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Mechanics of Tunable
Hemispherical Electronic Eye
Camera Systems That Combine
Rigid Device Elements With Soft
Elastomers
A tunable hemispherical imaging system with zoom capability was recently developed by
exploiting heterogeneous integration of rigid silicon photodetectors on soft, elastomeric
supports, in designs that can facilitate tunable curvature for both the lens and detector.
This paper reports analytical mechanics models for the soft materials aspects of the tuna-
ble lenses and detector surfaces used in such devices. The results provide analytical
expressions for the strain distributions, apex heights and detector positions, and have
been validated by the experiments and finite element analysis. More broadly, they repre-
sent important design tools for advanced cameras that combine hard and soft materials
into nonplanar layouts with adjustable geometries. [DOI: 10.1115/1.4023962]
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1 Introduction

Conventional digital cameras use arrays of photodetectors in
planar layouts; this configuration requires systems of lenses ca-
pable of producing images with similar geometries, thereby plac-
ing stringent constraints on engineering options, in ways that can
affect cost, size, weight, and performance. Mammalian eyes pro-
vide the inspiration for alternative approaches that use curved
arrays of photodetectors with geometries to match the shapes of
images that form with simple, compact, low cost lenses [1–4].
Resolution scaling analyses and optical modeling [5] provide cri-
teria for designs in such systems. Ko et al. [6] demonstrated a
first, fully functional hemispherical imaging system, with config-
uration matched to the strongly nonplanar image surfaces (i.e.,
Petzval surfaces) that form with single-component, plano-con-
vex lenses. Such “eyeball” cameras rely critically on silicon pho-
todetectors, interconnected in mesh layouts, and supported by
soft, elastomeric substrates. The result is a heterogeneous system
of hard and soft materials that can be reshaped into any desired
geometry, based on purely elastic deformations. In the first
reported embodiments, the detector curvature was fixed [3,6],
thereby rendering the cameras incompatible with changes in the
nonplanar image surfaces that result from adjustable zoom.
Removing this limitation requires the curvature of the detector
array to change in a precise manner coordinated with the magni-
fication setting, to ensure identical shapes for the image and de-
tector surfaces at all zoom settings. Jung et al. [7] developed a
tunable hemispherical imaging system that provides this function
by using hydraulic actuation [8,9]. Here, an interconnected array
of silicon photodetectors on a thin elastomeric membrane pro-
vides tunable access to a range of hemispherical shapes. Com-
bining such a detector with a tunable lens, also controlled by
fluid pressure, yields a hemispherical camera capable of adjusta-
ble zoom and excellent imaging characteristics. Such technology
could be useful for night-vision surveillance, endoscopic imag-
ing, and other areas that require compact cameras with simple
zoom optics and wide angle fields of view. Related curvilinear
electronic systems have been extended to other complex layouts
[10,11], all of which provide function and modes of use that lie
outside of the scope of possibilities provided by conventional,
planar designs.

Mechanics models of these hard/soft material systems provide
important insights into the design and fabrication of structures
with fixed curvature [12,13]. The maximum strain in devices and
their positions on a curvilinear surface can be determined analyti-
cally, and agree well with experiments [6,10,11] and with the fi-
nite element analysis (FEA) [12,13] without any parameter fitting.
The objective of this paper is to establish related models and pres-
ent a simple, analytical scaling relation between the overall defor-
mation and applied pressure for tunable hemispherical imaging
systems that offer adjustable zoom capabilities [7]. The results
give analytically the curvatures of the lenses and detector arrays
in terms of the fluid pressures, the corresponding maximum
strains, and the detector positions on the tunable hemispherical
surfaces. The outcomes are shown to be consistent with both the
experiment and FEA.

The analytical results obtained by this study have important
implications in real applications. In the tunable hemispherical
imaging system, operation of the tunable electronic eye camera
system requires coordinated tuning of geometries of both the lens
and detector due to the intrinsic optics, while our analytical solu-
tions can provide a very convenient tool for this purpose. During
the image processing stage, analytical results can offer much
faster means than finite element simulations for tracking pixel
positions on the dynamically changing detector surface. This is
especially important when the device is further improved for real
applications and fast image processing capability is very critical.
In addition, when the tunable strategy is used in other devices and
systems, the analytical results can offer convenient and efficient
tools for design and optimization.

