LED display technology gets a twist

Reuters
Ecnmag.com - August 21, 2009

CHICAGO (Reuters) - U.S. researchers said on Thursday they have found a way to make large-scale flexible display screens that can be stretched to fit the contours of a bus yet are transparent enough so riders can see out windows.

The thin, light screens might be used to make brake light indicators that follow the contours of a car, or health monitors or imaging devices that wrap around a patient like a blanket, said John Rogers of the University of Illinois at Urbana-Champaign, whose study appears in the journal Science.

He said the large display screens combine the scale and durability of light-emitting diodes, or LED technology, used to make flat, liteted billboards, with the flexibility of screens made using organic -- carbon-containing -- materials.

"If you look at these giant billboard displays along the road side, those are made out of inorganic light emitting diodes (LEDs). Our feeling is those systems are quite impressive," Rogers said in a telephone interview.

"The question became is it possible to take that technology and use it in a non-billboard format."

Rogers said current technology using inorganic materials produces chunky screens made using organic -- carbon-containing -- materials. Screens made using organic materials can be sprayed or painted onto a film surface, but they are not as bright or durable, he said.

To solve this challenge, researchers built their LEDs on a thin layer of film later dissolved by a chemical and then affixed tiny plastic tabs on two corners to ensure the LEDs did not wash away in the chemical bath.

The team used a special stamping technology to deposit and assemble the inorganic LEDs onto glass, plastic or rubber surfaces. The system works much like a blanket, said John Rogers of the University of Illinois at Urbana-Champaign, whose study appears in the journal Science.

He said the large display screens combine the scale and durability of light-emitting diodes, or LED technology, used to make flat, liteted billboards, with the flexibility of screens made using organic -- carbon-containing -- materials.

"If you look at these giant billboard displays along the road side, those are made out of inorganic light emitting diodes (LEDs). Our feeling is those systems are quite impressive," Rogers said in a telephone interview.

"The question became is it possible to take that technology and use it in a non-billboard format."

Rogers said current technology using inorganic materials produces chunky screens made using organic -- carbon-containing -- materials. Screens made using organic materials can be sprayed or painted onto a film surface, but they are not as bright or durable, he said.

To solve this challenge, researchers built their LEDs on a thin layer of film later dissolved by a chemical and then affixed tiny plastic tabs on two corners to ensure the LEDs did not wash away in the chemical bath.

The team used a special stamping technology to deposit and assemble the inorganic LEDs onto glass, plastic or rubber surfaces. The system works much like a rubber stamp and ink pad, using the LEDs as ink.

"The new approach can lift large numbers of small, thin LEDs from the wafer in one step, and then print them onto a substrate in another step," Rogers said.

"The LEDs can be interconnected and wired with a conventional process used to wire computer chips, he added. And because LEDs can be placed far apart and still provide enough light, the panels and displays can be nearly transparent.

"We can put them on a strip of plastic and make brake lights," said Rogers, who noted that the project was initially funded in part by Ford Motor Co, which was looking for a way to make brake lights that can follow the contour of a car.

The thin, light screens might be used to make brake light indicators that follow the contours of a car, or health monitors or imaging devices that wrap around a patient like a blanket, said John Rogers of the University of Illinois at Urbana-Champaign, whose study appears in the journal Science.

He said the large display screens combine the scale and durability of light-emitting diodes, or LED technology, used to make flat, liteted billboards, with the flexibility of screens made using organic -- carbon-containing -- materials.

"If you look at these giant billboard displays along the road side, those are made out of inorganic light emitting diodes (LEDs). Our feeling is those systems are quite impressive," Rogers said in a telephone interview.

"The question became is it possible to take that technology and use it in a non-billboard format."

Rogers said current technology using inorganic materials produces chunky screens made using organic -- carbon-containing -- materials. Screens made using organic materials can be sprayed or painted onto a film surface, but they are not as bright or durable, he said.

To solve this challenge, researchers built their LEDs on a thin layer of film later dissolved by a chemical and then affixed tiny plastic tabs on two corners to ensure the LEDs did not wash away in the chemical bath.

The team used a special stamping technology to deposit and assemble the inorganic LEDs onto glass, plastic or rubber surfaces. The system works much like a rubber stamp and ink pad, using the LEDs as ink.

"The new approach can lift large numbers of small, thin LEDs from the wafer in one step, and then print them onto a substrate in another step," Rogers said.

"The LEDs can be interconnected and wired with a conventional process used to wire computer chips, he added. And because LEDs can be placed far apart and still provide enough light, the panels and displays can be nearly transparent.

"We can put them on a strip of plastic and make brake lights," said Rogers, who noted that the project was initially funded in part by Ford Motor Co, which was looking for a way to make brake lights that can follow the contour of a car.

The National Science Foundation and the U.S. Department of Energy also funded the project.

(Editing by Maggie Fox and Paul Simao)

Most Popular on ECNmag.com:

- Company Introduces World’s First Video Print Ads
- The Tin Foil Hat Brigade Strikes Again
- Wi-Fi via White Spaces
- DNA Scaffolding Builds Tiny Circuit Boards
- Deadline for U.S. broadband grants, loans extended
- South Korean Space Agency Launch Launches Aks North
- 750 GB Solid-State Drive Uses NAND Flash
- Apple probes iPhone explosion reports: EU
- Scientists Find Rare Gene Behind Short Sleepers
- Land Warrior System Aims to Reduce Collateral Damage

(Editing by Maggie Fox and Paul Simao)
Secure Virtualization: Achieve and Maintain IT Security in Virtual Environments...
By: Tripwire

Find out how to maintain the same level of stability and security across both virtual and physical environments, using the same software and approa...

View Now

More Research...

What Do You Think?

How should we pay for health care?

- Private insurance is the best.
- A single-payer healthcare system is best.
- A government alternate to private insurance.
- A co-op alternate to private insurance.

Vote

View Previous Survey Results

LED display technology gets a twist

smartalix on 8/21/2009 9:49:00 AM writes:
This tech would also be useful to create addressable LCD backlights.

Type Comment...

Title: 
E-Mail: 
Comment: 

Submit Comment