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ABSTRACT Various methods have been developed to fabricate highly stretchable electronics.
Recent studies show that over 100% two dimensional stretchability can be achieved by mesh
structure of brittle functioning devices interconnected with serpentine bridges. Kim et al show
that pressing down an inflated elastomeric thin film during transfer printing introduces two di-
mensional prestrain, and therefore further improves the system stretchability. This paper gives
a theoretical study of this process, through both analytical and numerical approaches. Simple
analytical solutions are obtained for meridional and circumferential strains in the thin film, as
well as the maximum strain in device islands, which all agree reasonably well with finite element
analysis.
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I. INTRODUCTION

Stretchable and flexible electronics and optoelectronics!’ 3! have shown potential applications in bio-
medicinel*®!| robotics® 9, flexible displays!'® 14!, electronic eyeball cameras!’® 2! and flexible solar
cells?2:23] (See the review papers [24,25]). These accomplishments use systems that offer high stretchabil-
ity with active materials of Si, GaAs, carbon nanotubes or silicon nanowires?6-% | transfer printed from
hard, rigid growth substrates (e.g., semiconductor wafers) to soft, elastic elastomeric substrates(® 59,
An effective approach is to place functional but fragile devices on isolated islands, connected by robust,
wavy bridges serving as electrical interconnection(®?: 611, This strategy gives very large, two-dimensional
stretchability (>100%) because mechanical deformations are mostly absorbed by the bridges, such that
the strain in functional devices remain very small. Applying two-dimensional prestrain during the fabri-
cation of systems with this type of stretchable design can further enhance the stretchability, and enable
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application to extreme conditions!'3 2%/, Thermal manipulation of the elastomeric substrate represents
one means to apply uniform two dimensional prestrain/®®%2 but the magnitudes are only typically a
few percent or less.

As recently reported by Kim et al.[%), transfer printing optoelectronics onto a pneumatically inflated
elastomeric thin film can induce very high two dimensional prestrain, thereby greatly enhancing the
stretchability. Demonstration experiments with inorganic light emitting diodes illustrated the effective-
ness of this procedure. Figure 1 schematically describes the fabrication process. A thin polydimethyl-
siloxane (PDMS) film is mounted onto a chamber. Injecting air into the chamber inflates the PDMS film
to a balloon shape (Fig.1(b)). Transfer begins by pushing a PDMS stamp with an array of prefabricated
and transferred devices against the inflated film until the entire contact area of the film becomes flat
(Fig.1(c)). Removing the PDMS stamp leaves the device array on the PDMS balloon. Deflating the
balloon results in an array of electronic devices on a two dimensionally prestrained PDMS thin film.
Such an approach gives very large prestrain (> 30%), and therefore significantly increases the system
stretchability.

(a) Initial flat state of a PDMS membrane

(b) Pneumatically inflated PDMS membrane of height h (tilted view and side view)

(¢) Pressed down PDMS membrane to transfer electronic devices

Fig. 1. Schematic illustration of introducing two dimensional prestrain to stretchable electronics.

A simple, analytical model is established in §II to determine the distribution of prestrain induced
by transfer printing of electronic or optoelectronic devices onto an inflated thin film. The analytical
model is validated by finite element method (FEM) in §II, and can be used in a unit cell model to
determine the maximum strain in serpentine interconnects. The maximum strain in devices is obtained
analytically in §III.

II. ANALYTIC MODEL AND NUMERICAL RESULTS
Figure 1(a) shows a circular, flat PDMS thin film of radius r fixed at its outer boundary. Inflation of
air deforms the thin film to a spherical cap of height h, as shown in Fig.1(b). For the height A comparable
to radius r as in experiments, the thin film is mainly stretched, and bending becomes negligible except
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near the fixed boundary. The radius and polar angle of the spherical cap are approximately given by

h? + 12 . 1 2hr
R= on Omax = sin (m) (1)

As to be confirmed by FEM results in §III, the strain in the meridional direction is approximately
uniform away from the fixed boundary, and is obtained as

(1) RO max _ h?+r2 . 1 2hr
-1 S1n m -1

(2)

£ v =
meridional r 2hr

For a point of distance x( to the film axis at the initially flat state, it moves to the position of
distance x; to the axis and of polar angle 67 at the inflated state, as shown in Fig.1(b). The uniform
meridional strain gives 61 = (20 /7)0max and x1 = Rsin 6. The circumferential strain is then obtained

as
2 2
1) hr+rt o wo 2hr

€circumferential — 2hl‘0 s |:7. sin <h2 + r2 -1 (3)