2 Mechanics of Tunable Lens

2.1 Constitutive Model of PDMS Lens. Both the lenses and
the photodetector arrays use the elastomer poly(dimethylsiloxane)
(PDMS) as the soft material component. The stress–strain relation
in PDMS is characterized by the hyperelastic model for incom-
pressible materials [14] with the strain energy density

W ¼
X3

k¼1

Ck I1 � 3ð Þk (2.1)

which is a function of I1 ¼ k2
1 þ k2

2 þ k2
3, where k1, k2, and k3 are

the principal stretches (and k1k2k3¼ 1 due to incompressibility),
and the constants Ck are to be determined from experiments. For
simple tension along direction X1, the principal stretches are
related to the nominal strain e by k1 ¼ k ¼ 1þ e and
k2 ¼ k3 ¼ 1=

ffiffiffi
k
p

. For W in Eq. (2.1), the Cauchy stresses are
given by [15]

r1 ¼ 2k2
1

dW

dI1

þ ph ¼ 2k2
X3

k¼1

kCk I1 � 1ð Þk�1 þ ph

r2 ¼ r3 ¼ 2k2
2

dW

dI1

þ ph ¼
2

k

X3

k¼1

kCk I1 � 1ð Þk�1 þ ph

(2.2)

where I1 ¼ k2 þ 2=kð Þ, and ph is the hydrostatic pressure and is
determined from the condition of simple tension r2 ¼ r3 ¼ 0 as
ph ¼ � 2=kð ÞdW=dI1. The uniaxial stress r¼ r1 is then given by

r ¼ 2 k2 � 1

k

� �
dW

dI1

¼ 2 k2 � 1

k

� �
C1 þ 2C2 I1 � 3ð Þ þ 3C3 I1 � 3ð Þ2
h i

(2.3)

Figure 1 shows r versus e with C1¼ 0.29 MPa, C2¼ 0.015 MPa
and C3¼ 0.019 MPa, which agrees very well with the uniaxial
stress–strain curve for Sylgard 184 PDMS (10:1 mixing ratio of
prepolymer and curing agent) [16]. The linear elastic modulus E
can be obtained from Eq. (2.3) at the limit of infinitesimal strain e
as E¼ 6C1, which is 1.7 MPa and is in good agreement with the
literature values 2.0 MPa [6]. The shear modulus is G¼ 2C1.

Fig. 1 The stress–strain curve for PDMS (Sylgard 184, 10:1 mix-
ing ratio of prepolymer and curing agent) obtained from experi-
ments [16] and from the hyperelastic model in Eq. (2.3) with the
coefficients C1 5 0.29 MPa, C2 5 0.015 MPa, and C3 5 0.019 MPa
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2.2 Deformation Analysis. Figures 2(a) and 2(b) provide the
photograph of tunable lens and detector surface, respectively. The
upper components correspond to an adjustable, plano-convex
zoom lens, and the lower ones correspond to a tunable, hemispher-
ical detector array. The tunable lens is made of a transparent
PDMS membrane (thickness tlens) filled with a liquid. The shape
is initially flat and circular (radius Rlens), with the periphery fixed
(Fig. 2(c)). Under pressure p, the membrane expands to a hemi-
sphere of apex height H (Figs. 2(a) and 2(c)). The radius R and
angle umax of the hemisphere (Fig. 2(c)) are obtained from the geo-
metrical relations R� Hð Þ2þ R2

lens ¼ R2 and sinumax ¼ Rlens=R as

R ¼ R2
lens þ H2

2H
and umax ¼ sin�1 2RlensH

R2
lens þ H2

(2.4)

As shown in Fig. 3, FEA gives approximately a uniform strain in
the meridional direction in the hemisphere, whereas details of
FEA are given later. The logarithmic strain er in the meridional
direction is then obtained from the corresponding principal stretch
kr, i.e., ratio of arc lengths Rumax to initial radius Rlens, by

er ¼ ln kr ¼ ln
Rumax

Rlens

¼ ln
umax

sin umax

(2.5)

A ring of radius r in the initial plane of the flat PDMS becomes a
ring on the hemisphere under pressure p, and has the spherical
angle u ¼ r=Rlensð Þumax and circumference 2pR sin u. The loga-
rithmic strain in the circumferential direction is then obtained
from the corresponding principal stretch kh, i.e., ratio of circum-
ference 2pR sin u to 2pr, by

eh ¼ ln kh ¼ ln
R sin u

r
¼ ln

sin
r

Rlens

umax

� �
r

Rlens

sin umax

(2.6)

