Semiconductor Manufacturing Technique Holds Promise for Solar Energy

ScienceDaily (May 24, 2010) — Thanks to a new semiconductor manufacturing method pioneered at the University of Illinois, the future of solar energy just got brighter.

Although silicon is the industry standard semiconductor in most electronic devices, including the photovoltaic cells that solar panels use to convert sunlight into energy, it is hardly the most efficient material available. For example, the semiconductor gallium arsenide and related compound semiconductors offer nearly twice the efficiency as silicon in solar devices, yet they are rarely used in utility-scale applications because of their high manufacturing cost.

Typically, gallium arsenide is deposited in a single thin layer on a small wafer. Either the desired device is made directly on the wafer, or the semiconductor-coated wafer is cut up into chips of the desired size. The Illinois group decided to deposit multiple layers of the material on a single wafer, creating a layered, "pancake" stack of gallium arsenide thin films. "If you grow 10 layers in one growth, you only have to load the wafer one time," said Li, a professor of electrical and computer engineering and of chemistry.

Next the researchers individually peel off the layers and transfer them. To accomplish this, the stacks alternate layers of gallium arsenide and other compound semiconductors, then you could expand their range of applications," said Rogers, the Lee J. Flory Founder Chair in Engineering Innovation, and a professor of materials science and engineering and of chemistry.

Related Stories

New Nanowires May Contribute to Highly Efficient Solar Cells (Nov. 13, 2009) — Nanophysicists have developed a new method for manufacturing the cornerstone of nanotechnology research -- nanowires. The discovery has great potential for the development of nanoelectronics and solar cells.

Solar Cell Sets World Efficiency Record At 40.8 Percent (Sep. 30, 2008) — Scientists at the U.S. National Renewable Energy Laboratory have set a world record in solar cell efficiency with a photovoltaic device that converts 40.8 percent of the light that hits it into electricity.

Graphene And Gallium Arsenide: Two Perfect Partners Find Each Other (Sep. 16, 2009) — It is the marriage of two top candidates for the electronics of the future, both excentric and extremely interesting: Graphene, one of the partners, is an extremely thin Fellow and besides, very...
Semiconductor manufacturing technique holds promise for solar energy

Another advantage of the multilayer technique is the release from area constraints, especially important for solar cells. As the layers are removed from the stack, they can be laid out side-by-side on another substrate to produce a much larger surface area whereas the typical single-layer process limits area to the size of the wafer. "For photovoltaics, you want large area coverage to catch as much sunlight as possible. In an extreme case we might grow enough layers to have 10 times the area of the conventional route," Rogers said.

"You really multiply the area coverage, and by a similar multiplier you reduce the cost, while at the same time eliminating the consumption of the wafer," he said.

Among the paper’s co-authors are two scientists from Semprius Inc., a North Carolina-based startup company that is beginning to use this technique to manufacture solar cells. A shift from silicon-based panels to more efficient gallium arsenide models could make solar power a more cost-effective form of alternative energy.

Next, the group plans to explore more potential device applications and other semiconductor materials that could adapt to multilayer growth.

The Department of Energy and National Science Foundation-funded team also includes U. of I. postdoctoral researchers Jongseung Yoon, Sungjin Jo and Inhwa Jung; students Ik Su Chun and Hoon-Sik Kim; and electrical and computer engineering professor James Coleman, along with Ungyu Paik, of Hanyang University in Seoul, and Semprius scientists Matthew Meell and Etienne Menard.

Email or share this story: | More

Story Source:
Adapted from materials provided by University of Illinois at Urbana-Champaign.

Journal Reference:

Need to cite this story in your essay, paper, or report? Use one of the following formats:

APA

MLA

Note: If no author is given, the source is cited instead.

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily's archives for related news topics, the latest news stories, reference articles, science videos, images, and books.