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Advanced methods are now available for conformally wrapping planar, silicon-based electronics

circuits onto complex, curvilinear surfaces. Here, buckling physics of circuits configured into mesh

geometries consisting of silicon islands interconnected by narrow ribbons leads to out of plane

displacements across different parts of the curvilinear surface, in a way that accommodates strains

associated with wrapping. The mechanisms for different buckling patterns are identified in this paper.

A simple and robust method is established via the following steps to predict the buckling patterns of

interconnect bridges for arbitrarily axisymmetric curvilinear surfaces: step 1, obtain analytically the

strain distribution on the curvilinear surface; step 2, use the strain distribution from step 1 to determine

the buckling patterns of interconnect bridges along different directions and at different locations on the

curvilinear surface; and step 3, use the strain distribution from step 1 and buckling pattern from step 2

to obtain analytically the maximum strains in interconnect bridges and device islands. This method is

useful to the design and optimization of curvilinear electronics against mechanical and electrical failure.
I. Introduction

Advanced strategies and procedures have been recently intro-

duced that allow well-developed, 2D planar electronic circuits to

be wrapped conformally onto complex, curvilinear surfaces.1

These techniques enable integration of conventional silicon-

based electronics on many envisioned systems of the future, for

applications such as health monitoring systems on soft, curvi-

linear surfaces of living organisms (e.g., brain and heart). Fig. 1

schematically illustrates the following steps for using compress-

ible circuit mesh structures (consisting of arrays of islands

interconnected by narrow strips of polyimide) and elastomeric

transfer elements to wrap conformally curvilinear objects with

complex shapes, such as the conical surface shown here. The

processes include:

(A) First, a transfer element is fabricated in an elastomer such

as poly(dimethylsiloxane) (PDMS) by double casting and

thermal curing against the target object to be wrapped.

(B) The resulting element is radially stretched to form a flat

drumhead membrane (see top right frame).
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(C) The flat drumhead contacts a prefabricated circuit with an

ultrathin mesh geometry in a planar configuration on a silicon

wafer and then is peeled back to lift the circuit onto the

membrane.

(D) The tension is relaxed to geometrically transform the

transfer element and the circuit on its surface into the shape of

the target object. During this process, the interconnect bridges of

the mesh buckle to adopt non-coplanar arch shapes, which

accommodate the compressive forces in a way that avoids

significant strains in the circuit.

(E) Finally, the target object is coated with a thin layer of

adhesive and the non-coplanar circuit mesh is transferred onto its

surface.

Similar to Euler buckling of a beam, buckling of interconnect

bridges on a hemispherical surface always yields arch shapes in
Fig. 1 Schematic illustration on using compressible circuit mesh struc-

tures and elastomeric transfer element to wrap conformally curvilinear

object.
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Fig. 2 Experimentally observed different buckling patterns of inter-

connect bridges in different areas of various shapes of curvilinear

surfaces.
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the interconnects,2–4 which is referred to as global buckling in the

present study. Buckling of interconnect bridges on a more

complex shape, such as a pyramid (Fig. 2a), however, results in

different patterns; each interconnect bridge along the circum-

ferential direction buckles to a single arch (i.e., global buckling),

but each bridge along the meridional direction buckles to

multiple, small arches, which is referred to as local buckling

(Fig. 2c) in this study. The interconnect bridges around the top of

a parabola (Fig. 2b and d) do not buckle at all, i.e., no buckling.

These different buckling modes lead to different strains in the

circuit mesh structures.

Vella et al.5 and others6–8 have investigated the delamination of

a stiff film from a compliant substrate from a fracture mechanics

point of view (energy release rate). The present study focuses on

the buckling-driven delamination9–13 pertinent to the experiments

in Fig. 1 and 2, for which the delamination is driven by buckling

of the stiff film such that the buckling condition must be satisfied

prior to any delamination.13 The present study investigates the

mechanisms for the aforementioned different buckling modes,

establishes a simple criterion for predicting buckling patterns,

and obtains strains in the buckled interconnects and flat device

islands, on arbitrarily axisymmetric curvilinear objects. For an

arbitrary (axisymmetric) elastomeric transfer element stretched
Fig. 3 Schematic diagrams of the mechanics model for transferring comp

axisymmetric curvilinear elastomeric transfer element.

