An analytical model for shear-enhanced adhesiveless transfer printing

Huanyu Cheng\textsuperscript{a,1}, Jian Wu\textsuperscript{b,1}, Qingmin Yu\textsuperscript{a,2}, Hyun-Joon Kim-Lee\textsuperscript{d}, Andrew Carlson\textsuperscript{e}, Kevin T. Turner\textsuperscript{f}, Keh-Chih Hwang\textsuperscript{b}, Yonggang Huang\textsuperscript{a,3}, John A. Rogers\textsuperscript{e}

\textsuperscript{a} Department of Mechanical Engineering and Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, United States
\textsuperscript{b} Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
\textsuperscript{c} School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, China
\textsuperscript{d} Department of Mechanical Engineering, University of Wisconsin, Madison, WI 53706, United States
\textsuperscript{e} Department of Materials Science and Engineering, Beckman Institute, and Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, IL 61801, United States
\textsuperscript{f} Department of Mechanical Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States

\begin{abstract}
Transfer printing is an important technique for assembling micro/nanomaterials on unusual substrates, with promising applications in the fabrication of stretchable and flexible electronics designed for use in areas such as biomedicine. The process involves retrieval of structures (e.g., micro-devices) from their growth (donor) substrate via an elastomeric stamp and then allows their delivery onto a different (receiver) substrate. An analytical mechanics model is developed to identify the key parameters for a shear-enhanced mode for transfer printing. The results predict that the pull-off force decreases linearly with increasing shear strain in the post, or with shear displacement across the stamp. This prediction agrees well with the experiments.
\end{abstract}

Keywords: Adhesion, Shear, Transfer printing, Interfacial delamination

Transfer printing is a technique that allows micro-devices to be retrieved (i.e., picked up) from their growth (donor) substrate via an elastomeric stamp, and then allows their delivery onto a different (receiver) substrate (Carlson et al., 2011; Feng et al., 2007; Kim et al., 2009, 2010c; Meitl et al., 2006; Wu et al., 2011). Stretchable electronics represents an application example where transfer printing is critical; the process yields micro-devices printed in arrays onto elastomeric substrates (e.g., PDMS) for systems such as structural health monitoring devices (Nathan et al., 2000), flexible sensors (Lumelsky et al., 2001; Mannsfeld et al., 2010; Someya et al., 2005; Someya and Sekitani, 2009), flexible display (Crawford, 2005; Forrest, 2004; Gelincik et al., 2004), stretchable and foldable circuits (Kim et al., 2008; Sekitani et al., 2010), flexible inorganic solar cells (Yoon et al., 2008) and LEDs (Park et al., 2009; Sekitani et al., 2009). Transfer printing has also been used to develop biomimetic, curvilinear electronics (Ko et al., 2008), bio-dissolvable electronics (Kim et al., 2010a), stretchable and flexible devices for cardiac electrophysiology (Viventi et al., 2010) and ablation therapy (Kim et al., 2011b), foldable electrode array for mapping brain activity (Viventi et al., 2011), smart surgical gloves (Someya et al., 2004), waterproof optoelectronics for biomedicine (Kim et al., 2010b), and epidermal electronics (Kim et al., 2011a).

There exist several different transfer printing techniques.

1. \textbf{Kinetically controlled transfer printing} (Feng et al., 2007; Meitl et al., 2006). The viscoelastic stamp picks up the micro-devices rapidly and prints them slowly onto the receiver substrate because it has high and low adhesion strengths at the large and small peeling rates, respectively.

2. \textbf{Surface-relief-assisted transfer printing} (Kim et al., 2010c; Wu et al., 2011). The stamp surface consists of surface relief structures, such as microtips, to achieve large surface contact with micro-devices (and therefore large adhesion force) during pickup, and small contact area during printing.

3. \textbf{Load-enhanced transfer printing} (Carlson et al., 2011; Kim et al., 2009). Different mechanical loading protocols are adopted to facilitate large and small adhesion forces during pickup and printing, respectively. Directional shearing at an interface is shown to control the behavior in various micro- and nano-structured dry adhesives (Aksak et al., 2008; Jeong et al., 2009; Kramer et al., 2010; Murphy et al., 2009; Varenberg and Gorb, 2007). In particular, shear-enhanced transfer printing (Carlson et al., 2011) shows that the directional shearing at an interface mechanically initiates separation at the adhesive surface and therefore can be used to facilitate the printing of micro-devices.

* Corresponding author.
E-mail address: y-huang@northwestern.edu (Y. Huang).
1 These authors contributed equally.

0093-6413/$ – see front matter. Published by Elsevier Ltd.
(4) Laser-driven transfer printing (Saeidpourazar et al., in press).

During printing a laser pulse initiates separation at the adhesive surface due to large thermal mismatch between the stamp and micro-devices.

