stretch force reduction due to nanotube meandering. This structure provides a volume per strut of $D^2L^2 \sin(120°)$ and a calculated density of $\rho_{\text{calc}} = \frac{W_i}{4ADL \sin(120°)}$, where W_i is the strut weight per unit length and D' is the sum of the covalent diameter of the nanotube and the 0.34-nm van der Waals diameter of carbon (δ). By equating calculated sheet densities to the observed sheet densities, interjunction lengths of 54.3 nm and 39.5 nm are calculated for the MWNT and SWNT sheets, respectively. Although these distances seem shorter than suggested by the micrographs of Fig. 2, note that the micrographs are for the sheet surface (the face originally in contact with the filter membrane) and do not provide the junction density and corresponding L in the buckypaper interior.

To predict the Poisson's ratio of buckypaper, we calculate the elongation force constant k_{SB} (δ) from the observed Young's modulus Y according to $k_{SB} = 2D'T \sin(120°)(1 - v_1)$. Although this little affects the results, v_1 in this equation is the self-consistently calculated value instead of the measured value. The k_{SB} for the MWNTs is the sum of bending force constants for all component SWNTs nested within the MWNTs, and the k_{SB} for SWNT bundles is derived from the measured average Young's modulus for bending (Y_B) 20-nm-diameter SWNT bundles (50 GPa) (29), using the force constant for bending a solid cylindrical rod, $k_B = 3\pi R^4 Y_B/(4L^4)$ (26). The predicted Poisson's ratios are -0.17 for MWNT buckypaper (versus the observed -0.20) and 0.17 for SWNT buckypaper (versus the observed 0.06). Increasing Y_B to 81 GPa decreases the calculated v_1 for SWNT buckypaper to the observed value, and this Y_B is within the range of experimental uncertainty for Y_B (29).

These results indicate that large negative Poisson's ratios can be achieved by using large-diameter MWNTs having as many interior walls as possible. Although all nanotube walls contribute additionally to k_{SB}, only the outer wall contributes to k_{SB} unless the MWNTs are extremely long. Likewise, decreasing the separation between effectively welded inter-nanotube contacts (such as by increasing sheet density) can decrease Poisson's ratio. However, the effects of these structure changes are not simple, because increasing k_{SB} and decreasing L can decrease nanotube meandering between junctions, and this decrease of meandering can provide a positive contribution to k_{SB}.

Negative Poisson's ratios are sometimes accompanied by much rarer mechanical properties: negative linear compressibilities and negative area compressibility—meaning that a material expands in either one or two orthogonal directions when hydrostatic pressure is applied (I). A negative linear compressibility is the inverse of another strange property, increasing density when elongated in a direction where linear compressibility is negative, and both require that $1 - v_1 - v_3 < 0$. Using the above equations for v_1 and v_3 as a function of R and γ for the model of Fig. 1C, negative in-plane compressibility (Fig. 1D), negative area compressibility for the sheet plane, and stretch densification are predicted for $\cos \gamma > (2/3)^{1/2}$, which implies $\gamma < 35.3°$. However, the average γ needed for achieving these properties will decrease as a result of in-plane nanotube meandering, because only the tensile strain component resulting in thickness change affects v_3.

The observed continuous tunability of Poisson's ratio, modulus, strength, toughness, density, and electrical conductivity of nanotube sheets could be useful for applications, as could mechanical property optimization using mixtures of nanotubes. However, the change of Poisson's ratio from positive to negative is especially interesting and unexpected. This tunability, which we can now explain, could be exploited in the design of sheet-derived composites, artificial muscles, gaskets, stress/strain sensors, and chemical sensors where analyte absorption induces mechanical stresses. Even shaping processes are affected, because bending a thick nanotube sheet strip will result in either convex or concave lateral deformation (Fig. 1A, inset), depending on the sign of the in-plane Poisson's ratio.

References and Notes

8. See supporting material on Science Online.
22. The simplest model that provides these key features of the nanotube sheets has hexagonal space group $P6_3/m$ and inter-nanotube noncovalent junctions located at $(0.5, 0, 0)$ and equivalent locations in the unit cell. The same mechanical properties result for the intimately related structure in Fig. 1C, in which each successive layer of zigzag chains is equally likely to be added in either of two possible directions.
25. S. M. Bachilo et al., Science 298, 2361 (2002); published online 29 November 2002 (10.1126/science.1078127).
30. We thank R. Raj, S. Shaw, R. Hau, and J. Levinson for their contributions; J. Belew for the micrograph of Fig. 2C; and C. A. Bronkhorst for permission to use the micrograph of Fig. 2A. Supported by NSF grant DMI-0609115, Air Force Office of Scientific Research grant FA9550-05-C-0088, Untel Corporation, and the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo and Conselho Nacional de Pesquisas Científicas.