The principal stretch in the out-of-plane direction is obtained from
the incompressibility of PDMS as kz ¼ 1= krkhð Þ. Figure 3 shows
the strain distributions in Eqs. (2.5) and (2.6) (versus the normal-
ized position r=Rlens) for the apex height H¼ 5Rlens/8, which
agree very well with FEA, also shown in Fig. 3. Equation (2.5)
also gives the maximum strain in the membrane, which reaches
45% for a hemisphere (H¼Rlens or equivalently umax¼ 90 deg).

2.3 Pressure. The apex height H, or equivalently the angle
umax, of the hemisphere is governed by the applied pressure p,

Fig. 2 (a) Photograph of a camera system with a tunable lens (transparent thin
PDMS membrane with tlens 5 0.2 mm thickness and Rlens 5 4.5 mm radius) placed
above a tunable photodetector array (16 3 16 pixels mounted on a thin PDMS mem-
brane with tsub 5 0.4 mm thickness and Rsub 5 8 mm diameter); (b) angled view of
the photodetector surface before and after deformation; (c) schematic illustration
of the deformation of the tunable lens due to water injection; (d) schematic illustra-
tion of actuating the tunable photodetector deformation via water extraction

Fig. 3 Distributions of strains in the meridional and circumfer-
ential directions in the tunable lens for an apex height
H 5 5Rlens/8 due to water injection
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which is the internal fluid pressure subtracted by the atmospheric
pressure and is positive. Their relation is obtained analytically in
the following.

The strain energy is the integration of W in Eq. (2.1) over the
volume V of the hemisphere

ð
V

WdV ¼ 2ptlens

ðRlens

0

X3

k¼1

Ck I1 � 3ð Þkrdr

¼ 2pR2
lenstlens

ð1

0

X3

k¼1

Ck I1 � 3ð Þk�rd�r (2.7)

where �r ¼ r=Rlens, and

I1 ¼
u2

max

sin2 umax

þ sin2 �rumaxð Þ
�r2 sin2 umax

þ �r2 sin4 umax

u2
max sin2 �rumaxð Þ

(2.8)

The variation of strain energy is 2pR2
lenstlens

Ð 1

0P3
k¼1 kCk I1 � 3ð Þk�1@I1=@umax�rd�rdumax, which equals to the vir-

tual work done by the applied pressure, pd p=6 3R2
lensH þ H3

� �� �
¼ ðp=2Þp R2

lens þ H2
� �

dH, where p=6 3R2
lensH þ H3

� �
is the vol-

ume of the hemisphere, and dH is related to dumax via Eq. (2.4).
These give the applied pressure, normalized by Gtlens/Rlens, in
terms of umax as

pRlens

Gtlens

¼ 1þ cos umaxð Þ2
ð1

0

X3

k¼1

k
Ck

C1

I1 � 3ð Þk�1 @I1

@umax

�rd�r (2.9)

where G¼ 2C1 is the shear modulus. The normalized apex height
H/Rlens is related to umax via Eq. (2.4), and therefore depends only
on the normalized pressure pRlens/(Gtlens) (and C2/C1 and C3/C1).

2.4 Prestrain. Fabrication of the membrane and its integra-
tion onto the stage (Fig. 2(c)) involves a compressive prestrain e0

(e.g., �2% in the experiment) prior to the applied pressure [7].
For the membrane with radius Rlens on the stage, the natural radius
prior to prestrain is Rlens= 1þ e0ð Þ. The principal stretches,
accounting for the effect of prestrain, are

kr ¼
Rumax

Rlens= 1þ e0ð Þ ¼ 1þ e0ð Þ umax

sin umax

kh ¼
R sin u

r= 1þ e0ð Þ ¼ 1þ e0ð Þ
sin

r

Rlens

umax

� �
r

Rlens

sin umax

(2.10)

and kz ¼ 1= krkhð Þ. The applied pressure in Eq. (2.9) becomes

pRlens

Gtlens

¼ 1þ cos umax

1þ e0

� �2ð1

0

X3

k¼1

k
Ck

C1

I1 � 3ð Þk�1 @I1

@umax

�rd�r

(2.11)

where

I1¼ 1þe0ð Þ2 u2
max

sin2 umax

þsin2 �rumaxð Þ
�r2 sin2 umax

þ �r2 sin4 umax

1þe0ð Þ6u2
max sin2 �rumaxð Þ

" #

(2.12)

