Cardiac catheter that can do it all

Science Centric | 6 March 2011 19:20 GMT

Atrial Fibrillation
Learn the warning signs & treatment options for Atrial Fibrillation.
www.JohnsHopkinsHealthAlerts.com

Heart Tumor Treatments
Chat w/ a Cancer Info Expert About Heart Tumor Treatment Options.
www.CancerCenter.com

ZOLL LifeVest
Wearable Defibrillator Protection from SCA following an MI
www.zoll.com

In an improvement over open-heart surgery, cardiologists now use catheters to eliminate damaged heart tissue in certain patients, such as those with arrhythmias. But this, too, can be a long and painful procedure as many catheters, with different functions, need to be inserted sequentially.

Now an interdisciplinary team including researchers from Northwestern University has developed one catheter that can do it all. This tool for cardiac ablation therapy has all necessary medical devices printed on a standard balloon catheter: a device for eliminating damaged tissue using heat, temperature and pressure sensors, an LED and an electrocardiogram (EGK) sensor.

The multifunctional catheter makes a minimally invasive technique for heart surgery even better. Both diagnostic and treatment capabilities are combined in one. The stretchable electronics developed by Yonggang Huang of Northwestern and John Rogers of the University of Illinois at Urbana-Champaign make it possible.

The research was published 6 March by the journal Nature Materials.

'The use of one catheter to achieve all these functions will significantly improve clinical arrhythmia therapy by reducing the number of steps in the procedure, thereby saving time and reducing costs,' said Huang, Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering at Northwestern's McCormick School of Engineering and Applied Science. He led the Northwestern portion of the work.

In conversation with collaborating cardiologists, Moussa Mansour, M.D., of Harvard Medical School; Marvin Slepian, M.D., of the University of Arizona; and Joshua Moss, M.D., and Brian Litt, M.D., of the University of Pennsylvania, Huang and Rogers recognised that their stretchable electronics could improve the surgical tools currently used in cardiac ablation therapy. This procedure is used to cure or control a variety of arrhythmias, or irregular heartbeats.

The electronics Huang and Rogers use in this study are based on a 'pop-out' design of interconnects, similar to their early design for stretchable electronics but with much larger - approximately 130 percent - stretchability. The type of arrhythmia the team focuses on is tachycardia, when the heart beats too fast; the tissue that induces this condition is the target of their ablation therapy.

The type of arrhythmia the team focuses on is tachycardia, when the heart beats too fast; the tissue that induces this condition is the target of their ablation therapy.

Now an interdisciplinary team including researchers from Northwestern University has developed one catheter that can do it all. This tool for cardiac ablation therapy has all necessary medical devices printed on a standard balloon catheter: a device for eliminating damaged tissue using heat, temperature and pressure sensors, an LED and an electrocardiogram (EGK) sensor.

The multifunctional catheter makes a minimally invasive technique for heart surgery even better. Both diagnostic and treatment capabilities are combined in one. The stretchable electronics developed by Yonggang Huang of Northwestern and John Rogers of the University of Illinois at Urbana-Champaign make it possible.

The research was published 6 March by the journal Nature Materials.

'The use of one catheter to achieve all these functions will significantly improve clinical arrhythmia therapy by reducing the number of steps in the procedure, thereby saving time and reducing costs,' said Huang, Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering at Northwestern's McCormick School of Engineering and Applied Science. He led the Northwestern portion of the work.

In conversation with collaborating cardiologists, Moussa Mansour, M.D., of Harvard Medical School; Marvin Slepian, M.D., of the University of Arizona; and Joshua Moss, M.D., and Brian Litt, M.D., of the University of Pennsylvania, Huang and Rogers recognised that their stretchable electronics could improve the surgical tools currently used in cardiac ablation therapy. This procedure is used to cure or control a variety of arrhythmias, or irregular heartbeats.

The electronics Huang and Rogers use in this study are based on a 'pop-out' design of interconnects, similar to their early design for stretchable electronics but with much larger - approximately 130 percent - stretchability. The type of arrhythmia the team focuses on is tachycardia, when the heart beats too fast; the tissue that induces this condition is the target of their ablation therapy.
Researchers define a new type of secretory cell in the intestine

Discovery of cellular 'switch' may provide new means of triggering cell death, treating disease

— A research team led by the University of Colorado at Boulder has discovered a previously unknown cellular ‘switch’ that may provide researchers with a new means...

LATEST HEADLINES

Researchers define a new type of secretory cell in the intestine
A new type of stem cells found in prostate may be involved in cancer
— A new type of stem cell found in the prostate of adult mice can be a source of prostate cancer, according to a new study by researchers at the Herbert Irving Comprehensive…

New technique could eliminate inherited mitochondrial disease
— Researchers have developed an experimental technique with the potential to prevent a class of hereditary disorders passed on from mother to child. The technique,…

Parkinson's disease may be caused by microtubule, rather than mitochondrial complex I, dysfunction
Ohio State study: Targeted ovarian cancer therapy not cost-effective
Multiple sclerosis blocked in mouse model
Laboratory-grown urethras implanted in patients, scientists report
Popular drugs for common male health problems can affect their sexual health
New perspective diminishes racial bias in pain treatment
Scientists find key mechanism of childhood respiratory disease
Pathology study tracks uterine changes with mifepristone
Stretchable balloon electronics get to the heart of cardiac medicine
The sorry state of health of US medicine
Online nutrition courses: Fad or growing trend?

Popular tags in Health: cancer · diabetes · malaria · obesity