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a b s t r a c t

Transfer printing is an exceptionally sophisticated approach to assembly and micro-/
nanofabrication that relies on a soft, elastomeric ‘stamp’ to transfer solid, micro-/
nanoscale materials or device components from one substrate to another, in a large-scale,
parallel fashion. The most critical control parameter in transfer printing is the strength of
adhesion between the stamp and materials/devices. Conventional peel tests provide
effective and robust means for determining the interfacial adhesion strength, or equiva-
lently the energy release rate, and its dependence on peel speed. The results presented
here provide analytic solutions for tests of this type, performed using viscoelastic strips
with and without patterns of relief on their surfaces, and validated by systematic
experiments. For a flat strip, a simple method enables determination of the energy
release rate as a function of the peel speed. Patterned strips can be designed to achieve
desired interfacial properties, with either stronger or weaker adhesion than that for a flat
strip. The pattern spacing influences the energy release rate, to give values that initially
decrease to levels smaller than those for a corresponding flat strip, as the pattern spacing
increases. Once the spacing reaches a critical value, the relief self-collapses onto the
substrate, thereby significantly increasing the contact area and the strength of adhesion.
Analytic solutions capture not only these behaviors, as confirmed by experiment, but also
extend to strips with nearly any pattern geometry of cylindrical pillars.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Transfer printing is an exceptionally sophisticated approach to assembly and micro-/nanofabrication that relies on a soft,
elastomeric ‘stamp’ to retrieve solid, micro/nanoscale materials or device components from one substrate to print on a
target substrate, in a large-scale, parallel fashion (Carlson et al., 2012a). This scheme creates a wide range of application
opportunities through its ability to separate requirements associated with source and receiver substrates, and to enable
heterogeneous integration of dissimilar materials into well-controlled two and three dimensional architectures. Enabled
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devices range from cameras that use biologically inspired designs to achieve superior performance (Ko et al., 2008;
Jung et al., 2010), to surgical and diagnostic tools that naturally integrate with the human body to provide advanced
therapeutic capabilities (Someya et al., 2004; Kim et al., 2010a, 2010b, 2011a, 2011b; Viventi et al., 2010, 2011). The key
challenge in efficient operation of transfer printing is to enable mechanisms for switching the strength of adhesion to the
surface of the stamp, from strong to weak to facilitate the first and second steps of the process. Several strategies have been
developed:

1) kinetically-controlled transfer printing (Meitl et al., 2006; Feng et al., 2007): here, the stamp is retracted rapidly during the
first step, and slowly during the second, to make use of the strong and weak adhesion that occurs in these two regimes
due to viscoelasticity of the materials used for the stamps;

2) surface-relief-assisted transfer printing (Kim et al., 2010c; Wu et al., 2011; Kim et al., 2012; Yang et al., 2012): here,
strategically design structures of surface relief, such as sharp, pyramidal microtips at appropriate spacings, enable large
and small contact areas during the first and second steps, respectively, as a means to control adhesion;

3) shear-enhanced transfer printing (Carlson et al., 2011; Cheng et al., 2012): here, degree of shear loading controls initiation
of cracks at the edges of contact areas; low and high loadings yield strong and weak adhesion, respectively;

4) laser-driven transfer printing (Li et al., 2012a, 2012b; Saeidpourazar et al., 2012): here, a laser pulse creates local heating at
the interface, to initiate separation by forces that arise from the large mismatch in coefficients of thermal expansion in
the stamp and adhered materials/devices; and

5) pneumatic-driven transfer printing (Carlson et al., 2012b): here, the adhesion is modulated by pressurizing microchannels
near the surface of the stamp, to affect release.

In all schemes, the mechanics and materials science associated with interfacial adhesion are critically important.
Generally, the adhesion force is a constant (not “tunable”) for an interface between two elastic materials, but may depend on
the speed of interfacial delamination if one (or both) of the constituent(s) is (are) viscoelastic (Gent and Schultz, 1972;
Maugis and Barquins, 1978; Tsai and Kim, 1993; Barquins and Ciccotti, 1997; Barthel and Roux, 2000). Surface textures that
mimic gecko foot-hairs, can substantially increase the adhesion. Gao and Yao (2004) and Yao and Gao (2006) identified the
basis mechanism of robust and releasable adhesion in biology. Geim et al. (2003) demonstrated that arrays of circular pillars
can yield non-specific adhesion capable of supporting large weights. Substantial increase of adhesion has also been observed
in the indentation experiments of arrays of circular pillars (Crosby et al., 2005), and in the peel tests of arrays of circular
(Lamblet et al., 2007; Poulard et al., 2011), square and triangular pillars (Lamblet et al., 2007). Such approaches have been
successfully applied in transfer printing (Kim et al., 2010c; Kim et al., 2012; Yang et al., 2012). Quantitative study of these and
related effects by Arzt et al. (2003) in the context of gecko foot-hairs and by Persson and Gorb (2003) and Hui et al. (2005) in
the context of patterned strips used the JKR model (Johnson et al., 1971). Such models, however, all assume linear elastic
behavior in the materials. Such assumptions may not be valid for viscoelastic materials such as polydimethylsiloxane
(PDMS) which is widely used in transfer printing; in fact, viscoelasticity is critically important for the kinetically-controlled
and surface-relief-assisted schemes outlined above.

