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Stretchable electronics that require functional components with high areal coverages,
antennas with small sizes and/or electrodes with invisibility under magnetic resonance
imaging can benefit from the use of electrical wiring constructs that adopt fractal inspired
layouts. Due to the complex and diverse microstructures inherent in high order
interconnects/electrodes/antennas with such designs, traditional non-linear postbuckling
analyses based on conventional finite element analyses (FEA) can be cumbersome and
time-consuming. Here, we introduce a hierarchical computational model (HCM) based on
the mechanism of ordered unraveling for postbuckling analysis of fractal inspired
interconnects, in designs previously referred to as ‘self-similar’, under stretching. The
model reduces the computational efforts of traditional approaches by many orders of
magnitude, but with accurate predictions, as validated by experiments and FEA. As the
fractal order increases from 1 to 4, the elastic stretchability can be enhanced by �200
times, clearly illustrating the advantage of simple concepts in fractal design. These results,
and the model in general, can be exploited in the development of optimal designs in wide
ranging classes of stretchable electronics systems.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Recent advances in mechanics and materials for stretchable/flexible electronics (Lacour et al., 2005; Khang et al., 2006;
Lacour et al., 2006; Jiang et al., 2007, 2008; Sekitani et al., 2009; Rogers et al., 2010; Huang et al., 2012; Yang and Lu, 2013;
Duan et al., 2014) and optoelectronics (Kim et al., 2010; Lee et al., 2011a; Lipomi et al., 2011; Nelson et al., 2011) demonstrate
that systems with high-performance semiconductor functionality can be realized in forms that allow extreme mechanical
deformations, e.g., stretching like a rubber band, twisting like a rope, and bending like a sheet of paper. This class of
technology creates many application opportunities that cannot be addressed with established technologies, ranging from
“epidermal” health/wellness monitors (Kim et al., 2011b; Kaltenbrunner et al., 2013; Schwartz et al., 2013), to soft surgical
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instruments (Cotton et al., 2009; Yu et al., 2009; Viventi et al., 2010; Graudejus et al., 2012; Kim et al., 2012b), to eyeball-like
digital cameras (Ko et al., 2008; Song et al., 2013), to sensitive robotic skins (Someya et al., 2004; Wagner et al., 2004;
Mannsfeld et al., 2010; Lu et al., 2012). Many of these stretchable systems exploit a strategy, sometimes known as the
island-bridge design (Kim et al., 2008, 2009, 2011b; Ko et al., 2008; Lee et al., 2011b), in which the active devices reside on
non-deformable platforms (i.e. islands) with deformable interconnects (i.e. bridges) in between. These bridges provide
stretchability, while the islands undergo negligible deformation (usually o1% strain) to ensure mechanical integrity of the
active devices (Kim et al., 2008; Song et al., 2009). The stretchability of a system with a certain filling ratio of islands can be
written by

stretchability of the system¼ ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
filling ratio

p
Þnðstretchability of the interconnectÞ: ð1Þ

where the filling ratio denotes the ratio of area covered by the islands to the entire area of an island-bridge structure.
Various types of interconnect technologies have been developed, typically involving planar serpentines (Jones et al., 2004;
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Fig. 1. (a) Optical images of electrode pads and fractal inspired interconnects on a silicon wafer (top panel; top down view; �4 unit cells), after transfer
printing on a sheet of silicone (middle panel; oblique view, in a bent geometry), and with molded slurries of LiCoO2 (bottom panel; oblique view, in a bent
geometry), for a stretchable Li-ion battery; (b) optical images and corresponding conventional FEA results of symmetric deformation modes, for various
levels of applied tensile strain ε. The scale bars in (a) and (b) are 2 mm. (a and b) Are reprinted with permission from Xu et al. (2013), Copyright 2013,
Nature Publishing Group.
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Lacour et al., 2005; Li et al., 2005; Gonzalez et al., 2008; Kim et al., 2008, 2011b, 2012c; Hsu et al., 2009; Zhang et al., 2013b)
or non-coplanar serpentines or straight bridges (Kim et al., 2008; Ko et al., 2008; Lee et al., 2011b). In many published
examples, such interconnects offer total stretchability o50% (defined by onset of cracks) and elastic stretchability o25%
(defined by onset of plastic deformation), in systems that do not significantly sacrifice the filling ratio. Many applications,
particularly those in optoelectronics (Ko et al., 2008; Kim et al., 2010) and energy storage systems (Lipomi et al., 2011;
Xu et al., 2013), also require high filling ratios. Here, advanced interconnects are needed.