5758 | Soft Matter, 2010, 6, 5757–5763
to flat (step B above), Section II gives analytically the strain

distribution in both circumferential and meridional directions. A

simple, analytic criterion separating different buckling modes

(global buckling, local buckling, and no buckling) is established in

Section III, which shows that the strain distribution in the

transfer element obtained in Section II determines the buckling

patterns upon relaxation of tension observed in experiments

(step D above). Finally, based on the strain distribution from

Section II and buckling patterns from Section III, the strain in

the circuit mesh structure wrapped onto the curvilinear object is

determined analytically in Section IV.
II. Strain distribution in stretched elastomeric
transfer elements

The mean and Gaussian curvatures14,15 are widely adapted to

characterize curvilinear surfaces, such as the deformation of

shells.16–18 Such an approach, however, usually involves the

numerical method, and cannot lead to simple, analytical solu-

tions. For the special case of an axisymmetric transfer element

stretched to flat, a simple, analytic model is established in this

section, and is verified by the finite element analysis.

Fig. 3 illustrates the mechanics model for the processes in

Fig. 1 to integrate coplanar circuits onto a curvilinear target

object. The general strategy represents an extension of the model

for hemispherical target object4,19 to arbitrarily axisymmetric

objects. Such an approach has been validated by the finite

element method,4,19 for hemispherical objects. An elastomeric

transfer element has the surface geometry of the object, and is

characterized by R ¼ R(z) in the cylindrical coordinates (R, z),

where z ˛ (0, zmax) (step A). This transfer element is radially

stretched to a (nearly) flat shape (step AB), and then further

stretched to a plate of radius rB (step B). A circuit mesh is then

transfer printed20–22 onto the transfer element in its tensioned,

planar shape (step C). Releasing the radial tension causes the

transfer element to relax back to a new shape R0(z0) with height

z0max to be determined (step D), where (R0, z0) corresponds to the

deformed position of original point (R, z), through an interme-

diate step CD that gives a (nearly) flat shape (similar to step AB).

Finite element analysis4,19 has shown that, from step A to step

AB, the transfer element is mainly stretched in the circumferen-

tial direction, and the strain in the meridional direction is
ressible circuit mesh structures from planar arrays onto an arbitrarily

This journal is ª The Royal Society of Chemistry 2010
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Fig. 4 Distribution of circumferential strain for a parabolic elastomeric

transfer element stretched to flat. The insets show the finite element

meshes for the initial and stretched configurations, as well as the initial

and final shapes of the transfer element after the circuits are printed.
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negligibly small, 3meridional z 0. Therefore, a ring at the height z

(0 # z # zmax) in step A becomes a ring of the following radius in

step AB

rðzÞ ¼
ðz
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dRðyÞ

dy

�2

dy

s
; (1)

which equals the arc length from 0 to z in step A. The circular

plate of radius r(zmax) in step AB is then further stretched to

radius of rB in step B, which imposes uniform strains in both

meridional and circumferential directions. Therefore, the

strains on the surface of elastomeric transfer element are given

by:

3circumferentialz
rB

rðzmaxÞ
rðzÞ
RðzÞ�1; (2)

3meridionalz
rB

rðzmaxÞ
� 1: (3)

Fig. 4 shows that the distribution of circumferential strain

given by eqn (2) agrees well with the finite element analysis for

the parabolic elastomeric transfer element in Fig. 2b, which has

the shape RðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
7:58z
p

for 0 # z # 6.9 (unit: mm) and thick-

ness of 0.3 mm. An inset in Fig. 4 shows the initial mesh of the

parabola and the deformed mesh when the transfer element is

stretched to flat at rB ¼ 10.3 mm as in experiments. The merid-

ional strain given by eqn (3) is very small; finite element analysis

also gives small meridional strain (�2%). Therefore, the analyt-

ical expressions (2) and (3) provide good estimates of strains in

stretched elastomeric transfer elements.