The peel test provides an effective and robust method to determine the adhesion strength of an interface between an
elastic strip and an elastic substrate (Kendall, 1975; Brown, 1991; Gent, 1996). As illustrated in Fig. 1, a peel force (at a given
peel angle) delaminates the strip from the underlying substrate. For steady-state peeling, the interfacial adhesion strength is
obtained analytically from the measured peel force based on energy balance (Spies, 1953; Bikerman, 1957; Kaeble, 1959,
1960; Jouwersma, 1960; Yurenka, 1962; Gardon, 1963; Kendall, 1973; Nicholson, 1977). Such an approach has been extended
to an elastic–plastic strip (e.g., Kim and Aravas, 1988; Kim et al., 1989), but is not readily applicable to peeling of a
viscoelastic strip.
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Fig. 1. Schematic illustration of an elastomeric strip in the peel test.
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This paper aims at determining the interfacial adhesion for a viscoelastic strip on a rigid substrate, and establishing
schemes for tuning the interfacial adhesion via patterned strips, both in the context of applications in transfer printing.
A theory for the peel test is established in Section 2 for a flat, viscoelastic strip. The theory is extended to patterned strips
in Section 3 to study its effect on the interfacial adhesion (e.g., pillar height, size, spacing and distribution). The analytic
model is validated by experiments in Section 4. It is shown that one can design patterned strips to achieve the desired
interfacial adhesion, which can be stronger, or weaker, than the adhesion for a flat strip (without patterns). Different
patterns (shape and spacing) are discussed in Section 5.

2. Interfacial adhesion of a linear viscoelastic strip

Fig. 1 shows a schematic illustration of the peel test for a linear viscoelastic strip bonded to a stiff substrate. The strip is
subjected to a peel force F at a peel angle ϕ. Peeling of the strip is modeled by the delamination of strip/substrate interface,
and the strip is modeled as a beam of thickness h and width w (Fig. 1). Let ðx; yÞ denote the local coordinate with the origin at
the tip (front) of the interfacial crack (Fig. 1). Any point on the strip can also be represented by the arc length S and tangential

angle θ, which are related to ðx; yÞ by ds¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdxÞ2 þ ðdyÞ2

q
and tan θ¼ dy=dx. For steady-state peeling, the strip has a constant

shape such that θ¼ θðsÞ does not change with time, and the tangent at the end of strip is parallel to the peel force F.

2.1. Equilibrium equations

Equilibrium of forces in the strip gives the axial force T ¼ F cosðϕ−θÞ and shear force N¼ F sinðϕ−θÞ (Fig. 1). Let M denote
the bending moment, which does not change with time, M¼MðsÞ, for steady-state peeling. Equilibrium of bending
moments in the strip requires dM=dsþ N¼ 0, which gives (Kim and Aravas, 1988)

dM
ds

þ F sin ϕ−θðsÞ½ � ¼ 0; ð1Þ

the boundary condition at the tip of the strip is

θðs¼ 0Þ ¼ 0; ð2Þ
because the rigid substrate does not deform. The boundary condition at the other end where the peel force is applied, under
the steady-state condition, is

θðs-∞Þ ¼ ϕ: ð3Þ

2.2. Viscoelastic model

The axial and shear forces, bending moment, curvature κ¼ dθ=ds, and membrane strain εm in the strip all depend only on
the arc length s at the steady-state. Their rates of change (e.g., _κ) can be related to the derivative with respect to s (Loukis and
Aravas, 1991), i.e.,

_κdt ¼ dκ
ds

ds: ð4Þ

The bending moment is related to the curvature k in the strip by (Christensen, 2003)

M¼ I
Z t

0
Eðt−τÞ dκ

dτ
dτ; ð5Þ

where I¼wh3/12 is the moment of inertia of the cross section, and the relaxation modulus E(t) depends on time. It has a
representative form

EðtÞ ¼ Eð∞Þ þ Eð0Þ−Eð∞Þ½ �exp −
t
tc

� �
; ð6Þ

where E(0) and Eð∞Þ are the initial relaxation and long-time asymptote moduli, respectively, and tc is the relaxation time.
For steady-state peeling, the tangential velocity of the strip is given by (Tsai and Kim, 1993; also see details in

Appendix A)

vðsÞ ¼ 1þ εmðsÞ
1þ εpeel

vpeel; ð7Þ

where εpeel and vpeel are the membrane strain and speed at the end of the strip, respectively. The crack tip speed is
vcrack ¼ vð0Þ ¼ vpeel½1þ εmð0Þ�=ð1þ εpeelÞ such that Eq. (7) becomes vðsÞ ¼ vcrack½1þ εmðsÞ�=½1þ εmð0Þ�, which is approximately
constant vðsÞ≈vcrack since the membrane strain εm is usually much less than 1. Time t then corresponds to the arc length
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s¼vcrackt, and Eq. (5) then becomes