Recently, Xu et al. (2013) reported a design based on a type of space-filling curve that incorporates serpentine patterns in
simple fractal-inspired layouts (shown in Fig. 1a), to address the aforementioned challenges. The hierarchical structures
with fractal inspired layouts have been shown to exist in many biological systems (Gao et al., 2005; Yao and Gao, 2006,
2007; Zhang et al., 2011, 2012; Li et al., 2012, 2013), which could enhance or even control the surface adhesions, stiffness and
material strengths. This technology, referred to initially as a ‘self-similar’ design (Xu et al., 2013), enables stretchable
lithium-ion batteries with total stretchability and elastic stretchability of �300% and �160%, respectively, and a filling ratio
of �33%. The underlying mechanisms responsible for this favorable mechanics were studied by both experiments and finite
element analyses (FEA), as shown in Fig. 1b. The results reveal a mechanism of ordered unraveling. Specifically, with the
stretching proceeds from 0% to �150%, the 2nd order structure (i.e., the large spring) first unravels via out-of-plane bending
and twisting through buckling, during which there is essentially no deformation in the 1st order structure (i.e., the small
spring) (see top 4 images, Fig. 1b). The unraveling of the 1st order structure only starts as the 2nd order structure is fully
extended, corresponding to an applied strain of �150%. Additional, large stretchability (�300%) is then achieved when the
1st order structure is stretched to nearly its maximum extent (see bottom 3 images, Fig. 1b). Only the active materials are
bonded to the soft substrate in this battery design such that the interconnects can deform freely. For some biomedical
applications (Kim et al., 2011b, 2012c), the serpentine interconnects are either bonded to or encapsulated in the soft
substrate, and the resulting deformation mechanism may be quite different from the free standing interconnects
(Zhang et al., 2014), but such aspects are beyond the scope of the present study.

The filling ratio of active devices in the island-bridge design shown in Fig. 1a is 33%. The elastic stretchability (�150%) is
reduced to 22% and 4.3% for filling ratios of 90% and 98%, respectively. These levels of elastic stretchability fall short of some
biomedical applications, such as those in skin-mounted electronics (Kim et al., 2011b; Ying et al., 2012; Webb et al., 2013)
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Fig. 2. Schematic illustration of the geometric construction of a fractal inspired interconnect. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)
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Fig. 3. Schematic illustration of the equivalent structure for a fractal inspired interconnect: (a) an order-n fractal interconnect composed of vertically
aligned order-(n�1) interconnects, and horizontally aligned order-(n�2) interconnects and (b) equivalent structure consisting of only straight beams.
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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and inflatable catheter technology (Kim et al., 2011a, 2012a), in which the strains (e.g., skin, heart, or elbow) may well
exceed 20%. The most viable solution is to increase the fractal order, from 2 in Figs. 1a to 3 and 4 in Fig. 2 or even higher.
For the fractal order of 4, however, the conventional FEA approach becomes prohibitively time-consuming because of the
large number of elements (41 million) and the highly non-linear postbuckling analysis. Such a computational approach is
impractical for rapid device design and optimization.

The aim of the present study is to develop an effective and robust hierarchical computational model (HCM), based on the
mechanism of ordered unraveling illustrated in Fig. 1, for postbuckling analysis of serpentine interconnects with fractal
inspired layouts (referred to as “fractal interconnects” in the following). For an order-n fractal interconnect under stretching,
the lower order structures ðrn�1Þ initially do not unravel, and are only bent and twisted. As a result, these lower order
structures can be modeled as straight beams with effective tension, bending and torsion flexibilities, as illustrated in Fig. 3.
Once the highest (nth) order structure is fully stretched, unraveling of (n�1)th order structure starts, but the (n�2)th and
lower order structures still do not unravel and can be modeled as beams. This process continues until the 1st order structure
unravels and the total stretchability is finally reached. Such an approach substantially saves computational effort because, at
each order, only bending and twisting of straight beams is involved. This simplification enables simulations of high order
(up to 4 as we demonstrated herein) fractal interconnects, which would be quite difficult by using the conventional FEA.
This set of calculations not only illustrates the significant effect of fractal order on stretchability, but also provides reference
for design using high-order fractal interconnects. The paper is outlined as follows. Section 2 determines the equivalent
flexibilities for any order ðnZ2Þ of fractal interconnect. Section 3 describes the HCM for ordered unraveling of the
postbuckling process. Section 4 applies the HCM to study the effect of fractal order on the elastic stretchability. Generalized
fractal interconnects are studied in Section 5, and the results are validated by experiments and conventional FEA.

