opto-b2AR-mCherry (final
titer 4.8$ 108 IUml# 1) was obtained from Deisseroth Laboratory at Stanford
University and packaged at the WUSTL Hope Center Viral Vector Core. Lenti-
PGK-GFP (viral control; final titer 1.3$ 108 IUml# 1) was provided by the
WUSTL viral core facility. AAV5-CaMKIIa-HA-GSD-IRES-mCitrine (final titer
3$ 1012 virus molecules per ml) and AAV5-CaMKIIa-eGFP (final titer 5$ 1012

virus molecules per ml) were obtained from University of North Carolina Gene
Therapy Center Vector Core and Virus Vector Core.

Stereotaxic surgery. Mice were anaesthetized in an induction chamber
(5% isoflurane) and placed in a stereotaxic frame (Kopf Instruments, Model 1900)
where they were maintained at 1–2% isoflurane throughout the procedure.
Following craniotomy mice were injected bilaterally with 1.2 ml of either lenti-
EF1a-GFP or lenti-CaMKIIa-optob2AR-mCherry in the BLA at stereotaxic
coordinates: # 1.3mm posterior to bregma; ±2.9mm lateral to bregma and
# 4.9mm ventral to bregma. For wireless m-ILED BLA studies, animals were
injected unilaterally, not bilaterally. Mice were then implanted with chronic fiber
optic implants or m-ILED wireless devices with coordinates adjusted from viral
injection to: # 1.3mm posterior to bregma; ±2.9mm lateral to bregma and
# 3.9mm ventral to bregma. For bio-dissolvable samples, the device was
implanted at the desired target, ACSF was applied to the portion of the device that
remained outside of the skull to facilitate dissolution of the adhesive, and then the
epoxy needle was removed after a delay of 15min47,48. The fiber optic implants and
wireless m-ILED devices were secured using two bone screws (CMA, 743102) and
affixed with TitanBond (Horizon Dental Products) and dental cement (Lang
Dental)48. Mice were allowed to recover for at least 3–6 weeks before behavioural
testing; this interval also permitted optimal viral expression.

In vivo electrophysiology. Spontaneous single unit activity was recorded
following previous published protocols47,57. Briefly, mice were lightly anesthetized
(1% isoflurane), placed in a stereotactic frame and two skull screws were placed
on either side of the midline to ground the electrode array. The recording
apparatus consisted of a 16-channel (35-mm tungsten wires, 150-mm spacing
between wires, 150-mm spacing between rows, Innovative Physiology) electrode
array. This array was epoxied to a fiber optic and lowered into the BLA (stereotaxic
coordinates from bregma: # 1.3mm (AP),±2.9mm (ML) and # 4.9mm (DV).
Spontaneous and photostimulated neuronal activity was recorded from each
electrode, bandpass-filtered with activity between 250 and 8,000Hz, and analysed
as spikes. Voltage signals were amplified and digitally converted using Omniplex
and PlexControl (Plexon). For opto-b2ARWT, 5 s constant light, followed by 5-s no
light was repeated for 12 cycles or 20-s constant light (on) followed by 1-min
recovery with no light (off) was repeated for 12 cycles. Principle component
analysis and/or evaluation of t-distribution with expectation maximization were
used to sort spikes using Offline Sorter (Plexon). Cells were considered excited if
there was than a 10% increase in baseline firing frequency, and inhibited if there
was 4 10% decrease in baseline firing frequency in the presence of constant
photostimulation.

Wireless powering and RF scavenger for wireless optogenetics. Wireless
powering of the m-ILED devices was performed following previously published
protocols47,48. The wireless power transmitter includes an RF signal generator
(Agilent N5181A), a power supply (Agilent U8031A), a RF power amplifier
(Empower RF Systems 1119-BBM3K5KHM), an RF signal splitter (RF Lambda
RFLT2W0727GN), and two panel antennas (ARC Wireless ARC-PA2419B01). The
RF signal generator is internally modulated to delivery sufficient power to light the
m-iLEDs at the given stimulation protocol (10Hz, 50-ms pulse widths). The RF
power amplifier that is powered by the power supply enlarges the modulated RF
signal from the RF signal generator. The RF power is then transmitted from the
panel antenna to the headstage power harvesters. The RF signal generator has a
power output from # 10 to 0 dBm at 1.5 GHz, optimized daily to ensure equivalent
light power throughout the space of the LDB assay. Mice with chronically
implanted m-ILED devices were acutely connected to the headstage power
harvesters immediately before any wireless photostimulation.
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Behaviour. Behavioural assays were performed in a special sound attenuated room
maintained at 23 !C. Lighting was measured and stabilized at B4 lux for anxiety
tests and B200 lux for place testing. All behavioural apparatuses were cleaned with
70% ethanol in between animals. In each assay, animals received constant pho-
tostimulation throughout the entire trial. For all behavioural experiments, lenti-
EF1a-GFP and lenti-CaMKIIa-optob2AR-mCherry received 5 s of constant pho-
tostimulation (473 nm) followed by 5 s of no light throughout the entire trial.
Movements were video recorded and analyzed using Ethovision Software.

Elevated zero maze. The EZM (Harvard Apparatus) was made of grey plastic,
200 cm in circumference, comprised of four 50-cm sections (two opened and two
closed). The maze was elevated 50 cm above the floor and had a path width of 4 cm
with a 0.5 cm lip on each open section. Animals were connected to cables coupled
to a function generator, positioned head first into a closed arm, and allowed to
roam freely for 6min. Mean open arm time was the primary measure of anxiety-
like behaviour.

Light/dark box. The LDB was a 50$ 50 cm square plexiglass enclosure with a
16.5 cm$ 49 cm dark insert. For testing, animals were connected to wireless
harvester and placed into the corner of the open enclosure and allowed to roam
freely for 10min.

Immunohistochemistry. At the conclusion of behavioural testing, mice were
anaesthetized with sodium pentobarbital and transcardially perfused with ice cold
PBS, followed by 4% phosphate-buffered paraformaldehyde following previously
published protocols47. Brains were removed, post-fixed overnight in para-
formaldehyde, and saturated in 30% phosphate-buffered sucrose. Sections of 30mm
were cut, washed in 0.3% Triton X100/5% normal goat serum in 0.1M PBS, stained
with fluorescent Nissl stain (1:400 Neurotrace, Invitrogen, Carlsbad, CA) for 1 h, and
mounted onto glass slides with Vectashield (Vector Laboratories, Burlingame, CA).
opto-b2AR expression was verified using fluorescence (Olympus, Center Valley, PA)
and confocal microscopy (Leica Microsystems, Bannockburn, IL). Images were
produced with Leica Application Suite Advanced Fluorescence software. Animals
that did not show targeted expression were excluded from analyses.

Statistics/data analysis. All data are expressed as mean±s.e.m. Data were
normally distributed, and differences between two groups were determined using
independent Students’ two-tailed, unpaired or paired t-tests as appropriate. Dif-
ferences between multiple groups were determined via one-way or two-way ana-
lysis of variances (ANOVAs) followed by post hoc Bonferroni or Dunnett’s multiple
comparisons if the main effect was significant at Po0.05. Statistical significance
was taken as *Po0.05, **Po0.01, ***Po0.001, ****Po0.0001 and all analyses
were conducted using Prism 5.0 (GraphPad). Grubbs’ test was used to remove any
statistical outliers.
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