The normalized apex height H/R0, which is related to umax via
Eq. (2.4), now depends on the normalized pressure pRlens/(Gtlens)
and prestrain e0 (also C2/C1 and C3/C1) via Eqs. (2.11) and (2.12).
Figure 4 shows the normalized apex height, H/Rlens, versus the
normalized pressure, pRlens/(Gtlens), for the prestrain e0¼ 0 and

�2%, and latter agrees very well with the experiments for
Rlens¼ 4.5 mm and tlens¼ 0.2 mm [7]. Results from linear elastic
model are also shown in Fig. 4 for comparison. For linear elastic
model, the elastic strain energy is given as Ulinear

¼ pEt=ð1� �2Þ
Ð R0

0
e2

r þ e2
h þ 2�ereh

� �
rdr, where er and eh were

given in Eqs. (2.5) and (2.6), the Young’s modulus is
E ¼ 6C1 ¼ 0:17 MPa, and the Poisson’s ratio is taken as �¼ 0.48.
As shown in Fig. 4, for small normalized pressure, the linear elas-
tic model can predict the normalized apex height fairly accurately.
However, when normalized pressure becomes large, the linear
elastic model deviates from the experiment significantly.

2.5 Finite Element Analysis. Three-dimensional finite ele-
ment analysis (FEA) is used to study the deformation of the tuna-
ble lens due to water injection. The tunable lens is modeled as a
hyperelastic membrane with the material properties obtained in
Sec. 2.1. The membrane (with 0.2 mm thickness and 4.5 mm ra-
dius) is fixed at the periphery, and a uniform pressure is applied
on the bottom surface (Fig. 2(c)) of the membrane. The continuum
shell element SC8R in the ABAQUS package [17] is used to model
the hyperelastic membrane. For the apex height of the membrane
H¼ 5Rlens/8, the meridional and circumferential strains obtained
by FEA are shown in Fig. 3.

3 Mechanics of Tunable Detector Surface

3.1 Deformation Analysis. Figure 2(b) shows a tunable,
hemispherical detector array on initially flat PDMS substrate
(thickness tsub and radius Rsub) with the periphery fixed (Fig.
2(d)), which expands to a hemisphere of apex height H (Figs. 2(b)
and 2(d)) under the applied pressure p, which is the atmospheric
pressure subtracted by the internal fluid pressure and is positive.
Similar to Eq. (2.4), the radius R and angle umax of the hemi-
sphere (Fig. 2(d)) satisfy

R ¼ R2
sub þ H2

2H
and umax ¼ sin�1 2RsubH

R2
sub þ H2

(3.1)

Let ldetector and lspace denote the detector size and spacing,
respectively, which give the fill factor (areal fraction of detectors)
f ¼ l2

detector= ldetector þ lspace

� �2
. On the average the total length of

detectors is fRsub across the initial radius Rsub, and that of PDMS

Fig. 4 Normalized apex height H/Rlens of the tunable lens ver-
sus the normalized applied pressure pRlens/(Gtlens) due to water
injection, where Rlens and tlens are the radius and thickness of
the lens, respectively, and G is the shear modulus. The pre-
strain in the lens is e0 5 0, and 22% as in experiments [7].
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(uncovered by detectors) is ð1� f ÞRsub. The stretch of PDMS
underneath the detectors is negligible since the tensile stiffness of
the silicon photodetectors is several orders of magnitude larger
than that of PDMS (e.g., 0:16 MPa �m for silicon detector (thick-
ness 1.2 lm and Young’s modulus 130 GPa) and 0:80kPa �m for
PDMS (thickness 0.4 mm and Young’s modulus 2 MPa) as in
experiments [7]. Therefore, its length fRsub remains essentially the
same during the expansion due to applied pressure p, and the
length ð1� f ÞRsub of PDMS uncovered by the detectors expands
to Rumax � fRsub. This gives the principal stretches of PDMS
uncovered by the detectors as

kr ¼
Rumax � fRsub

1� fð ÞRsub

¼ 1

1� f

umax

sin umax

� f

� �

kh ¼
R sin u� fr

1� fð Þr ¼ 1

1� f

sin
r

Rsub

umax

� �
r

Rsub

sin umax

� f

2
664

3
775

(3.2)