2. Equivalent flexibilities of fractal interconnects

2.1. Geometry

The 1st order interconnect consists of straight wires and half circles that are connected in series, as shown in the black
box of Fig. 2, which has 4 unit cells in this example. The 2nd order interconnect, shown in the blue box of Fig. 2, is created by
reducing the scale of the 1st order interconnects, followed by 901 rotation, and then connecting them in a fashion that
reproduces the layout of the original geometry. The wide blue line in Fig. 2 represents the 2nd order geometry that is similar
to the 1st order geometry (except for the rounded part). By implementing the same procedure, we can generate the 3rd and
4th order interconnects, as illustrated in the red and purple boxes of Fig. 2, where the red and purple lines denote the 3rd
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Fig. 4. Illustration of the hierarchal computational model (HCM) for a 2nd order fractal interconnect: (a) Stage I – unraveling the 2nd order structure, in
which the entire interconnect is modeled by an equivalent structure of straight beams; and (b) Stage II – unraveling each 1st order structure, studied using
the original geometry of the structure. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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and 4th order geometries, respectively. It is clear that the 2nd to 4th (and higher) order geometries all exhibit the same
rectangular shape, and have the same number of unit cells, which indicates that, strictly speaking, the fractal only starts at
the 2nd order.

Let η denote the height/spacing aspect ratio at each order such that the height h(i) is related to the spacing l(i) of the ith
(i¼1…n) order (Fig. 2) by hðiÞ ¼ ηlðiÞ. The height h(i) is also related to the spacing l(i�1) of the neighboring order by the number
of unit cellsm (Fig. 2) as hðiÞ ¼ 2mlði�1Þði¼ 2…nÞ. The spacing and height at any order i are then scaled with the spacing of the
highest order l(n) by

lðiÞ ¼ η

2m

� �n� i
lðnÞ; hðiÞ ¼ η

η

2m

� �n� i
lðnÞ ði¼ 1…nÞ ð2Þ

The result shows that a fractal interconnect is characterized by one base length (l(n)) and three non-dimensional
parameters, namely the fractal order (n), the height/spacing ratio (η) and number (m) of unit cell.
2.2. Equivalent flexibilities

A fractal interconnect can be modeled as a beam if its width (w) and thickness (t) are much smaller than the length.
Fig. 3a shows an nth order fractal interconnect clamped at the left end, and subject to forces and bending moments at the
right end. The axial force N, in-plane shear force Qy and bending moment Mz at the right end induce the in-plane
deformation represented by the displacements ux and uy and rotation θz at the end, while the out-of-plane shear force Qz

and bending moment My, and torque Mx at the right end generate the out-of-plane displacement uz and rotations θx and θy
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at the end. The normalized displacements, rotations, forces, bending moments and torques are related by

ux=l
ðnÞ

uy=l
ðnÞ

θz

0
BB@

1
CCA¼ T ðnÞ

in�plane

N½lðnÞ�2=ðEIÞin�plane

Qy½lðnÞ�2=ðEIÞin�plane

Mzl
ðnÞ=ðEIÞin�plane

0
BBB@

1
CCCA; ð3aÞ
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ðnÞ
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θx

0
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CA¼ T ðnÞ
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where ðEIÞin�plane ¼ Ew3t=12 and ðEIÞout�of�plane ¼ Ewt3=12 are the in-plane and out-of-plane bending stiffness, respectively,
and TðnÞ

in�plane and TðnÞ
out�of�plane are the normalized elastic flexibility matrices that can be obtained analytically (see Appendix

A). For example, the in-plane flexibility matrix for the 1st order fractal interconnect is

T ð1Þ
in�planeðm; ηÞ ¼

m
24ð4g3þ6πg2þ24gþ3πÞ Sym

m
4ðg2þπgþ2Þ 4m3

3 ð2gþπÞþ m
24ð8gþπÞ

0 2m2ðgþπÞ mð2gþπÞ

8>><
>>:

9>>=
>>;; ð4aÞ

where Sym denotes the symmetric matrix, and g¼ η�1. The out-of-plane flexibility matrix for the 1st order fractal
interconnect is

T ð1Þ
out�of�planeðm; ηÞ ¼

4m3

3 kþ m
48 4kð3g2þ8Þ�4ð1þ3νÞg3�3ð7þνÞπ� �

Sym

�m2k mk

0 0 m½kþð1�νÞg�

8>><
>>:

9>>=
>>;; ð4bÞ

where ν is Poisson’s ratio, and k¼ ½4ð1þνÞgþð3þνÞπ�=4. For the 2nd order fractal interconnect, the in-plane flexibility
matrix is

T ð2Þ
in�planeðm; ηÞ ¼

m
4η

2ð4�pÞþ η3

4m2T
ð1Þ
in�plane;22 Sym

m
8ηðpþ2Þ 4m3

3 pþm
6ðp�2Þþ η3

4m2T
ð1Þ
in�plane;11

0 m2p mp

8>>><
>>>:

9>>>=
>>>;
; ð5aÞ

where p¼ 2η2þðπ�2Þηþ2, T ð1Þ
in�plane;11 and T ð1Þ

in�plane;22 are the 11 and 22 components in Eq. (4a), corresponding to the tensile
and in-plane shear flexibilities, respectively. The out-of-plane flexibility matrix for the 2nd order fractal interconnect is

T ð2Þ
out�of�planeðm; ηÞ ¼

T ð2Þ
out�of�plane;11 Sym

�m2 p�1�ν
4 πη

� �
m p�1� ν

4 πη
� �

0 0 m 1þ ν
2 pþ1�ν

4 πη
� �

8>><
>>:

9>>=
>>;; ð5bÞ

where T ð2Þ
out�of�plane;11 is given in Appendix A. For the higher order (nZ3) fractal interconnects, TðnÞ

in�plane and TðnÞ
out�of�plane are

obtained in a recursive formula via the flexibility matrices for the (n-1)th and (n�2)th order (see Appendix A).
The flexibilities obtained from (Eqs. (4) and 5) and the recursive formula in Appendix A increase with the fractal order.

For example, the tensile componentT ðnÞ
in�plane;11ðm¼ 4; η¼ 8=

ffiffiffiffiffiffi
11

p
Þ increases from 15.4 for n¼1, to 40.1 for n¼2, and to 105 for

n¼3, i.e., by a factor of 2.6 for each increase of fractal order. These values agree reasonably well with the corresponding FEA
results, i.e. 15.3 for n¼1, 39.7 for n¼2, and 114 for n¼3. Considering that the length l(n) also increases with n, the
corresponding tensile flexibility (without normalization) increases much more rapidly with the fractal order. For
ðEIÞin�plane ¼ 7:44� 10�10 N m2 and lð1Þ ¼ 110 μm as in the experiments (Xu et al., 2013), the tensile flexibility increases
from 0.0276 m/N for n¼1, to 2.62 m/N for n¼2, and to 250 m/N for n¼3, i.e., increasing by �100 times for each order
increase. The fact that the flexibilities increase very rapidly with the fractal order will play a critical role in the development
of the HCM in Section 3.

3. The hierarchical computational model for ordered unraveling of fractal interconnects

As shown in Fig. 3a for 4 unit cells (m¼4), an nth order fractal interconnect is composed of (n�1)th order interconnects
oriented along vertical (y) direction, and (n�2)th order interconnects oriented along horizontal (x) direction. Before
unraveling of any lower order interconnects, the (n�1)th and (n�2)th order interconnects are modeled as the straight
beams (in blue and orange colors, respectively, in Fig. 3b) with the equivalent flexibilities T(n�1) and T(n�2) obtained in
Section 2. As shown in the following sections, such an approach gives accurate results, but the computation at each order is
very simple since it involves only straight beams.
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The 2nd order fractal interconnect shown in Fig. 4 is used as an example to illustrate the approach. The postbuckling
process can be classified into two stages.
(i)
Fig.
num