For kinetically controlled and surface-relief-assisted transfer printing, Feng et al. (2007) and Wu et al. (2011) developed analytical mechanics models to establish the scaling laws, respectively, i.e., a single (or few) non-dimensional combination of key parameters that governs the transfer printing. For shear-enhanced transfer printing, Carlson et al. (2011) developed the numerical model (finite element analysis). A schematic illustration of shear-enhanced transfer printing is shown in Fig. 1. An elastomeric stamp is a single, rectangular post mounted to a thick backing layer. The post and the underlying micro-device to be transferred have identical lateral dimensions, and have conformal contact. The micro-device is picked up rapidly to maximize adhesion through viscoelastic effects of the stamp. The stamp with the micro-device is placed in contact with a receiver substrate. The receiver substrate is then displaced laterally to induce shear on the stamp, which reduces the pull-off force of the stamp to slowly delaminate from the micro-device. The induced shear facilitates the efficient printing of the micro-device onto the receiver substrate.

The purpose of this paper is to establish analytically the scaling law for shear-enhanced transfer printing. Specifically, the reduced pull-off force of the stamp is obtained analytically in terms of the shear strain. This relation is validated by the experiments, and is useful to the optimal design of the stamp for shear-enhanced transfer printing.

Fig. 2 shows a schematic diagram of the stamp and micro-device. On top of a thick backing layer ($H=950\mu m$), the poly(dimethylsiloxane) (PDMS, 5:1 monomer:catalyst mix ratio) post ($L \times L \times h = 100 \mu m \times 100 \mu m \times 50 \mu m$) was brought into intimate contact onto a monocrystalline silicon micro-device ($100 \mu m \times 100 \mu m \times 3 \mu m$) illustrated as a black plate. The backing layer and post are casted and cured together to form the stamp from a prepolymer of PDMS, which ensures strong bonding between the backing layer and post. Using a custom adhesion test setup described elsewhere (Kim et al., 2010c), the shear displacement $u$ was applied on the micro-device in the $x$ direction followed by a vertical retraction with pull-off force $F$ on the stamp in the $z$ direction.

The shear strain in the post $\gamma$ is determined analytically from the shear displacement $u$ and stamp geometry. The backing layer is much wider and thicker than the post, and is modeled as a semi-infinite solid subjected to a shear stress $\tau$ in the $x$ direction over the post area $L \times L$ at the surface of $z=0$ as shown in Fig. 2. For a concentrated shear force $\tau dx dy$ at $(x_0,y_0)$ over an infinitesimal area $dx dy$ of the bottom surface, the $x$-direction displacement at $(x,y)$ on the surface is $dw = \tau dx dy/[2\pi \mu \sqrt{(x-x_0)^2+(y-y_0)^2}] [1-v+(x-x_0)^2/((x-x_0)^2+(y-y_0)^2)]$ (Landau and Lifshitz, 1986), where $\mu$ and $v$ are the shear modulus and Poisson’s ratio of the stamp, respectively. For a uniform shear stress $\tau$ applied to the post, the displacement at $(x,y)$ is

$$w(x,y) = \int_{-L/2}^{L/2} \int_{-L/2}^{L/2} \frac{1}{\sqrt{(x-x_0)^2+(y-y_0)^2}}$$

$$\times \left[ 1 - v + \frac{(x-x_0)^2}{(x-x_0)^2+(y-y_0)^2} \right] dy_0.$$  \hspace{1cm} \hspace{1cm} (1)

Fig. 2. The critical dimensions of the post and backing layer and loading conditions in a custom adhesion test set up.
where $\gamma = \tau / \mu$ is the shear strain in the post. The displacement at the origin of the coordinate system $u$ along the shear ($x$) direction is obtained by integrating Eq. (1).

$$\dot{u} = w(0,0) = \frac{2 - v}{\pi} \gamma \sqrt{2} \ln(\sqrt{2} + 1).$$

The measured shear displacement $u$ is the sum of $\dot{u}$ and the shear displacement $\gamma h$ across the post, i.e.,

$$u = \dot{u} + \gamma h.$$  (3)

Substitution of Eq. (2) into Eq. (3) yields the shear strain in the post,

$$\gamma = \frac{u}{h + ((2 - v)/\pi) L \ln(\sqrt{2} + 1)} \approx \frac{u}{h + (3/2 \pi) L \ln(\sqrt{2} + 1)},$$

where the Poisson’s ratio $v \approx 1/2$ for a PDMS stamp. The above expression has been verified by the finite element method, as described in details by Carlson et al. (2011).

