Breakthrough Makes LED Lights More Versatile

By Andrea Thompson, Senior Writer
posted: 20 August 2009 02:01 pm ET

LEDs have started to blink on all over the place in recent years, from car taillights to roadside billboards. But design and manufacturing drawbacks have limited the ways in which the energy-efficient lights can be used.

A new study, detailed in the Aug. 21 issue of the journal Science, tackles these limitations by combining the best of two worlds of LEDs to make ultrathin, ultrasmall and flexible light-emitting diodes that may one day be used. Efficient lights can be used.

LED display — a key criteria for high-definition TVs and medical devices.

“As a result our devices are much, much thinner,” Rogers said. They’re also hundreds to thousands of times smaller — about one or two microns (or the width of a couple human hairs) instead of about 0.5 millimeters (or the size of a mosquito’s body) — allowing for finer resolution in the final "image" created.

Rogers and his team developed a process in which the active material, though inorganic, is grown and cut by etching, "so you can make displays with millions of pixels" that are much thinner, Rogers said.

Rogers and his colleagues first set out to make smaller-sized inorganic LEDs after a request from Ford Motor Co. to create a third brake light for cars that would be a thin strip of red LEDs that conforms to the curves of a car bumper.

"So what we were trying to do really is combine some of the advantages of the processing of the organic devices, with the robustness and brightness of the inorganic" LEDs, Rogers told LiveScience.

Inorganic lights are created by depositing the active material (the chemical compounds that actually emit the light) onto semi-conductor wafers, and the two layers remain attached once the LEDs have been diced up and packaged, making the setup comparatively thick. So it is difficult "to actually emit the light" onto semi-conductor wafers, and the two layers remain attached once the LEDs have been diced up and packaged, making the setup comparatively thick.

Organic LEDs, on the other hand, can be manufactured so that the active material (which can differ depending on what kind of LED you’re making) is put directly onto a piece of plastic or glass and cut by etching, "so you can make displays with millions of pixels" that are much thinner, Rogers said.

Rogers and his team developed a process in which the active material, though inorganic, is grown on a wafer, as before, but this time between the two is a "sacrificial layer" which can be etched out in a chemical bath, lifting the active layer away from the wafer. The active layer can then be etched into smaller squares and picked up by a rubber stamp and stamped onto plastic or glass.

“As a result our devices are much, much thinner,” Rogers said. They’re also hundreds to thousands of times smaller — about one or two microns (or the width of a couple human hairs) instead of about 0.5 millimeters (or the size of a mosquito’s body) — allowing for finer resolution in the final LED display — a key criteria for high-definition TVs and medical devices.

• Video – LEDs Lead Lighting Revolution
• Bright Future: LEDs Revolutionize Lighting
• The Science of Innovation

Comments (14)

You must be logged in to post a comment: Log In | Register

Aarorc wrote: posted 20 August 2009, 9:29 pm ET

Breakthrough Makes LED Lights More Versatile | LiveScience

http://www.livescience.com/technology/090820-big-led-displays.html