Fig.
and
Stage I: Unraveling of the 2nd order fractal interconnect as shown in Fig. 4a. The vertical, 1st order fractal interconnects
are represented by straight beams (blue color in Fig. 4a) with the flexibilities given in Eq. (4). (The horizontal segments,
denoted by the brown color in Fig. 4a, are already straight beams.) FEA is used for this equivalent structure of straight
beams to determine the overall configuration under stretching. Stage I is complete when the equivalent structure of
straight beams is fully unraveled, i.e., the distance between the two ends reaches the total length of all straight beams.
The applied strain, εapplied, defined by the percentage increase of the distance between the two ends, reaches the critical
value ðεð2ÞcrðIÞÞ for a 2nd order fractal interconnect at the end of stage I

εð2Þcr Ið Þ ¼
mð2h 2ð Þ þ2lð2ÞÞ

2ml 2ð Þ �1¼ η: ð6Þ

The initially vertical 1st order fractal interconnects (blue color) become approximately horizontal (Fig. 4a) at the end of
stage I. Their deformations are essentially the same due to the periodicity of unit cells such that the analysis in stage II
can focus on unraveling of a single 1st order fractal interconnect, as discussed in the following.
(ii)
 Stage II: Unraveling of each 1st order fractal interconnect as shown in Fig. 4b. The stretching in stage II is mainly
accommodated by the (horizontally aligned) 1st order fractal interconnects (blue color in Fig. 4a) because their tensile
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flexibility is much larger than that of straight beams (brown color). Thereby, the deformation of the straight beams is
negligible, and only a single 1st order fractal interconnect (e.g., CD in Fig. 4b) is analyzed by FEA (since all 1st order
interconnects have essentially the same deformation), which substantially reduces the computational cost. The
additional stretching in stage II, εapplied�εð2ÞcrðIÞ, corresponds to an additional displacement 2mlð2Þ½εapplied�εð2ÞcrðIÞ� between
the two ends of the 2nd order fractal interconnect, which translates to the stretching displacement lð2Þ½εapplied�εð2ÞcrðIÞ� in
the FEA for each 1st order fractal interconnect in stage II. Stage II is complete when each 1st order interconnect is fully
unraveled to reach its length m½2hð1Þ þðπ�2Þlð1Þ�.
The HCM introduced above is also applicable to higher orders (nZ3) fractal interconnects. For an order-n fractal
interconnect, its (initially vertical) order-(n�1) and (horizontal) order-(n�2) interconnects are modeled as straight beams
in stage I, followed by unraveling of order-(n�1) fractal interconnects in stage II. All order-(n-2) fractal interconnects, which
result from both order-n and order-(n�1) interconnects, start unraveling upon further stretching after stage II. This process
applied

m
ax

applied

m
ax

w l

7. (a) Maximum principal strain versus the applied strain for a 1st order serpentine interconnect with ðm; ηÞ ¼ ð4;8=
ffiffiffiffiffiffi
11

p
Þ and w=lð1Þ ¼ 0:4, where the

t illustrates the deformed pattern of the serpentine interconnect as the elastic stretchability is reached and (b) maximum principal strain versus the
ied strain for 1st order serpentine interconnects with ðm; ηÞ ¼ ð4;8=

ffiffiffiffiffiffi
11

p
Þ, and four different widths (w=lð1Þ ¼ 0:2; 0:4; 0:6; and 0:8).

applied

m
ax

applied

applied

8. (a) Maximum principal strain versus the applied strain for a 2nd order fractal interconnect with ðm; ηÞ ¼ ð4;8=
ffiffiffiffiffiffi
11

p
Þ and w=lð1Þ ¼ 0:4 and (b) the

formed and deformed configurations when the 2nd order structure is fully unraveled.



Y. Zhang et al. / J. Mech. Phys. Solids 72 (2014) 115–130 123
repeats for all lower orders until the 1st-order fractal interconnects unravel. It is clear that the fundamental assumption of
this proposed HCM is the mechanism of ordered unraveling, which is mainly resulted from the huge increase of flexibility
components at the enhanced level of fractal order. Generally, the ratio of tensile flexibility (T ðnÞ

in�plane;11, without normal-
ization) at n¼2 to that at n¼1 can be obtained from Eqs. (4a) and (5a) as

RT ¼ 2m
η

	 
3T ð2Þ
in�plane;11

T ð1Þ
in�plane;11

¼ 2m
η

24m2ð4�pÞþ32m2ηð2gþπÞþηð8gþπÞ
4g3þ6πg2þ24gþ3π

ð7Þ

This ratio of enhancement is also very close for other increase of fractal order by 1 (e.g., from n¼2 to 3), due to the self-
similar characteristic of the geometry. The fundamental assumption of the HCM should remain valid for a large RT, e.g., 420
or 40. Fig. 5 shows the distribution of RT in the space of geometric parameters (m and η), in which η2o2m should be
satisfied to avoid self-overlap of the interconnect. The region of geometric parameters where the HCM is applicable
[satisfying RT420 (or 40) and η2o2m simultaneously] is identified. It is clear that the HCM is applicable for most
combinations of geometric parameters if η2o2m.