A fracture mechanics model is developed to calculate the pull-off force. Fig. 3 shows an edge crack of length $a$ at the interface between the post and micro-device. The post is subjected to a pull-off force $F$ and shear strain $\gamma$. The bending moment that results from the shear stress $\tau$ (or shear strain $\gamma$) is $M = fhL^2 = \mu \gamma hL^2$. The stress intensity factors are obtained analytically as (Tada et al., 2000)

$$K_I = \sqrt{\frac{\pi L}{1 - \lambda^2}} \left[ \frac{F}{L^2} (0.379 + 0.624\lambda - 0.062e^{-12(\lambda/(1-\lambda))}) + \frac{M}{L^2}(2.005 - 0.72e^{-9(\lambda/(1-\lambda))}) \right],$$

$$K_{II} = \sqrt{\frac{\pi L}{1 - \lambda^2}} \left[ \frac{F}{L^2} (0.126 - 0.24\lambda - 0.023(1-\lambda)^5) + \frac{M}{L^2}(-0.228 + (1-\lambda)^5(0.577 - 0.2\lambda + 0.8\lambda^2)) \right].$$

where $\lambda = a/L$. For an infinitesimal crack, $\lambda \rightarrow 0$, the above equation is simplified to

$$K_I = \sqrt{\pi L} \left(0.317 \frac{F}{L^2} + 1.285 \frac{M}{L^2} \right),$$

$$K_{II} = \sqrt{\pi L} \left(0.103 \frac{F}{L^2} + 0.346 \frac{M}{L^2} \right).$$

The crack tip energy release rate is given by $G = (K_I^2 + K_{II}^2) / (2E)$, where the plane-strain modulus of the stamp $E \approx 4E/3$, $E$ is the Young's modulus, and the factor $1/2$ accounts for the large elastic mismatch between the stamp and micro-device (Huang et al., 2005). The substitution of Eq. (6) into the crack tip energy release rate gives

$$G = \pi EL \left[ 0.0417 \left( \frac{F}{EL^2} \right)^2 + 0.0701 \left( \frac{\gamma h}{L} \right)^2 + 0.108 \frac{F}{EL^2} \frac{\gamma h}{L} \right].$$

For the fracture toughness $\Gamma_0$ of the stamp/micro-device interface, the Griffith fracture criterion $G = \Gamma_0$ gives the normalized pull-off force

$$\frac{F}{EL^2} = \sqrt{\frac{24.0 \Gamma_0}{\pi EL} - 1.72 \cdot 10^{-3} \left( \frac{\gamma h}{L} \right)^2 - 1.30 \frac{\gamma h}{L}},$$

which has an excellent approximation

$$\frac{F}{EL^2} \approx \frac{13\gamma h}{10L} \approx 2 \sqrt{6\Gamma_0 / \pi EL}.$$  (9)

As shown in Fig. 4, the pull-off force decreases linearly with the shear strain in the post for the stamp elastic modulus $E = 1.8$ MPa (Kim et al., 2010c), post height $h = 50$ mm and width $L = 200$ mm and 250 mm in experiments (Carlson et al., 2011). For the fracture toughness of the stamp/micro-device interface $\Gamma_0 = 0.1$ N/m, the pull-off force in Eqs. (8) or (9) agrees well with Carlson et al.’s experiments (2011).

Substitution of the shear strain in Eq. (4) into Eq. (9) gives the pull-off force directly in terms of the shear displacement $u$ as

$$\frac{u}{F} = \frac{\gamma h}{L} \left[ (0.769 + 0.324(L/h)) \right] \approx 2.76 \frac{\Gamma_0}{EL}.$$  (10)

The normalized pull-off force $F/(EL^2)$ decreases linearly with the normalized shear displacement $u/L$, and such a linear dependence depends only on the load aspect ratio $L/h$ and normalized interfacial fracture toughness $\Gamma_0/(EL)$.

In general, the interface fracture toughness $\Gamma_0$ depends on the mode mixity around an interfacial crack tip. The finite element analysis (Carlson et al., 2011) showed that the phase angle, which represents the mode mixity, is small (\(-20\)) and does not change in the range of applied shear strain in experiments. It is therefore reasonable to use constant fracture toughness in the present analysis.

Eq. (9) also gives the critical shear strain for stamp/micro-device delamination without any pull-off force, $\gamma = 2.13 \sqrt{\Gamma_0/(EL^2)}$, which agrees well with the experimental data (Carlson et al., 2011).
for the vanishing pull-off force. For the other limit of vanishing shear, Eq. (9) gives the pull-off force $F \approx 2.76 \sqrt{T_0 \varepsilon F}$. 

In summary, an analytical mechanics model is established for shear-enhanced transfer printing. A simple, analytic equation (9) clearly shows the linear decrease of pull-off force with the increasing shear strain in the post, which agrees well with the experiments.

Acknowledgments

Y.H. and J.A.R. acknowledge support from NSF Grant Nos. CMMI-0749028, ECCS-0824129 and OISE-1043143, and DOE, Division of Materials Sciences Grant No. DE-FG02-07ER46453. H.-K.J. and K.T.T. acknowledge support from AFOSR-MURI FA9550-08-1-0337 and NSF CMMI-0845294.

References