MðsÞ ¼ I
Z s

0
E

s−l
vcrack

� �
dκ
dl

dl¼ I Eð0ÞκðsÞ þ 1
vcrack

Z s

0
κðlÞE′ s−l

vcrack

� �
dl

� �
: ð8Þ

Substitution of Eq. (8) into Eq. (1) gives

vcrackEð0Þ
d2θ
ds2

þ E′
s

vcrack

� �
dθ
ds

�����s ¼ 0 þ
Z s

0
E′

s−l
vcrack

� �
d2θ

dl2
dlþ vcrack

F
I
sinðϕ−θÞ ¼ 0; ð9Þ

where E′ðtÞ ¼ dE=dt. This is a second-order differential–integral equation, with the boundary conditions in Eqs. (2) and (3). It
is solved numerically by the shooting method, i.e., assume a value of ðdθ=dsÞs ¼ 0, solve Eq. (9) with the condition θs ¼ 0 ¼ 0 in
Eq. (2), to satisfy the other condition θs-∞ ¼ ϕ in Eq. (3). Dimensional analysis of Eq. (9) shows that θ depends on the
normalized arc length and peel force, and takes the form

θ¼ θ
s

vcracktc
;
vcracktcð Þ2F
Eð0ÞI ;ϕ;

Eð∞Þ
Eð0Þ

" #
; ð10Þ

where vcracktc is the length of interfacial delamination over the relaxation time in viscoelasticity. Fig. 2 shows θ versus the
normalized arc length for vertical peeling ðϕ¼ 901Þ, and normalized peel force ranging from 0.046 to 4.4. The ratio of initial
relaxation to long-time asymptote moduli is Eð∞Þ=Eð0Þ ¼ 0:92 for PDMS mixed at 10:1 ratio (Lin et al., 2008). The tangential
angle θ reaches the peel angle ð901Þ when the arc length is approximately 50vcracktc, and it increases rapidly with the peel
force. Fig. 3 shows the profile of the strip, normalized by vcracktc, for several normalized peel forces.

Fig. 2. The angle θ versus normalized arc length for vertical peeling ðϕ¼ 901Þ and Eð∞Þ=Eð0Þ ¼ 0:92 at several normalized peeling forces.

Fig. 3. The profile of the strip for several normalized peel forces for vertical peeling ðϕ¼ 901Þ and Eð∞Þ=Eð0Þ ¼ 0:92.
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Besides the curvature κ¼ dθ=ds, bending moment from Eq. (8), axial force T ¼ F cosðϕ−θÞ, the other variable needed to
calculate the energy release rate is membrane strain in the strip

εm sð Þ ¼ 1
S

Z s

0
J

s−l
vcrack

� �
dT
dl

dl¼ F
S

Jð0Þcos ϕ−θðsÞ½ � þ 1
vcrack

Z s

0
cos ϕ−θðlÞ� 	

J′ s−l
vcrack

� �
dl


 �
; ð11Þ

where S¼wh is the cross section area, and JðtÞ is the viscoelastic compliance, which is related to the relaxation modulus byR t
0 JðτÞEðt−τÞdτ¼ t. For the relaxation modulus E(t) in Eq. (6),

JðtÞ ¼ 1
Eð∞Þ−

1
Eð∞Þ−

1
Eð0Þ

� �
exp

−t
tcðEð0Þ=Eð∞ÞÞ

� �
ð12Þ

2.3. Energy release rate

For the strip to delaminate an incremental length dL under the steady-state condition, the work done by the peel force F
is (Gent and Hamed, 1975)

dWF ¼ Fð1þ εpeel−cos ϕÞdL; ð13Þ

where εpeel ¼ Jð∞ÞF=S is obtained from Eq. (11) for s-∞. Similar to Kim and Aravas (1988), the above work equals the sum of
energy release GwdL due to interfacial delamination and the change of (elastic and viscoelastic) strain energy dW in the
strip,

dWF ¼ GwdLþ dW ; ð14Þ
where G is the energy release rate for interfacial delamination. For steady-state peeling, dW is the product of dL and the
change of strain energy stored in a cross section as it goes through the entire strip, i.e., dW ¼ dL

R
peeling armdU, where

dU ¼Mdκ þ Tdεm consists of the bending and membrane energy. Eqs. (13) and (14) then give the energy release rate

G¼ F
w
ð1þ εpeel−cos ϕÞ−

1
w

Z ∞

0−
M

dκ
ds

þ T
dεm
ds

� �
ds: ð15Þ

the integration by part of the above equation gives

G¼ F
w
ð1−cos ϕÞ þ 1

w

Z ∞

0
κ
dM
ds

dsþ 1
w

Z ∞

0
εm

dT
ds

ds; ð16Þ

substitution of Eqs. (8) and (11) into the above equation gives

G¼ F
w

1−cos ϕþ gb þ
F

Eð0ÞAgm

� �
; ð17Þ

where gb and gm represent contributions from the bending and membrane energies in the strip, respectively, and they are
nondimensional functions of normalized peel force ðvcracktcÞ2F=½Eð0ÞI�, peel angle ϕ, and initial relaxation to long-time
asymptote moduli ratio Eð∞Þ=Eð0Þ. Fig. 4 shows gb and gm versus the normalized peel force ðvcracktcÞ2F=½Eð0ÞI� for peel angle
ϕ¼ 901 and Eð∞Þ=Eð0Þ ¼ 0:92; gb is much less than 1, and gm is on the order of 1. Therefore, for relatively small peeling strain