The PDMS thin film is pressed downward after inflation by a thick PDMS stamp to transfer electronic
devices. The point x; on the inflated film moves to the position of distance xs to the axis. Due to the
strong adhesion between PDMS stamp and thin film, the area on PDMS thin film having contact with
the stamp moves vertically downward, which gives x5 = 1 and the circumferential strain

2 2
e? =W AT {IO sin~! ( 2hr )] —1 (4)
T

circumferential circumferential 2h(E0 h2 + 7.2

The meridional strain equals dzy/dzg — 1, and is obtained as

2 2
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6gneridional = 2hr s r2 + h2 COS | —— s h2 + r2 -1 (5)

The simple analytical expressions for strains in Eqs.(4) and (5), once validated, are useful to determine
the maximum strain in devices and their positions in §III after the devices are transfer printed on the
inflated PDMS thin film.

The finite element method (FEM) is also used to study the deformation of PDMS thin film due to
inflation via the commercial FEM software ABAQUS. PDMS thin film, of Young’s modulus 2 MPa
and Poisson’s ratio 0.48, is modeled by shell elements S4R since its thickness (0.4 mm) is much smaller
than radius (10 mm). The outer boundary of PDMS thin film is fixed, and uniform pressure is applied
to the bottom surface of PDMS thin film. For an inflation height h=4 mm, the contours for meridional
and circumferential strains in the inflated thin film are shown in Figs.2(a) and 2(b), respectively. They
agree reasonably well with the simple analytical solutions in Eqs.(2) and (3), as shown in Fig.2(c).
The inflated profile of the thin film obtained by FEM is shown in Fig.2(d), which agrees well with the
simple, analytical solution in Eq.(1).

The meridional and circumferential strain contours in the pressed thin film are shown in Figs.3(a) and
3(b), respectively. As shown in Fig.3(c), they agree reasonably well with the simple analytical solutions
in Eqgs.(4) and (5), which can be used to determine buckling of interconnects between device islands.
For interconnect linking two device islands, the elongation equals the product of device spacing and the
strain in Eq.(4) (for two device islands along the circumferential direction) or Eq.(5) (for meridional
direction). The lateral buckling pattern of serpentine interconnect can then be determined by a unit
cell model of a single interconnect subject to this elongation. The strain in interconnect can also be
obtained.

III. MAXIMUM STRAIN IN DEVICES

The maximum strain in devices is critical to their reliability. After pressing the devices down against
the PDMS substrate, the pressure is released, causing the PDMS to return back to the original hemi-
spherical shape, with devices on top. The strain in devices results from three sources:

(i) stretching of PDMS substrate during inflation (after the stamp is removed);
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Fig. 2. Strain distribution and profile of inflated PDMS embrane.
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Fig. 3. Strain distribution of pressed down PDMS membrane.

(ii) bending due to lateral buckling of interconnects;
(iil) bending due to the spherical shape of inflated PDMS substrate.
The finite element analysis has shown that the strains resulting from (i) and (ii) are much smaller

than that from (iii), and the latest is given analytically by

2hy
h? + r2

Y

¥ - (6)

Edevice —
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where y is the distance from the neutral mechanical plane. For a device consisting of n layers with
elastic modulus E; and thickness ¢; of the i*" layer (15% layer at the top), the distance between the
neutral mechanical plane and the top surface is

n (7)

The device in experiments!®) has 6 layers, SUS/Au/SU8/GaAs/SUS/PI, which have elastic moduli
Ey = E3 = E5 = 4.4GPa, E5 = T8 GPa, B4 = 77.5GPa and Eg = 2.5 GPa, and thickness h; = 2.5
pm, ho = 300 nm, hg = 1.0 ym, hy = 2.5 um, hs = 1.2 ym and hg = 1.2 pm.

For 0.4 mm-thick PDMS thin film and the inflation height ~=4 mm in experiments, the finite element
method gives the maximum strain 0.0172% in the Au layer, while Eq.(6) gives 0.0148%.

IV. CONCLUSIONS

Pressing an inflated elastomeric thin film during transfer printing of electronic devices is shown to
be an effective way to introduce two dimensional prestrain, in a way that increase the stretchability of
the electronics. An analytical model has been developed to study the strain induced in this process.
Simple analytical solutions are obtained for both meridional and circumferential strains, which show
good agreement with FEM simulations. These analytical solutions can give the strain in serpentine
interconnects between device islands. The maximum strain in device islands is also obtained analytically.
This model can be used to guide the design of two dimensional stretchable electronics.
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