4. Effect of fractal order on the elastic stretchability and pattern of deformation

The HCM in Section 3 makes it possible to study the postbuckling behavior of high order fractal interconnects with
multiple unit cells, as shown in Fig. 2 for the 1st to 4th fractal interconnects with the height/spacing aspect ratio η¼ 8=

ffiffiffiffiffiffi
11

p

and number of unit cell m¼ 4. The copper interconnect has an elastic modulus ECu¼119 GPa, Poisson’s ratio νCu¼0.34, and
yield strain 0.3% (William et al., 1999) in an elastic–ideally plastic constitutive model (Hill, 1950). The results are validated by
conventional FEA (without any approximations in the HCM) for the fractal order nr3 because the analyses of higher order
ðnZ4Þ interconnect would be extremely difficult and time-consuming by conventional FEA.

The elastic stretchability is the applied strain when the maximum strain in the interconnect reaches the yield strain
(0.3%, William et al., 1999) of the material. Fig. 6 shows the elastic stretchability versus the order n of fractal interconnects
for η¼ 8=

ffiffiffiffiffiffi
11

p
and m¼4. The thickness/width aspect ratio in the cross section is t/w¼0.03, and the width to spacing ratio is

w/l(1)¼0.4. The results agree very well with conventional FEA for nr3. For each increase of n by 1, the elastic stretchability
applied

m
ax

applied

applied
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Fig. 9. (a) Maximum principal strain versus the applied strain for a 3rd order fractal interconnect with ðm; ηÞ ¼ ð4;8=
ffiffiffiffiffiffi
11

p
Þ and w=lð1Þ ¼ 0:4 and (b) the

undeformed and deformed configurations when the 3rd and 2nd order structures are fully unraveled.
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increases by 43 times, suggesting that the high-order fractal design can substantially improve the elastic limit. For
example, the elastic stretchability increases �200 times, from �10.7% for the 1st order, to �2140% for the 4th order.
The computational times required to finish the postbuckling analyses of the 3rd order fractal interconnect are also recorded,
by using the same computer (with 8 CPUs) and applied strain (�850%). It turns out that the time cost (�146 min) of the
HCM is much shorter than that (2340 min) of conventional FEA.

Figs. 7–10 show the maximum principal strain in the fractal interconnect and the evolution of deformation patterns for
the fractal order from 1 to 4, respectively. For the 1st order fractal interconnect (Fig. 7), the maximum principal strain
increases rapidly with the applied strain, and quickly reaches the yield strain 0.3%, at which the interconnect is still far from
complete unraveling and therefore leads to the elastic stretchability of only 10.7%. The width of interconnect plays an
important role on the strain accumulation (Fig. 7b); and a narrower interconnect could relieve the strain level, leading to an
enhanced elastic-stretchability (�17.6% for w=lð1Þ ¼ 0:2, compared to �2.3% for w=lð1Þ ¼ 0:8). The effect of width on the
elastic-stretchability of 1st order serpentine interconnect can be described by a simple scaling law (Zhang et al., 2013b). For
the 2nd order fractal interconnect (Fig. 8a), the maximum principal strain initially increases slowly when the unraveling
starts with the 2nd order structure, but then exhibits “strain hardening” near the end of unraveling (of the 2nd order
structure) (Fig. 8b) for the applied strain in range 150%oεappliedo240%. The yield strain 0.3% is reached during the strain
hardening, which gives 192% elastic stretchability. For the 3rd order of fractal interconnect (Fig. 9a), there are two ranges of
strain hardening, 150%oεappliedo240% and 500%oεappliedo820%, corresponding to the (end of) unraveling of the highest
(3rd) order and the next order (2nd) structures, respectively (Fig. 9b). The yield strain 0.3% is reached during the latter
strain hardening (corresponding to the unraveling of 2nd order structures), which gives 747% elastic stretchability.
As compared to Fig. 9a, the 4th order fractal interconnect (Fig. 10a) exhibits an additional range of strain hardening
ð1500%oεappliedo2300%Þ, and its three ranges of strain hardening correspond to the (end of) unraveling of the 4th, 3rd and
2nd order structures, respectively (Fig. 10b). The elastic stretchability 2140% is reached during the last strain hardening
event (corresponding to the unraveling of 2nd order structures). It is clear that the ordered unraveling of fractal
interconnects significantly retards the rate of increase of maximum principal strain, and therefore enables large elastic
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Fig. 10. (a) Maximum principal strain versus the applied strain for a 4th order fractal interconnect with ðm; ηÞ ¼ ð4;8=
ffiffiffiffiffiffi
11