Fig. 4. Parameters gb and gm versus the normalized peel force for peel angle ϕ¼ 901 and Eð∞Þ=Eð0Þ ¼ 0:92.
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F=½Eð0ÞS�≪1, the viscoelastic energy release rate has a very simple expression

G≈
F
w
ð1−cos ϕÞ: ð18Þ

3. Interfacial adhesion of a patterned strip

Fig. 5a shows a schematic illustration of a linear viscoelastic strip of width w, with patterned cylindrical pillars at the
interface (with a stiff substrate). The cylinders have radius R and height hpillar, and form a rectangular pattern with spacings
a∥ and a⊥ parallel and perpendicular to the peel direction, respectively.

3.1. Self-collapse of patterned strips

At relatively large spacing a∥ and a⊥, the patterned strips collapse onto the rigid substrate due to the strip/substrate
adhesion. Huang et al. (2005) showed that this self-collapse occurs when the decrease of adhesion energy overwhelms the
increase of deformation energy in the strip due to collapse. They established analytically the criterion of self-collapse, which
has been validated by experiments (Hsia et al., 2005).

Fig. 5b illustrates the collapsed strip for the pattern in Fig. 5a. The deformation energy in the strip is (Huang et al., 2005)

Udef ormation ¼ 0:617Eð∞Þh2pillar
Kðc=ða−2RÞÞ

K½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðc=ða−2RÞÞ2

q
�

ðða−2RÞ=aÞ2
ln½secððπ=2Þða−2RÞ=aÞ� ; ð19Þ

where Eð∞Þ ¼ 4Eð∞Þ=3 is the plane-strain modulus for Eð∞Þ of an incompressible material, K is the complete elliptic integral
of first kind, a¼maxða∥; a⊥Þ is the larger spacing between a∥ and a⊥, and the collapse length c along a (Fig. 5b) is to be
determined. The above equation holds for collapse only along the direction of larger spacing between a∥ and a⊥. Collapse
may occur along both directions for large a∥ and a⊥, as studied by Wu et al. (2011). The adhesion energy between the
collapsed strip and substrate is

Uadhesion ¼−γc; ð20Þ
where γ is the work of adhesion, and is around 40 mJ/m2 to for PDMS/glass (Owen, 1981; Gordon et al., 1998; Aaron et al.,
2005; Huang et al., 2005). Minimization of total energy Udeformation+Uadhesion with respect to c gives the following equation to
determine the collapse length c:

d
dk

KðkÞ
Kð

ffiffiffiffiffiffiffiffiffiffiffi
1−k2

p
Þ

" #�����k ¼ c
a−2R

¼ 1:62
γa2

Eð∞Þh2pillarða−2RÞ
ln sec

π

2
a−2R
a

� �� �
; ð21Þ

it suggests that the collapse length c, normalized by a−2R, depends on the pillar height, radius and spacing, elastic modulus

Fig. 5. (a) Schematic illustration of an elastomeric strip with patterned pillars at the interface (with a stiff substrate); (b) illustration of the collapsed strip,
where a¼maxða∥; a⊥Þ.
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of the strip, and work of adhesion between the strip and substrate via a single, dimensionless combination λ, i.e.,

c
a−2R

¼ cðλÞ; ð22Þ

where c is a nondimensional function of λ, and

λ¼ γa

Eð∞Þh2pillar
a

a−2R
ln sec

π

2
a−2R
a

� �� �
; ð23Þ

here γa=½Eð∞Þh2pillar� represents the ratio of adhesion energy to deformation energy. Fig. 6 shows the normalized collapse
length versus λ. For weak adhesion (or large modulus or height of the pillar or small spacing such that λo0:238, Eq. (21)
does not have solution for c, which means that self-collapse does not occur. Once λ reaches 0.238, the collapse length
immediately jumps from zero to 0.457(a−2R), which reflects the nature of instability.

Substitution of c in Eq. (22), or equivalently Fig. 6, into Eq. (19) gives the deformation energy, which takes the form

Udef ormation ¼ Eð∞Þh2pillar
ðða−2RÞ=aÞ2

ln½secððπ=2Þða−2RÞ=aÞ�UðλÞ; ð24Þ

where U is a nondimensional function of a single variable λ. Fig. 7 shows the deformation energy, normalized by
Eð∞Þh2pillar½ða−2RÞ=a�2=lnfsec½πða−2RÞ=ð2aÞ�g, versus λ. It should be pointed out that Figs. 6 and 7 are the “universal” curves for
the collapse length and deformation energy, respectively, since these curves are the same for all materials and geometric
parameters.
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Fig. 6. The normalized collapse length c versus λ.
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Fig. 7. The normalized deformation energy U versus λ.
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Self-collapse occurs when the total energy Udeformation+Uadhesion is less than the energy at non-collapsed state (zero). This
gives the critical condition for self-collapse as

λo0:864⇒no collapse
λ40:864⇒collapse

ð25Þ

for 0:238oλo0:864, the total energy of collapsed state is higher than zero (of the non-collapsed state). It corresponds to
unstable collapse such that it is readily reversible to the non-collapsed state, as indicated by the thick lines coinciding with
horizontal axes in Figs. 6 and 7.