Supporting Online Material
www.sciencemag.org/cgi/content/full/320/5875/504/DC1
Materials and Methods
SOM Text
Figs. S1 and S2
References
28 August 2007; accepted 20 March 2008
10.1126/science.1149815

Stretchable and Foldable Silicon Integrated Circuits

Dae-Hyong Kim, Jong-Hyun Ahn, Won Mook Choi, Hoon-Sik Kim, Tae-Ho Kim, Jizhou Song, Yonggang Y. Huang, Zhuangjian Liu, Chun Lu, John A. Rogers

We have developed a simple approach to high-performance, stretchable, and foldable integrated circuits. The systems integrate inorganic electronic materials, including aligned arrays of nanoribbons of single crystalline silicon, with ultrathin plastic and elastomeric substrates. The designs combine multilayer neutral mechanical plane layouts and “wavy” structural configurations in silicon complementary metal–oxide–gate rings, oscillators, and differential amplifiers. We performed three-dimensional analytical and computational modeling of the mechanics and the electronic behaviors of these integrated circuits. Collectively, the results represent routes to devices, such as personal health monitors and other biomedical devices, that require extreme mechanical deformations during installation/use and electronic properties approaching those of conventional systems built on brittle semiconductor wafers.

Realization of electronics with performance equal to established technologies that use rigid semiconductor wafers, but in lightweight, foldable, and stretchable formats would enable many new applications. Examples include wearable systems for personal health monitoring and therapeutics, “smart” surgical gloves with integrated electronics, and electronic eye–type imagers that incorporate focal plane arrays on hemispherical substrates (1–3). Circuits that use
organic (4, 5) or certain classes of inorganic (6–13) electronic materials on plastic or steel foil substrates can provide some degree of mechanical flexibility, but they cannot be folded or stretched. Also, with few exceptions (11–13) such systems offer only modest electrical performance. Stretachable metal interconnects with rigid (14) or stretchable (15–17) inorganic device components represent alternative strategies that can also, in certain cases, provide high performance. In their existing forms, however, none of these approaches allows scaling to circuit systems with practically useful levels of functionality.

We present routes to high-performance, single-crystalline silicon complementary metal-oxide semiconductor (Si-CMOS) integrated circuits (ICs) that are reversibly foldable and stretchable. These systems combine high-quality electronic materials, such as aligned arrays of silicon nanoribbons, with ultrathin and elastomeric substrates, in multilayer neutral mechanical plane designs and with “wavy” structural layouts. High-performance n- and p-channel metal-oxide semiconductor field-effect transistors (MOSFETs), CMOS logic gates, ring oscillators, and differential amplifiers, all with electrical properties as good as analogous systems built on conventional silicon-on-insulator (SOI) wafers, demonstrate the concepts. Analytical and finite element method (FEM) simulation of the mechanics, together with circuit simulations, reveal the key physics. We implement single-crystalline silicon because it provides excellent electronic properties, including high electron and hole mobilities. Commodity bulk silicon wafers (18), for cost-sensitive applications, or SOI wafers provide the source of the ultrathin pieces of Si that are required. Vacuum-evaporated materials such as nanocrystalline Si (19), which also enable high performance, might offer further advantages in cost. The same approaches to stretchable and foldable integrated circuits reported here can be used with these and other related classes of materials. The strategies reported here are important not only for the Si-CMOS circuits that they enable but also for their straightforward scalability to much more highly integrated systems with other diverse classes of electronic materials whose intrinsic brittle, fragile mechanical properties would otherwise preclude their use in such applications.