and kz ¼ 1= krkhð Þ.
Fabrication of the detectors onto the stage (Fig. 2(d)) involves a

tensile prestrain e0 (e.g., 2% in the experiment) prior to the applied
pressure [7]. The principal stretches, accounting for the effect of
prestrain, are

kr ¼
1þ e0

1� f

umax

sin umax

� f

1� f

kh ¼
1þ e0

1� f

sin
r

Rsub

umax

� �
r

Rsub

sin umax

� f

1� f

(3.3)

and kz ¼ 1= krkhð Þ.

3.2 Pressure. The strain energy is the integration of strain
energy density in Eq. (2.1) over the volume of PDMS uncovered
by the detectors as 2p 1� fð ÞR2

sub= 1þ e0ð Þ2tsub

Ð 1

0P3
k¼1 Ck I1 � 3ð Þk�rd�r, where

I1 ¼
1þ e0

1� f

umax

sinumax

� f

1� f

� �2

þ 1þ e0

1� f

sin �rumaxð Þ
�r sinumax

� f

1� f

	 
2

þ 1þ e0

1� f

umax

sin umax

� f

1� f

� ��2
1þ e0

1� f

sin �rumaxð Þ
�r sin umax

� f

1� f

	 
�2

(3.4)

The principle of virtual work gives the applied pressure, normal-
ized by Gtsub/Rsub, as

pRsub

Gtsub

¼ 1� fð Þ 1þ cos umax

1þ e0

� �2ð1

0

X3

k¼1

k
Ck

C1

I1 � 3ð Þk�1 @I1

@umax

�rd�r

(3.5)

It degenerates to Eq. (2.11) for lens in the limit of f¼ 0. The nor-
malized apex height H/Rsub, related to umax via Eq. (3.1), depends
on the normalized pressure pRsub/(Gtsub), fill factor f of detectors,
and prestrain e0 (and C2/C1 and C3/C1). Figure 5 shows the nor-
malized apex height, H/Rsub, versus the normalized pressure,
pRsub/(Gtsub), for the prestrain e0¼ 0 and 2%, and latter agrees
very well with the experiments for Rsub¼ 8.0 mm, tsub¼ 0.4 mm
and fill factor f¼ 30% (ldetector¼ 0.5 mm and lspace¼ 0.42 mm)
[7].

Figure 6 shows the normalized apex height, H/Rsub, versus the
normalized pressure, pRsub/(Gtsub), for the fill factor f¼ 0, 30%,
and 60% without prestrain (e0¼ 0). As f increases, the apex height

decreases rapidly because the stiff detectors can significantly
increase the system stiffness.

3.3 Detector Positions. A simple but accurate method is
established in this section to determinate the detector positions on
the hemispherical surface under applied pressure in the tunable
imaging system. Let r; h; zð Þ denote the cylindrical coordinates
with the origin at the center of flat surface of the PDMS substrate
prior to applied pressure p. Section 3.1 suggests that the cylindri-
cal angle h of any detector remains the same when the detector
surface expands to the hemisphere. Any defector with radius r to
the center has the axial and radial coordinates r0; z0ð Þ on the hemi-
sphere after the deformation, where

Fig. 5 Normalized apex height H/Rsub of the tunable detector
surface versus the normalized applied pressure pRsub/(Gtsub)
due to water extraction, where Rsub and tsub are the radius and
thickness of PDMS substrate for the detectors, respectively,
and G is the shear modulus. The fill factor of detectors is
f 5 30% as in experiments [7]. The prestrain is e0 5 0 and 2% in
the PDMS substrate.

