New devices pave way for applications in cardiology and neurology

26. March 2010 07:59

A team of cardiologists, materials scientists, and bioengineers have created and tested a new type of implantable device for measuring the heart's electrical output that they say is a vast improvement over current devices. The new device represents the first use of flexible silicon technology for a medical application.

"We believe that this technology may herald a new generation of active, flexible, implantable devices for applications in many areas of the body," says co-senior author Brian Litt, MD, an associate professor of Neurology at the University of Pennsylvania School of Medicine and also an associate professor of Bioengineering in Penn's School of Engineering and Applied Science. "Initially, we plan to apply our findings to the design of devices for localizing and treating abnormal heart rhythms. We believe these new devices will allow doctors to more quickly, safely, and accurately target and destroy abnormal areas of the heart that are responsible for life-threatening cardiac arrhythmias.

"Implantable silicon-based devices have the potential to serve as tools for mapping and treating epileptic seizures, providing more precise control over deep brain stimulation, as well as other neurological applications," says Story Landis, PhD, director of the National Institute of Neurological Disorders and Stroke, which provided support for the study. "We are excited by the proof of concept evident in the investigators' ability to map cardiac activity in a large animal model."

"The new devices bring electronic circuits right to the tissue, rather than having them located remotely, inside a sealed can that is placed elsewhere in the body, such as under the collar bone or in the abdomen," explains Litt. "This enables the devices to process signals right at the tissues, which allows them to have a much higher number of electrodes for sensing or stimulation than is currently possible in medical devices."

Now, for example, devices for mapping and eliminating life-threatening heart rhythms allow for up to 10 wires in a catheter that is moved in and around the heart, and is connected to rigid silicon circuits distant from the target tissue. This design limits the complexity and resolution of devices since the electronics cannot get wet or touch the target tissue.

The team describes their proof-of-principle findings in the cover article of this week's Science Translational Medicine.

"Our hope is to use this technology for many other kinds of medical applications, for example to treat brain diseases like epilepsy and movement disorders," adds Litt and co-senior author John Rogers, PhD, from the University of Illinois.

In this experiment, the researchers built a device to map waves of electrical activity in the heart of a large animal. The device uses the 288 contacts and more than 2,000 transistors spaced closely together, while standard clinical systems usually use about five to 10 contacts and no active transistors. "We demonstrated high-density maps of electrical activity on the heart recorded from the
New devices pave way for applications in cardiology and neurology

device, during both natural and paced beats," says co-author David Callans, MD, professor of Medicine at Penn.

"We also plan to design advanced, 'intelligent' pacemakers that can improve the pumping function of hearts weakened by heart attacks and other diseases." For each of these applications, the team is conducting experiments to test flexible devices in animals before starting human trials.

Another focus of ongoing work is to develop similar types of devices that are not only flexible, like a sheet of plastic, but fully stretchable, like a rubber band. The ability to fully conform and wrap around large areas of curved tissues will require stretchability, as well as flexibility. "The next big step in this new generation of implantable devices will be to find a way to move the power source onto them," says Rogers. "We're still working on a solution to that problem."

Source: University of Pennsylvania School of Medicine

Recent Articles

- EMA Selected To Staff RWJ Rahway's Emergency Department
- Renhuang Pharmaceuticals' Siberian Ginseng Capsule Patent Application Passes Preliminary SIPO Review
- "Mouse Model" Study Finds LRRK2 Gene Mutation May Cause Inherited Parkinson's Disease
- NAFC Supports PMAA Of Uromeda's ACT Device For SUI, Speaks To FDA
- DNA Patent Case: US District Judge Rules In Favor Of AMP
- Utilizing "Synthetic Population" In Simulating Spread Of Infectious Outbreaks
- Variant Of ATG16L1 Gene Associated With Higher Risk For Crohn's Disease
- Merge Healthcare Completes Private Placement Of Preferred And Common Stock
- Multnomah Court Judge Denies I-Flow's Request For New Trial
- Practicing Safer Sex: New Condom Technology To Keep Partners "In The Moment"

Related posts

- Top neurologists to receive 2010 AAN Alliance Awards
- New campaign to provide retreats for women recovering from breast cancer launched
- University of Florida obtains stimulus grant to establish ataxia consortium
- ARIAD Pharmaceuticals' SUCCEED trial of oral ridaforolimus on track
- Level I trauma centers boost head injury survival
- Scientists at St. Jude Children's Research Hospital have gained new insights into regulation of one critical enzyme's activity that may hold key to understanding how to better treat an array of conditions
- First study to look at health of centenarian offspring reveals insights into how to maintain health and longevity
- A recent study appearing in the November issue of Journal of American Geriatrics Society revealed that patients with head injury who are transferred to level I trauma centers are more likely to survive than if they're transferred to level II trauma centers
- Pennsylvania Patient Safety Authority's initiative to raise awareness of healthcare-associated infections

New Articles

- Disease And Therapy Review Provides An Overview Of The Disease And Related Conditions
- ARIAD Pharmaceuticals, Inc. today reported financial results for the third quarter and nine months ended September 30, 2010
- University of Florida neurologists are trying to change that with the help of a $1 million Challenge Grant from the National Institute on Aging to develop new treatments for inherited ataxias and other neurodegenerative diseases
- New campaign to provide retreats for women recovering from breast cancer launched
- Top neurologists to receive 2010 AAN Alliance Awards
- University of Florida obtains stimulus grant to establish ataxia consortium
- ARIAD Pharmaceuticals' SUCCEED trial of oral ridaforolimus on track
- University of Florida neurologists are trying to change that with the help of a $1 million Challenge Grant from the National Institute on Aging to develop new treatments for inherited ataxias and other neurodegenerative diseases
- First study to look at health of centenarian offspring reveals insights into how to maintain health and longevity
- A recent study appearing in the November issue of Journal of American Geriatrics Society revealed that patients with head injury who are transferred to level I trauma centers are more likely to survive than if they're transferred to level II trauma centers
- Pennsylvania Patient Safety Authority's initiative to raise awareness of healthcare-associated infections

Add comment

Quirky Comment Title
Name*
E-mail*
Country
What is 1 + 3 ?
(Will show your Gravatar icon)

Comment

News-Medical.Net provides this medical information service in accordance with these terms and conditions. Please note that medical information found on this website is designed to support, not to replace, the relationship between patient and physician/dentist and the medical advice they may provide.
New devices pave way for applications in cardiology and neurology