Figure 1A schematically summarizes the key steps for forming ultrathin, foldable, and stretchable circuits and presents optical images of representative systems at different stages of the process. The procedure begins with spin-casting a sacrificial layer of poly(methylmethacrylate) (PMMA) (~100 nm) followed by a thin, substrate layer of polyimide (PI) (~1.2 µm) on a Si wafer that serves as a temporary carrier (see supporting online material). A transfer printing process with a poly(dimethyldisiloxane) (PDMS) stamp (20, 21) delivers to the surface of the PI organized arrays of n- and p-doped Si nanoribbons (Fig. 1B, inset) with integrated contacts, separately formed from n-type source wafers. Automated stages specially designed for this printing enable multilayer registration with ~2 µm accuracy (12). Depositing and patterning SiO2 (~50 nm) for gate dielectrics and interconnect crossovers, and Cr/Au (5/145 nm) for source, drain, and gate electrodes and interconnects yield fully integrated Si-CMOS circuits with performance comparable to similar systems formed on SOI wafers (fig. S1). Figure 1C shows an image of an array of Si-CMOS inverters and isolated n- and p-channel MOSFETs (n-MOSFETs and p-MOSFETs, respectively) formed in this manner, still on the carrier substrate. In the next step, reactive ion etching forms a square array of small holes (~50 µm diameters, separated by 800 µm) that extend through the nonfunctional regions of the circuits and the thin PI layer into the underlying PMMA. Immersion in acetone dissolves the PMMA by flow of solvent through the etch holes to release ultrathin, flexible circuits in a manner that does not degrade the properties of the devices. These systems can be implemented as flexible, free-standing sheets, or they can be integrated in wavy layouts on elastomeric substrates to provide fully reversible stretchability/compressibility (Fig. 1A).

Fig. 1. (A) Overview of the fabrication process for ultrathin CMOS circuits that exploit silicon nanoribbons and enable extreme levels of bendability (third frame from the top) or fully reversible stretchability/compressibility (bottom frame on the left) and schematic cross-sectional view with neutral mechanical plane indicated with a red dashed line (bottom frame on the right). (B) to (D) Optical images of circuits on the carrier wafer and magnified views of a single CMOS inverter (inset) on a thin rod after removal from this carrier (C), and in a wavy configuration on PDMS (D).
the electronic device layers (fig. S3). In other words, the high moduli of the electronic materials move the neutral mechanical plane from the geometric midplane, which lies in the PI, to the device layers. The illustration at the bottom right of Fig. 1 indicates with dashed red lines the approximate locations of this neutral mechanical plane in different regions of the system. This situation is highly favorable because the fracture strains of the materials used in the circuits are substantially lower than those for fracture or plastic deformation in the PI (~7%). Two disadvantages of such circuits are their lack of stretchability and, for certain applications, their low flexural rigidity. These limitations can be circumvented by implementing extensions of concepts that achieve stretchable, wavy configurations of sheets and ribbons of silicon and gallium arsenide (15, 16), in a procedure illustrated in the bottom frame of Fig. 1A. The fabrication begins with removal of the ultrathin circuits from the carrier substrate using a PDMS stamp, evaporating a thin layer of Cr/SiO2 (3/30 nm) onto the exposed PI surface (i.e., the surface that was in contact with the PMMA), and then generating –OH groups on the surfaces of the SiO2 and a biaxially prestrained PDMS substrate \(e_{\text{pre}} = e_{\text{xx}} = e_{\text{yy}} \), where the \(x \) and \(y \) coordinates lie in the plane of the circuit) by exposure to ozone induced with an ultraviolet lamp. Transfer printing the circuit onto the PDMS substrate, followed by mild heating, creates covalent linkages to form strong mechanical bonding between the Si CMOS/PI/Cr/SiO2 and the PDMS. Relaxing the prestrain induces compressive forces on the circuits that lead to the formation of complex wavy

Fig. 2. (A) Wavy Si-CMOS inverters on PDMS, formed with various levels of prestrain. (left, \(e_{\text{pre}} = 2.7\% \); center, \(e_{\text{pre}} = 3.9\% \); right, \(e_{\text{pre}} = 5.7\% \).) (B) Structural configuration determined by full 3D FEM of a system formed with \(e_{\text{pre}} = 3.9\% \) (left) and perspective scanning electron micrograph of a sample fabricated with a similar condition (right). (C) Optical images of wavy Si-CMOS inverters under tensile strains (31) along the \(x \) and \(y \) directions. (D) Measured (red and black) and simulated (blue) transfer characteristics of wavy inverters (left), and \(n \) - and \(p \) -channel MOSFETs (solid and dashed lines, respectively, in the left inset). Measured (solid circles) and simulated (open squares) inverter threshold voltages for different applied strains along \(x \) and \(y \) (right).