3.2. Additional strain energy in the patterned strips

Fig. 8 shows a schematic illustration of the peel test for a linear viscoelastic strip with patterned cylindrical pillars
bonded to a stiff substrate. The patterned strips introduces non-uniform deformation in the pillars and strip, which gives
additional strain energies stored in pillars and strip beyond that for a flat strip (without patterns) in Section 2.

The net force Fpillar on the last pillar before being peeled off from the stiff substrate (Fig. 8) can be obtained from fracture
analysis. For an infinitesimal crack to start from the edge, the stress intensity factors are (Tada et al., 2000)

KI ¼
2
π

0:317
Fpillar
R3=2

� �
and KII ¼

2
π

0:103
Fpillar
R3=2

� �
; ð26Þ

where the factor 2=π accounts for the cylindrical shape of the pillar. The energy release rate is

G¼ 1
2

1
Eð0Þ ðK

2
I þ K2

IIÞ ¼ 0:0225
1

Eð0Þ
F2pillar
R3 ; ð27Þ

where Eð0Þ is used because the pillar radius R is much less the characteristic length vcracktc associated with viscoelasticity,
and the factor 1/2 accounts for the large elastic mismatch between the strip and substrate (Huang et al., 2005). The above
equation then gives

Fpillar ¼ 6:66
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð0ÞGR3

q
: ð28Þ

The additional strain energy in the last pillar can then be obtained as

Upillar ¼
F2pillarhpillar
2Eð0Þ⋅πR2 ¼ 9:42GRhpillar ; ð29Þ

where the pillar is approximately subjected to uniaxial tension. The additional strain energy in the strip can be obtained by
modeling the strip as a semi-infinite solid subjected to a uniform pressure of Fpillar=ðπR2Þ over a circle of radius R (see
Appendix A for details)

Ustrip ¼ 12:0GR2: ð30Þ

3.3. Energy release rate for the patterned strips

The fraction of contact area, i.e., the ratio of strip/substrate contact area to the surface area of the substrate is

f ¼
πR2=ða∥a⊥Þ for λo0:864

½πR2 þ cminða∥; a⊥Þ�=ða∥a⊥Þ for λ40:864

(
ð31Þ

for the non-collapsed ðλo0:864Þ and collapsed states (ðλ40:864Þ), where the collapse length c is given in Eq. (22) and Fig. 6,
minða∥; a⊥Þ is the smaller spacing between a∥ and a⊥ and is given by minða∥; a⊥Þ ¼ a∥ þ a⊥−a. Let Gpattern denote the effective

Fpillar

Fig. 8. Schematic illustration of an elastomeric strip with patterned pillars at the interface (with a stiff substrate) in the peel test.
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energy release rate for the patterned strips. For steady-state delamination over length dL of the strip with patterned strips,
the effective energy release GpatternwdL consists of the following contributions:

(1) energy release due to delamination over the strip/substrate contact area, fGwdL, where f is the contact area fraction in
Eq. (31), and G is the energy release rate for a continuous strip given in Eq. (17) or its approximation (i.e. Eq. (18));

(2) release of additional energy in the pillar and strip, ðUpillar þ UstripÞwdL=ða∥a⊥Þ, where wdL=ða∥a⊥Þ represents the number
of pillars over the area wdL, and Upillar and Ustrip are given in Eqs. (29) and (30), respectively;

(3) release of deformation energy due to self-collapse, −Udef ormationwdL=a, where Udef ormation is given in Eq. (24).

These give the effective energy release rate for the patterned strips as

Gpattern ¼ f Gþ Upillar þ Ustrip

a∥a⊥
−
Udef ormation

a
; ð32Þ

where G is the energy release rate given in Eq. (18) for a flat strip (without patterns). Together with Upillar, Ustrip, and
Udeformation in Eqs. (29), (30) and (24), the above equation becomes

Gpattern ¼
G 9:42hpillarþ15:1R

a∥a⊥
R for λo0:864

G 9:42hpillarþ15:1R
a∥a⊥

Rþ a−2R
a GcðλÞ−γ UðλÞ

λ

h i
for λ40:864

;