The circuit mesh is transferred to the surface of elastomeric

transfer element in step C. Releasing the tension leads first to

a (nearly) flat plate with radius r0 in the intermediate step CD,

and then to the curvilinear shape in step D. From step C to CD,
z
0 ¼

ðz
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f Þ2þ2

ð1� f ÞfrB

rðzmaxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dRðyÞ

dy

�2
s 8<

:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dRðyÞ

dy

�2
s

� dRðyÞ
dy

9=
;dy

vuuut : (6)
the stretch in the elastomer is released except for that beneath the

device islands since the device islands (Young’s modulus z 130

GPa for silicon23) are much stiffer than the elastomer (Young’s

modulus z 2 MPa for PDMS24). Therefore, the size of device

islands LSi remains unchanged, which gives their area fraction

f ¼ NL2
Si

pr2
B

, where N is the number of device islands on the elas-

tomer in step C. The average fractions of device islands and

spacings along any direction are f and 1 � f, respectively, such

that the radius of the circular plate in the intermediate step CD is

r0 ¼ frB + (1� f)r(zmax). Releasing the tension from step CD to D

is mainly in the circumferential direction. The negligible strain in

the meridional direction gives

ðz
0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dR

0 ðyÞ
dy

�2

dy

s
¼ r

0 rðzÞ
rðzmaxÞ

¼
�

frB

rðzmaxÞ
þ ð1� f Þ

�
rðzÞ: (4)
This journal is ª The Royal Society of Chemistry 2010
The above analysis can also be applied to the circumferential

direction. The perimeter 2pR0(z0) of the deformed elastomeric

transfer element at any height z0 ˛ (0,z0max) in step D consists of

the unreleased part 2pfrB
rðzÞ

rðzmaxÞ
underneath the device islands

and the released part (1 � f) � 2pR(z). This gives

R
0�

z
0� ¼ frB

rðzÞ
rðzmaxÞ

þ ð1� f ÞRðzÞ: (5)

The function R0 can be eliminated from eqn (4) and (5) to give z0

as a function of z,

The maximum height z0max of the deformed shape is obtained
by replacing z in the above equation with zmax. The substitution

of eqn (6) into (5) then gives the function R0 for any given (R, z).

For N¼ 3025 (55� 55) square device islands of LSi¼ 0.1 mm on

the parabolic transfer element in Fig. 2b, the area fraction is f ¼
0.0916 for the stretch rB ¼ 10.3 mm in experiments. The inset in

Fig. 4 shows that the new shape R0(z0) is close to the initial

parabolic shape R(z) because of the small area fraction f. The

maximum height is reduced from zmax ¼ 6.9 mm to z0max ¼ 6.64

mm. This small change in shape helps the conformal wrapping of

deformed transfer element onto the target object. As the area

fraction (i.e., fill factor) f increases (e.g., f > 50%), the final shape

will be very different from the initial one.
III. Buckling of interconnect bridges

Relaxation of the stretched elastomeric transfer element, with the

circuit mesh structure transfer printed on its surface, leads to

buckling of interconnect bridges. For each interconnect bridge,
Soft Matter, 2010, 6, 5757–5763 | 5759
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the strain given in Section II becomes a compressive strain upon

relaxation of the stretch, with the ability to induce buckling of the

interconnect bridges.

Ko et al.1 analyzed different buckling modes (global buckling,

local buckling, and no buckling) of interconnect bridges. Their

analysis, summarized in the following, is combined with the

strain distribution in Section II to determine the buckling of

interconnect bridges on complex curvilinear objects.