Fig. 6 Normalized apex height H/Rsub of the tunable detector
surface versus the normalized applied pressure pRsub/(Gtsub)
due to water extraction, where Rsub and tsub are the radius and
thickness of PDMS substrate for the detectors, respectively,
and G is the shear modulus. The fill factor of detectors is f 5 0,
30%, and 60%. The prestrain is e0 5 0 in the PDMS substrate.
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r0 ¼ R sin
r

Rsub

umax

� �
¼ R2

sub þ H2

2H
sin

r

Rsub

sin�1 2RsubH

R2
sub þ H2

� �	 


z0 ¼ R cos
r

Rsub

umax

� �
� cos umax

	 


¼ R2
sub þ H2

2H
cos

r

Rsub

sin�1 2RsubH

R2
sub þ H2

� �	 

� R2

sub � H2

R2
sub þ H2

� �
(3.6)

The periphery of the substrate r ¼ Rsub remains the same
r0 ¼ Rsub; z

0 ¼ 0ð Þ while the center r¼ 0 becomes r0 ¼ 0; z0 ¼ Hð Þ
on the hemisphere, where the apex height H is related to the
applied pressure p via Eq. (3.5) (also Figs. 5 and 6). The PDMS
substrate (with 0.4 mm thickness and 8 mm radius) is modeled by
the same element SC8R in the ABAQUS package [17] to study the
deformation of tunable eye due to water extraction. The analyti-
cally obtained detector positions, shown by green dots in Fig. 7,
agrees very well with both the experiment (filled square) and FEA
(open square); with the side view (z versus r) in Fig. 7(a) for
Rsub¼ 8 mm, H¼ 1.2 mm and H¼ 2.4 mm [7], and top view given
in Fig. 7(b) for Rsub¼ 8 mm and H¼ 2.87 mm as in experiments.
These excellent agreements further validate analytical model. As
shown in Fig. 7(b), positions of photodetectors near the clamped
edge deviate from the experiment, especially in the four corner
regions outside the red dashed circle. In the experiment, the four
corners outside of the red dashed circle is compressed by two con-
finement elements, and remain flat when the area inside the circle
is deformed by the applied pressure. The significant deviation of

photodetector positions in the four corner regions is probably due
to the excessive pressure applied by the two confinement elements
to ensure good sealing of the water chamber. However, photode-
tectors in the four corner regions do not contribute to effective
imaging of the tunable electronic eye camera, since they remain
flat. For photodetectors within the red dashed circle, position devi-
ation is relatively small, and does not significantly affect the
image quality. The analytical prediction of photodetector posi-
tions was used to construct images in the experiment and showed
very good results. As shown in Fig. 8, the images of an array of
bright circular discs, captured at the state of R¼ 17.8 mm,
Rlens¼ 6.9 mm, and distance between lens and detector 27.3 mm,
shows very good quality.

4 Concluding Remarks

Analytical models for hydraulically tunable lenses and arrays of
photodetectors are established in Secs. 2 and 3, respectively. The
results give analytical expressions for the strain distributions,
apex heights and detector positions for any applied pressure, in a
manner consistent with determinations by the experiment and fi-
nite element analysis. The outcomes provide important design
tools for tunable hemispherical imaging systems as well as other
related advanced electronic and optoelectronic systems that com-
bine hard device elements with soft, elastomeric supports.
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RI.

Journal of Applied Mechanics NOVEMBER 2013, Vol. 80 / 061022-7

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 09/02/2013 Terms of Use: http://asme.org/terms

http://dx.doi.org/10.1364/JOSAA.28.002540
http://dx.doi.org/10.1038/nature07113
http://dx.doi.org/10.1073/pnas.1015440108
http://dx.doi.org/10.1073/pnas.1015440108
http://dx.doi.org/10.1088/1464-4258/10/4/044002
http://dx.doi.org/10.1073/pnas.1107968108
http://dx.doi.org/10.1073/pnas.1107968108
http://dx.doi.org/10.1002/smll.200900934
http://dx.doi.org/10.1002/smll.200901350
http://dx.doi.org/10.1063/1.3256185
http://dx.doi.org/10.1039/c0sm00579g
http://dx.doi.org/10.5254/1.3538343
http://dx.doi.org/10.1098/rsta.1948.0024
http://dx.doi.org/10.1098/rsta.1948.0024
http://dx.doi.org/10.1088/0960-1317/18/6/065008

	cor1
	l
	s1
	s2
	s2A
	E2.1
	E2.2
	E2.3
	F1
	s2B
	E2.4
	E2.5
	E2.6
	s2C
	F2
	F3
	E2.7
	E2.8
	E2.9
	s2D
	E2.10
	E2.11
	E2.12
	s2E
	s3
	s3A
	E3.1
	F4
	E3.2
	E3.3
	s3B
	E3.4
	E3.5
	s3C
	F5
	F6
	E3.6
	s4
	B1
	B2
	B3
	B4
	F7
	F8
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17