8><
>: ð33Þ

where λ is given in Eq. (23), cðλÞ in Eq. (22) and UðλÞ in Eq. (24) are shown in Figs. 6 and 7, respectively. Fig. 9 shows the
effective energy release rate Gpattern for the patterned strips, normalized by G for a flat strip, versus the normalized pattern
spacing a∥=R for a set parameters corresponding to the experiments in the next section, hpillar/R¼0.5, a⊥=R¼ 4:6,
γ=½Eð∞ÞR� ¼ 0:023, and G=½Eð∞ÞR� ¼ 4:6 for vanishing crack tip speed. It is observed that, as the pattern spacing a∥ increases,
the effective energy release rate Gpattern initially decreases because the fraction of contact area f [in Eq. (31)] decreases.
However, once the pattern spacing reaches a∥=R¼ 7:6, the patterned strips collapse and the contact area increases
instantaneously, which leads to the jump of Gpattern in Fig. 9. Furthermore, the patterned strips may have smaller energy
release rate than that for a flat strip (i.e., Gpattern/Go1) only if the pattern spacing a∥ is in the range (4.3R,7.6R) (for the above
set of parameters), above which the patterned strips collapse. Below this range the pillars are close such that their strain
energy overwhelms the loss of adhesion energy associated with the reduction of contact area of patterned strips (as
compared to a flat strip). This has been observed in biologically inspired crack trapping for enhanced adhesion, which
shows that the effective adhesion increases when a large contact area is replaced by multiple, small contact areas (e.g., Arzt
et al., 2003; Chung and Chaudhury, 2005; Glassmaker et al., 2007). The lower bound of this range is a∥=R¼ ð9:42hpillar þ
15:1RÞ= a⊥ from Eq. (33), while the upper bound of the range is governed by λ¼0.864.

Eq. (33) gives analytically the energy release rate Gpattern for a patterned strip once G for a flat strip is measured from
experiments. This is very useful to the design of patterned strips since one can adjust the pattern spacing to achieve the
desired energy release rate.

Fig. 9. The normalized effective energy release rate Gpattern/G versus the normalized pattern spacing a∥=R for hpillar/R¼0.5, a⊥=R¼ 4:6, γ=½Eð∞ÞR� ¼ 0:023,
and G=½Eð∞ÞR� ¼ 4:6 for vanishing crack tip speed.
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4. Experiments

4.1. Characterization of materials

The flat PDMS (Sylgard 184 from Dow Corning) was mixed (10:1 and 15:1 ratios) and degassed, poured over a test-grade
silicon fixed in a Petri and cured at 30 1C for 96 h. The patterned PDMS was fabricated by pouring the same mixture on a
patterned silicon mold, which schematic illustrated in Fig. 10, made by conventional contact mode photolithography process
and then also curing at 30 1C for 96 h. Three rectangular patterns of pillars, named A, B and C in Fig. 10, were fabricated. The
pillars have radius R¼1 μm, height hpillar¼0.5 μm, and the spacing perpendicular to the peel direction a⊥ ¼ 4:6 μm. The only
difference among these patterns is the spacing parallel to the peel direction, namely 4.6, 6.2 and 8.8 μm for patterns A, B
and C, respectively.

Lin et al. (2008) obtained the relaxation modulus of PDMS mixed at 10:1 ratio as

EðtÞ ¼ 1:30þ 0:11e−t=0:165 ðMPaÞ; ð34Þ

where t is in seconds. These give Eð0Þ ¼ 1:41 MPa, Eð∞Þ ¼ 1:30 MPa, and tc¼0.165 s, which are also very close to the
viscoelastic properties of PDMS mixed at 10:1 ratio reported by others (Choi et al., 2008; Liu et al., 2012). In general, the
relaxation moduli increase as the mixing ratio decreases (Armani et al., 1999; Carrillo et al., 2005; Gupta et al., 2007). For
PDMS mixed at 15:1 ratio, the elastic modulus is approximately 0.6 times of that for 10:1 ratio (Carrillo et al., 2005), and
therefore Eð∞Þ ¼ 0:6� 1:30¼ 0:78 ðMPaÞ is used for 15:1 ratio in the following.

4.2. Peel test of a flat elastomeric strip (without patterns)

The flat PDMS strips were laminated onto glass slides and left in conformal contact with surface without any extra
external force. Inverting the strip/slide (strip side down) and attaching weights to one end of the strip initiated peeling of
the PDMS strip from the slide. Pictures from the high-speed camera of each peel event were used to measure the separation
speed and the profile of the strip. These pictures were compared to ensure that the interfacial delamination reached steady
state. Fig. 11a shows a picture of the steady-state profile of the strip (PDMS mixed at 10:1 ratio, thickness h¼1.18 mm, and
width w¼15.21 mm). The attached weight is 16.8 g, which gives the peel force F¼0.165 N (downward, and peel angle
ϕ¼ 901). The measured crack tip speed (i.e., speed of interfacial delamination) was vcrack¼5.3 mm/s. These give the
normalized force ðvcracktcÞ2F=½Eð0ÞI� ¼ 0:046, where E(0)¼1.41 MPa is discussed in Section 4.1. Fig. 11b compares the profile of
the strip obtained from Fig. 11a to the analytic solution shown in Fig. 3 for the same normalized force. The analytic solution
agrees very well with experiments without any parameter fitting.