Let L and h denote the length and thickness of interconnect

bridges, E the Young’s modulus, and g the work of adhesion

between the bridge and the transfer element. The interconnect

bridge is subjected to the axial compressive strain 3 (<0). Prior to

buckling the bridge remains flat such that the total potential

energy Uflat consists of the membrane energy

Umembrane ¼
1

2
EhLj3j2 and adhesion energy Uadhesion ¼ �gL of

the interface, i.e., Uflat ¼
1

2
EhLj3j2 � gL.

For global buckling, the interconnect bridge buckles to an arch

shape. The corresponding out-of-plane displacement

w ¼ A

2

�
1þ cos

2px

L

�
satisfies the condition of vanishing

displacement and slope at the two ends (x ¼ �L/2), where A is

the buckle amplitude to be determined. In this configuration,

there is no adhesion energy, and the total potential energy Uglobal

consists of the membrane energy

Umembrane ¼
1

2
EhL

�
p2A2

4L2
� j3j

�2

and bending energy

Ubending ¼
p4Eh3A2

12L3
. Energy minimization gives the buckle

amplitude A ¼ 2L

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j3j � 3c

p
, where 3c ¼

p2h2

3L2
is the Euler buck-

ling strain. This result gives the total energy for global buckling

Uglobal ¼ EhL3c

�
j3j � 3c

2

�
, which must be less than Uflat for
Fig. 5 Comparison of the energy curves for

5760 | Soft Matter, 2010, 6, 5757–5763
global buckling to occur. This equation then gives the critical

strain for transition from flat to global buckling as:�
j3j
3c

�
flat�global

¼ 1þ
ffiffiffiffiffiffiffiffiffiffi
2g

Eh32
c

s
: (7)

For local buckling, the interconnect bridge buckles to small

arches with amplitude a and wavelength l to be determined. The

total potential energy Ulocal consists of the membrane energy

Umembrane ¼
1

2
EhL

�
p2a2

4lL
� j3j

�2

, bending energy

Ubending ¼
p4Eh3a2

12l3
, and adhesion energy Uadhesion ¼ �g(L � l)

of the interface. Energy minimization with respect to a and l gives

a ¼ 2l

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
j3j � p2h2

3l2

�
L

l

s
, and the following algebraic equation to

determine l:
p2h3

3l3

�
p2h2

3l2
� j3j

�
þ g

2EL
¼ 0: (8)

Its solution takes the form
l

h
¼ g

�
j3j; g

EL

�
, where the non-

dimensional function g increases with j3j, but decreases as
g

EL

increases. The total energy for local buckling is then obtained

asUlocal¼
p2EhL

3g2ðj3j; g
EL
Þ j3j �

p2

6g2ðj3j; g
EL

�
" #

� gL

"
1� h

L
g

�
j3j; g

EL

�#
,

which must be less than Uflat for local buckling to occur. This

result gives the critical strain for transition from flat to local

buckling, �
j3j
3c

�
flat�local

¼ 5

�
g

8Eh32
c

�2=5

: (9)
the global, local and no buckling modes.

This journal is ª The Royal Society of Chemistry 2010
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For weak adhesion
g

8Eh32
c

#1, the critical strain in eqn (9) is

larger than that in eqn (7) such that global buckling occurs, and it

can be shown that it never transitions to local buckling as the

compressive strain increases. For relatively strong adhesion
g

8Eh32
c

.1, the critical strain in eqn (9) is smaller than that in eqn

(7) such that local buckling occurs first. As the compressive strain

j3j increases, global buckling occurs when its energy Uglobal

becomes less than Ulocal, which gives the critical strain for the

transition from local to global buckling as�
j3j
3c

�
local�global

¼ 1þ g

2Eh32
c

: (10)

This result is illustrated in Fig. 5, which shows the normalized

total potential energy for no buckling, local buckling and global

buckling versus the normalized compressive strain
j3j
3c

. The work

of adhesion g ¼ 0.16 J m�2 between PDMS22,25,26 and the poly-

imide interconnects (E ¼ 2.5 GPa, h ¼ 1.4 mm, and L ¼ 150 mm)