p
Þ and w=lð1Þ ¼ 0:4, (b) the

undeformed and deformed configurations when the 4th, 3rd and 2nd order structures are fully unraveled and (c) location of maximum principal strain at
two different applied strains, as indicated by the red dots. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 11. Tensile force required to unravel fully the ith order structure in a 3rd order (a) and 4th order (b) fractal interconnect, with ðm; ηÞ ¼ ð4;8=
ffiffiffiffiffiffi
11

p
Þ,

w¼ 20 μm and lð1Þ ¼ 50 μm.
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stretchability. The location of maximum principal strain also shifts as the unraveling process evolves. Fig. 10c demonstrates
the location of maximum principal strain at two typical applied strains, where multiple points are marked in the right
frame, because of the structural periodicity after full unraveling of the 4th order structure. Such shift in the location of
maximum strain can be mainly attributed to the remarkable change of geometric configuration during the stretching
process.

It should be pointed out that this level of interconnect stretchability (2140%) translates to 110% elastic stretchability of
the system for �90% filling ratio of active devices based on Eq. (1), and 22% for 98% filling ratio, which are sufficient for
biomedical applications.

The tensile force to unravel the fractal interconnects also increases with the stretching proceeds. Fig. 11 shows the tensile
force required to unravel fully the various levels of the fractal structure for the 3rd and 4th order fractal interconnects
studied in Figs. 9 and 10. As the fractal serpentine interconnect gets unraveled into lower-order structures, the tensile force
increases tremendously, because of the increase in the structural stiffness. For a 4th order interconnect (in Fig. 11b), the force
required to fully unravel the 2nd order structure is �7.6 times and �179.6 times larger than that required to unravel fully
the 3rd and 4th order structures, respectively.

5. Generalized fractal interconnects

The fractal interconnects discussed above can be generalized such that at each order the interconnect may have its own
height/spacing aspect ratios ηðiÞ and number of unit cells mðiÞ (i¼1,2,…,n). The generalized fractal interconnects may provide
simultaneously large elastic stretchability and a relatively low electrical resistance, as demonstrated in Xu et al. (2013).
For the nth order generalized fractal interconnect, the geometric relation (2) becomes

lðiÞ ¼ ∏
n� i

k ¼ 1

ηðn�kþ1Þ

2mðn�kÞ

" #
lðnÞ; hðiÞ ¼ ηðiÞ ∏

n� i

k ¼ 1

ηðn�kþ1Þ

2mðn�kÞ

" #
lðnÞ ði¼ 1…n�1Þ ð8Þ

The HCM introduced in Section 3 can be extended straightforwardly to study the postbuckling of a generalized fractal
interconnect. Fig. 12 shows a generalized 2nd order fractal interconnect in the experiments (Xu et al., 2013) of stretchable
battery. The interconnect, as shown at the top of Fig. 12 (ε¼0%), is composed of two polyimide (PI) layers (both 1.2 μm in
thickness, EPI¼2.5 GPa and νPI¼0.34) that sandwich the conducting copper layer (0.6 μm in thickness). The metal trace is
connected by two rigid, circular islands, which hardly deform during the stretching of the entire structure.

Fig. 12 compares the optical images from experiments to the results obtained by the HCM on the deformed
configurations of the fractal interconnect, for two different buckling modes, i.e., the symmetric and anti-symmetric modes.
Good agreement between HCM and experiments are observed over the entire range of stretching (0–300%) for both modes.
The maximum strain in the metal layer obtained by the HCM agrees well with that obtained by conventional FEA (Fig. 13),
but the former is much faster and is applicable to higher fractal orders. The experiments (Fig. 12) and conventional FEA
(Fig. 13) clearly validate the HCM.