In addition to the peel force 0.165 N, the peeling experiments were repeated by the application of a series of constant
loads given in Table 1. The measured steady-state crack tip speed (i.e., speed of interfacial delamination) is also given in
Table 1, together with the energy release rate obtained from Eq. (18). The energy release rate is shown versus the crack tip
speed in Fig. 12, which is well represented by a power law (Gent and Schultz, 1972; Maugis and Barquins, 1978; Tsai and Kim,

A

B

C

C

Peel direction

Fig. 10. Schematic illustration of the silicon mold used to fabricate the patterned PDMS. The radius R¼1 μm, the depth of all the holes is 0.5 μm and the
spacing perpendicular to the peel direction a⊥ ¼ 4:6 μm. The spacing parallel to the peel direction of these patterns are 4.6, 6.2 and 8.8 μm for patterns A, B
and C, respectively.
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1993; Barquins and Ciccotti, 1997; Barthel and Roux, 2000; Feng et al., 2007)

GðvcrackÞ ¼ G0 1þ vcrack
v0

� �n� �
; ð35Þ

where G0 is the energy release rate at a vanishing crack tip speed, and v0 is a reference speed. For PDMS mixed at 10:1 ratio,
G0¼6.9 J/m2, v0¼10 mm/s, and exponent n¼0.53. The experimental results for PDMS mixed at 15:1 ratio are also shown in

analysis

experiment

Fig. 11. (a) A picture of the steady-state profile of the strip (PDMS mixed at 10:1 ratio, thickness h¼1.18 mm, and width w¼15.21 mm) subject to the peel
force F¼0.165 N; (b) profiles of the strip obtained from the picture in (a) and the analytic solution shown in Fig. 3 for the same peel force.

Table 1
Peel test for PDMS mixed at 10:1 ratio.

Peel force (N) 0.165 0.201 0.233 0.253 0.270 0.294 0.317 0.387
Energy release rate (J/m2) 11 14 15 16 18 19 21 25
Crack tip speed (mm/s) 5.3 7.5 11 15 23 31 38 65
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Fig. 12. The energy release rate versus the crack tip speed for PDMS mixed at 10:1 and 15:1 ratios, and the power-law relation.

H. Chen et al. / J. Mech. Phys. Solids 61 (2013) 1737–1752 1747



Author's personal copy

Fig. 12, which give G0¼8.0 J/m2, v0¼4.3 mm/s, and n¼0.63. The energy release rate increases with the crack tip speed
[Fig. 12; Eq. (35)] because, as the rate increases, more energy is dissipated through viscous effect.

4.3. Peel test of an elastomeric strip with patterned strips

The uniform part of the patterned PDMS strips had the same thickness as the flat strips as in Section 4.2 but smaller
width around 10 mm. The pillar size and spacing were described in Section 4.1. The patterned PDMS strips were also
laminated onto glass slides, left in conformal contact with surface without any extra external force, and initiated peeling of
the PDMS strip from the slide by attaching weights to one end of the strip.

For each pattern (A, B or C), three weights were used, which gave the peel force 0.114, 0.135 and 0.144 N for pattern A;
0.156, 0.172 and 0.201 N for pattern B; and 0.201, 0.233 and 0.259 N for pattern C. The ratio of each force to the width of the
corresponding strip then gave the experimentally obtained energy release rate according to Eq. (18). The steady-state crack
tip speed was measured by the same method as that in Section 4.2 for a flat strip. The steady state of measured profile is
reached at a scale �10 mm (e.g., Fig. 12), which is much larger than the pattern spacing (�1 μm).

For PDMS mixed at 10:1 ratio, Fig. 13 shows the experimentally measured energy release rate versus the crack tip speed
for patterns A, B and C, where the energy release rate was obtained from the peel force via Eq. (18). Fig. 13 also shows the
analytically predicted energy release rate from Eq. (33), which only involves the pillar size and spacing, the power-law
relationGðvcrackÞ in Eq. (35) for the flat strip (without patterns), and work of adhesion γ¼41 mJ/m2 , which agrees with the
literature value (Owen, 1981; Gordon et al., 1998). The analytic model agrees well with experiments for all three patterns
and the large range of crack tip speed, and therefore can be used to design the patterned strips to achieve the desired energy
release rate. The energy release rate for pattern A, which has the smallest pattern spacing, is very close to G for the flat strip
in Fig. 12. Pattern B has a larger spacing than pattern A; its energy release rate is the smallest among all three patterns
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Fig. 13. The energy release rate versus the crack tip speed for the patterned PDMS strip mixed at 10:1 ratio. Three patterns A, B and C correspond to those
illustrated in Fig. 10, which have the radius R¼1 μm, the depth 0.5 μm and the spacing perpendicular to the peel direction a⊥ ¼ 4:6 μm. The spacing parallel
to the peel direction of these patterns are 4.6, 6.2 and 8.8 μm for patterns A, B and C, respectively.
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Fig. 14. The energy release rate versus the crack tip speed for the patterned PDMS strip mixed at 15:1 ratio. Three patterns A, B and C correspond to those
illustrated in Fig. 10, which have the radius R¼1 μm, the depth 0.5 μm and the spacing perpendicular to the peel direction a⊥ ¼ 4:6 μm. The spacing parallel
to the peel direction of these patterns are 4.6, 6.2 and 8.8 μm for patterns A, B and C, respectively.
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(Fig. 13), and is much lower than G for the flat strip (Fig. 12). Pattern C has the largest spacing, but its energy release rate is
the largest among the three (Fig. 13), and is much higher than G for the flat strip (Fig. 12). This non-monotonic behavior
agrees well with the analytic model since Eq. (33) predicts no collapse for patterns A and B (λo0.864), but collapse for
pattern C (λ40.864).