corresponds to strong adhesion because
g

8Eh32
c

¼ 70,1. Below

the critical strain for local buckling 0.78% [eqn (9)], the total

potential energy for no buckling is the lowest such that the

interconnect bridge remains flat. This critical strain 0.78% is

much (27 times) larger than the Euler buckling strain 3c¼ 0.029%

due to strong adhesion. Local buckling becomes the prevailing

mode until the compressive strain reaches 8.0% [eqn (10)], at

which global buckling gives the lowest energy. The critical

strains, 0.78% and 8.0% for local and global buckling, respec-

tively, have been confirmed by experiments of one-dimensional

arrays of islands and interconnect bridges.1

Table 1 shows the range of compressive strain and work of

adhesion for the different buckling modes (e.g., global, local, and

no buckling). For weak adhesion
g

8Eh32
c

#1, there is never local

buckling, and global buckling occurs once the compressive strain

reaches 3c þ
ffiffiffiffiffiffi
2g

Eh

r
. For relatively strong adhesion

g

8Eh32
c

.1, local

buckling occurs once the compressive strain reaches

5

�
g
ffiffiffiffi
3c
p

8Eh

�2=5

, which is followed by global buckling once the

compressive strain reaches 3c þ
g

2Eh3c
.

Table 1 Critical compressive strains for local and global buckling

Weak adhesion g

8Eh32
c
#1 Strong adhesion g

8Eh32
c
.1

No buckling

j3j\3c þ
ffiffiffiffiffiffi
2g

Eh

r
j3j\5

�
g
ffiffiffiffi
3c
p

8Eh

�2=5

Local buckling

5

�
g
ffiffiffiffi
3c
p

8Eh

�2=5

#j3j#3c þ
g

2Eh3c

Global buckling

j3j$3c þ
ffiffiffiffiffiffi
2g

Eh

r
j3j.3c þ

g

2Eh3c

This journal is ª The Royal Society of Chemistry 2010
The results in Table 1, together with the strain distribution in

Section II, provide a simple and robust way to determine the

buckling patterns of interconnect bridges over different parts of

curvilinear substrates, according to the following:

(1) use eqn (2) and (3) (or the finite element method) to

determine the strain distribution along the meridional and

circumferential directions on the curvilinear substrates;

(2) predict the buckling pattern (no buckling, local and global

buckling) based on the above strain distribution and the criterion

in Table 1; and

(3) use eqn (5) and (6) (or the finite element method) to identify

the location of interconnect bridges on the new shape of relaxed

elastomeric transfer element.

As an example to illustrate the above approach, Fig. 6a shows

the strain distribution in the circumferential direction for the

parabolic elastomeric transfer element in Fig. 2b (also Fig. 4)

stretched to rB ¼ 10.3 mm. The contour values are set such that

(1) red color is for the compressive strain larger than 8%, which

predicts global buckling;

(2) blue color is for the compressive strain smaller than 1%

(including tensile strain), which predicts no buckling and there-

fore flat interconnects; and

(3) all other colors are for the compressive strain between 1%

and 8%, which predicts local buckling.

The predicted buckling patterns based on the strain distri-

bution agree well with the experiment in Fig. 6b for the para-

bolic transfer element shown. For example, Fig. 6c clearly

shows global buckling along the circumferential direction away

from the peak of parabola, which is consistent with the red

color in Fig. 6a. Fig. 6d indicates no buckling around the peak,

which is consistent with the blue color in Fig. 6a. The strain in

the meridional direction (not shown in Fig. 6) is always small,

which is consistent with local buckling away from the peak

(Fig. 6c) or no buckling around the peak (Fig. 6d). The above

approach also agrees well with experiments for many other

complex shapes, such as pyramid, cone or even golf ball

shapes.1
Fig. 6 (a) Distribution of circumferential strain for a parabolic elasto-

meric transfer element given by the mechanics model. (b–d) Buckling

patterns observed in experiments.