6. Conclusions and discussions

A hierarchical computational model for postbuckling analysis of fractal interconnects based on the mechanism of ordered
unraveling is developed in this paper. The approach substantially reduces the computational efforts and costs compared to
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Fig. 12. Symmetric (left panel) and anti-symmetric (right panel) deformation modes from experiments (Xu et al., 2013) and numerical results by the HCM,
for various levels of applied tensile strain (0rεr300%). The scale bar is 2 mm.
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conventional FEA, but with accurate predictions, as validated by both experiments and FEA. The designs provide large
enhancements (by �200 times) in the elastic stretchability, as the fractal order increases from 1 to 4. The HCM is also
applicable to many other types of fractal layouts formed without intersection points, such as Peano and Hilbert curves
(Sagan, 1994). It is useful for the development of stretchable electronics that simultaneously demand large areal coverage
of active devices, such as stretchable photovoltaics (Yoon et al., 2008) and electronic eye-ball cameras (Ko et al., 2008).
The concept of fractal interconnects could be further combined with other strategies for stretchability, such as prestraining
of soft substrate (Lee et al., 2011b; Zhang et al., 2014), to further enhance the stretchability.

It should be pointed out that processes of ordered unraveling play critical roles in the enhanced elastic stretchability
of high-order fractal interconnects, far beyond the simple increase of total length of interconnects with the fractal order.
For example, the 1st and 2nd order fractal interconnects in Fig. 14 have the same total length and cross-section (width and
thickness) and the same spacing between the device islands, yet the 2nd order interconnect outperforms the 1st order one
in the elastic-stretchability by nearly a factor of 2 (528% versus 284%) (Xu et al., 2013).
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Fig. 13. The maximum principal strain in the metal layer versus the applied strain from conventional FEA and the HCM, for the fractal interconnects
adopted in the experiment of Xu et al. (2013).

Fig. 14. The 1st (a) and 2nd (b) order fractal interconnects, with the same total length (16.77 mm) of interconnect, spacing (1.6 mm) between the device
islands, height (0.4 mm) of the 1st order interconnect, width (w¼30 μm), and thickness (t¼3.0 μm).
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Appendix A. The effective flexibility of an nth order fractal interconnect

For the 1st order fractal interconnect clamped at the left end and subject to forces (N, Qy, Qz) and bending moments (Mx,
My,Mz) at the right end, the strain energy of the entire interconnect can be obtained from summation of the bending energy
in all straight and curved parts (Zhang et al., 2013a). The flexibility matrices Tð1Þ

in�plane and Tð1Þ
out�of�plane of the 1st order

interconnect can be obtained from the 2nd order derivative of the strain energy function with respect to the components of
force (or bending moment), as given in Eqs. (4a) and (4b).

The 2nd order fractal interconnect is composed of vertically aligned 1st order interconnects and horizontally aligned
straight beams. Its strain energy is the sum of that in all 1st order interconnects and straight beams, whereas the strain

energy of 1st order interconnect can be obtained using its flexibility matrices, Tð1Þ
in�plane and Tð1Þ

out�of�plane. On the other hand,

the strain energy of the 2nd order fractal interconnect can be given in terms of the Tð2Þ
in�plane and Tð2Þ

out�of�plane. This energy

equivalence leads to the analytical expression of Tð2Þ
in�plane and Tð2Þ

out�of�plane in Eqs. (5a) and (5b), where the component

T ð2Þ
out�of�plane;11 is given by

T ð2Þ
out�of�plane;11 ¼

m3

3
4p�ð1�νÞπη½ �þm

12
η kðη2þ2Þþð5þνÞη�2ð1�νÞ� �

þ η3

384m
f8ηpþ ð5þ3νÞπ�16½ �ðp�πηÞþ8 8ð1þνÞ�π½ �ηþ2ð7þ5νÞπ�16ð3þ4νÞg: ðA:1Þ

An order-n interconnect is composed of vertically aligned order-(n�1) interconnects, and horizontally aligned order-
(n�2) order interconnects. Based on the equivalence of strain energy of the order-n interconnect and that from summation
of strain energy in all order-(n�1) and order-(n�2) interconnects, TðnÞ

in�plane and TðnÞ
out�of�plane are obtained in the following

recursive formula via the flexibility matrices for the (n-1)th and (n�2)th order:
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