This non-monotonic dependence of energy release rate on pattern spacing is also observed in Fig. 14 for PDMS mixed at
15:1 ratio for the same three patterns. Once again the energy release rate for pattern A is between those for patterns B and C.
For all three patterns, the analytic model in Eq. (33) agrees well with experiments for the power-law relationGðvcrackÞ in
Eq. (35) for PDMS mixed at 15:1 and slight larger work of adhesion γ¼41 mJ/m2 because the material is more viscous
than PDMS mixed at 10:1 ratio.

5. Concluding remarks and discussions

The analytic solution for peel test of a viscoelastic strip on substrate is obtained, and is validated by the profile of PDMS
peel arm measured in experiments. It establishes a simple way to determine the energy release rate as a function of the
crack tip speed for delamination of strip/substrate interface. The analytic solution for patterned strips is also obtained and
validated by experiments. It provides a useful way to design patterned strips to achieve the desired interfacial properties,
either stronger or weaker than those for a flat strip (without patterns). As an example, the pattern spacing is shown, both
analytically and experimentally, to control the energy release rate. As the pattern spacing increases, the energy release rate
for patterned strips initially decreases and becomes smaller than that for a flat strip, but it has a sudden jump to be
significantly larger once the pattern spacing reaches a critical value, at which the patterned strips self-collapse onto the
substrate and thereby significantly increase the contact area.

The effective energy release rate in Eq. (33) is also applicable to other patterns by replacing a∥a⊥ with the average area A
per pillar while keeping a as the maximum spacing among neighbor pillars, as illustrated in Fig. 15a for two hexagon

Fig. 15. (a) Schematic illustration of the hexagonal patterns H1 ða¼ 6 μmÞ and H2 ða¼ 10 μmÞ; (b) the energy release rate versus the crack tip speed for the
PDMS strip with hexagonal patterns mixed at 10:1 ratio.
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patterns H1 and H2 for a¼ 6 μm and 10 μm, respectively. The effective energy release rate becomes

Gpattern ¼
G 9:42hpillarþ15:1R

A R for λo0:864

G 9:42hpillarþ15:1R
A Rþ a−2R

a GcðλÞ−γ UðλÞ
λ

h i
for λ40:864

;

8><
>: ð36Þ

where G is the energy release rate given in Eq. (18) for a flat strip (without patterns), λ is given in Eq. (23), cðλÞ in Eq. (22) and
UðλÞ in Eq. (24) are shown in Figs. 6 and 7, respectively. Peel tests were conducted for 10:1 PDMS strips with two hexagonal
patterns of pillars, H1 and H2 illustrated in Fig. 15a. The pillars have radius R¼1 μm, height hpillar¼0.5 μm, and maximum
spacing a¼6 μm or 10 μm. Fig. 15b shows the experimentally measured energy release rate versus the crack tip speed for
patterns H1 and H2. It also shows the analytically predicted energy release rate from Eq. (36) based on the same power-law
relationGðvcrackÞ in Eq. (35), and the same work of adhesion γ¼41 mJ/m2. The analytic model agrees well with experiments
for two hexagonal patterns without any parameter fitting.1 It should be pointed out that Eq. (36), as well as the analytic
model in Section 3, are for patterned cylindrical pillars, and are not applicable to other shapes such as parallel lines
(Kim et al., 2009).
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Appendix A. Tangential velocity of the strip

The length L of delaminated interface in the original, outstretched state is related to the current length sL of the peeling
arm by

L¼
Z sL

0

ds
1þ εmðs; tÞ

; ðA:1Þ

where εmðs; tÞ is the membrane strain and it depends on time t. The speed of interfacial delamination is

vcrack ¼
dL
dt

¼ dsL
dt

1
1þ εcðsL; tÞ

−
Z sL

0

ð∂εcðs; tÞÞ=∂t
½1þ εcðs; tÞ�2 ds; ðA:2Þ

for steady-state delamination of the interface, εm not depend on t explicitly such that the above equation becomes

vcrack ¼
dL
dt

¼ dsL
dt

1
1þ εmðsLÞ

¼ vpeel
1þ εpeel

; ðA:3Þ

where εpeel is the axial strain at the end of the peeling arm, and vpeel is the peeling speed. Elimination of vcarck gives the
tangential velocity in Eq. (7).

A.1. Strain energy in the strip

The additional strain energy in the strip can be obtained by modeling the strip as a semi-infinite solid subjected to a
uniform pressure of Fpillar=ðπR2Þ over a circle of radius R. The normal displacement at the pillar/strip interface is given by
(Johnson, 1987)

unðρÞ ¼
4R

πEð0Þ
Fpillar
πR2 E

ρ

a

� 

; ðA:4Þ

where E is the complete elliptic integration of second kind (note, here E is not to be confused with the relaxation modulus).
Integration of the above displacement, together with the pressure Fpillar=ðπR2Þ and Eq. (28), gives the strain energy in the
strip in Eq. (30).
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