Soft Matter, 2010, 6, 5757–5763 | 5761
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Fig. 7 Buckled interconnect bridges and deformed device islands

observed in experiments (a) and finite element analysis (b). The strain

distributions in silicon part of the island and in the interconnect bridge

are shown in (c) and (d).
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IV. Maximum strain in the circuit mesh

Based on the strain distribution from Section II and buckling

patterns from Section III, the maximum strain in the circuit mesh

on the deformed curvilinear surface (step D in Fig. 1) is obtained

analytically in this section. Even for a large compressive strain 3

on the curvilinear substrate, the strain in the circuit mesh is still

very small because the interconnect bridges buckle to accom-

modate the compression. Both analytical and finite element

models are developed to determine the strain in the island-

interconnect structure of circuit mesh. The interconnect bridges

have the length L, thickness h, and Young’s modulus E. The

device islands consist of two layers of different materials—silicon

(thickness hSi and plane-strain modulus �ESi) and polyimide

(thickness hPI and plane-strain modulus �EPI). For an intercon-

nect bridge subject to a large compressive strain 3 (<0), global

buckling will occur, and the maximum strain in the interconnect

bridge is given by:2

3max
interconnect ¼

2ph

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j3j � 3c

p
; (11)

where 3c ¼
p2h2

3L2
is the Euler buckling strain. The device island is

modeled as a composite plate of silicon and polyimide, which has

an equivalent bending stiffness EI island and distance hNA between

the neutral axis and top surface of the island. The device island,

sitting on the PDMS substrate, is subject to compression and

bending resulting from buckling of interconnect bridges. The

maximum strain in silicon is obtained as:2

3max
island ¼

pEh3hNA

3EI islandL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j3j

1þ j3j

s
; (12)

For silicon and polyimide having the comparable thickness

(hSi z hPI) but very different moduli (ESi [ EPI) as in experi-

ments, hNA and EI island are given by:

hNAz
hSi

2

EI islandz13
EPI þ ESi

96
ðhSi þ hPIÞ3:

(13)

This result gives the maximum strain in silicon in eqn (12)

3max
island ¼

16pEh3hSi

ð13EPI þ ESiÞðhSi þ hPIÞ3L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j3j

1þ j3j:

s
(14)

The finite element method is used to validate the maximum

strains in eqn (11) and (14). The computational model consists of

one half of the device island and one half of the interconnect

bridge due to symmetry. The polyimide interconnect bridge has

Young’s modulus E ¼ 2.5 GPa, thickness h ¼ 1.4 mm, and half-

length L/2 ¼ 75 mm; the island is made of silicon (plane-strain

modulus �ESi ¼ 140 GPa and thickness hSi ¼ 700 nm) and poly-

imide (plane-strain modulus �EPI ¼ 2.83 GPa and thickness hPI ¼
900 nm), and has the half-length 50 mm. For the stretch of

elastomeric transfer element to rB ¼ 10.3 mm, as in experiments,

the maximum strain reaches 34.0% at the outermost point of the

circuit mesh (9.62 mm from the center). The relaxation of stretch

then imposes compression on the interconnect (and island). The

eigenvalues and eigenmodes of the system are first obtained in

the finite element analysis, and then used in the post-buckling
5762 | Soft Matter, 2010, 6, 5757–5763
analysis. The deformation and strain distribution of the circuit

mesh are shown in Fig. 7b–d, while Fig. 7a gives the experimental

image of buckled shape. The maximum strain in the interconnect

bridge is 3.2% (Fig. 7d), which is very close to 3.4% given by eqn

(11). The maximum strain in silicon is 0.16% (Fig. 7c), which is

also close to 0.13% given by eqn (14). These strains are much

smaller respectively than the corresponding fracture strains of

polyimide (�7%) and silicon (�1%).1 Therefore, eqn (11) and

(14) provide simple and robust ways to estimate the strains in the

circuits on curvilinear surfaces.
V. Concluding remarks

An analytical model is established for transfer printing planar,

silicon-based electronics circuits onto complex, curvilinear

surfaces. The compressible circuits consist of silicon islands

interconnected by narrow polyimide strips, which display

different buckling patterns along the circumferential and

meridional directions and over different parts of the curvilinear

surface. It is shown that the adhesion between interconnect

bridges and transfer elements, together with the compressive

strain, control the buckling pattern. The strain distribution on

the curvilinear surface is obtained analytically, based on which

the buckling patterns agree well with the experiments. The

maximum strains in the interconnect bridges and device islands

are then obtain analytically, and they agree well with the finite

element analysis. These outcomes provide a simple and robust

method for the design and optimization of circuit mesh structure

for any curvilinear surface.
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