Fig. 3. (A) Optical image of an array of stretchable, wavy three-stage CMOS ring oscillators (top left) and magnified views of a typical oscillator at different applied strains (31) oriented along the direction of the red arrow (right frame). Measured time and frequency domain responses of an oscillator at different applied strains. (B) Circuit diagram of a differential amplifier (top left); output characteristics for various strain values (bottom left); optical images of a wavy differential amplifier in its as-fabricated state (top right) and under applied strain in a direction along the red arrow (bottom right).
patterns of relief by nonlinear buckling processes. The location of the neutral mechanical plane in the device layers, as noted previously, facilitates the nondestructive bending that is required to form these wavy patterns. Circuits in this geometry offer fully reversible stretchability/compressibility without substantial strains in the circuit materials themselves. Instead, the amplitudes and periods of the wave patterns change to accommodate applied strains (ε_{app}, in any direction in the plane of the circuit), with physics similar to an accordion bellows (23). Figure 1D presents an optical image of a wavy Si-CMOS circuit on PDMS, formed with a biaxial prestrain of ~5.7%. The thickness of the PDMS can be selected to achieve any desired level of flexural rigidity, without compromising stretchability.

The left, middle, and right frames of Fig. 2A show optical micrographs of wavy Si-CMOS inverters formed with $\varepsilon_{\text{pre}} = 2.7\%$, 3.9%, and 5.7%, respectively. The wave structures have complex layouts associated with nonlinear buckling physics in a mechanically heterogeneous system. Three features are notable. First, the waves form most readily in the regions of smallest flexural rigidity: the interconnect lines between the p-MOSFET and n-MOSFET sides of the circuit fabricated with $\varepsilon_{\text{pre}} = 3.9\%$. As might be expected, the amplitudes and periods of waves that lie along the direction of applied force decrease and increase, respectively, to accommodate the resulting strains (fig. S5). The Poisson effect causes compression in the orthogonal direction, which leads to increases and decreases in the amplitudes and periods of waves with this orientation, respectively. Electrical measurements indicate that the Si-CMOS inverters work well throughout this range of applied strains. The left frame of Fig. 2D shows measured and simulated transfer curves, with an inset graph that presents the electrical properties of individual n-MOSFET and p-MOSFET devices with channel widths (W) of 100 µm and 100 µm, respectively, to match current outputs, and channel lengths (L_c) of 13 µm. These data indicate effective mobilities of 290 cm²/Vs and 140 cm²/Vs for the n- and p-channel devices, respectively; the on/off ratios in both cases are >10⁷. The gains exhibited by the inverters are as high as 100 at supply voltages (V_{DD}) of 5V, consistent with circuit simulations that use the individual transistor responses. The right frame of Fig. 2D summarizes the voltage at maximum gain (V_M) for different ε_{app} along x and y: Tensile strains parallel to the transistor channels (i.e., along y) tend to reduce the compressive strains associated with the wavy structures in these locations (fig. S3). The complex, spatially varying strain distributions and the practical difficulties associated with probing the devices make simple explanations for the associated changes in electrical properties elusive. They also frustrate conclusive statements on the slightly different observed strain sensitivities of the p-channel and n-channel devices (fig. S5). Generally, we speculate that the overall tensile and compressive strains in these systems increase and decrease the electron mobility, respectively, with opposite effects on hole mobility (24–26), consistent with analysis of measured transistor data using standard long-channel MOS device models (27).

More complex stretchable circuits can be fabricated using these inverters as building blocks. Figure 3A shows optical images, electrical measurements, and stretching tests on Si-CMOS ring oscillators that use three inverters identical to those in Fig. 2. The mechanical responses are qualitatively consistent with considerations described in the discussion of the inverters. The electrical measurements indicate stable oscillation frequencies of ~3.0 MHz at supply voltages of 10 V, even under severe buckling deformations and strains of 5% and larger. The measured frequencies were 2.9 MHz, 3.0 MHz, 3.1 MHz, and 2.9 MHz for 0%, 2.5%, 5%, and 0% applied strain, respectively. Formulating detailed explanations for these relatively small shifts is difficult, for reasons similar to those outlined in the discussion of the inverters. The expected strain-induced anisotropy in transport (28) must also be considered. More general classes of circuits are also possible. Figure 3B shows a differential amplifier (29) for a structural health monitor that integrates four components: a current source (three transistors with $L_c = 30 \mu m$ and $W = 80 \mu m$), a current mirror (two transistors with $L_c = 40 \mu m$, $W = 120 \mu m$; and $L_c = 20 \mu m$, $W = 120 \mu m$), a differential pair (two transistors with $L_c = 30 \mu m$ and $W = 180 \mu m$), and a load (two transistors...
with $L_c = 40 \mu m$ and $W = 80 \mu m$). The right frame shows an optical image of the corresponding wavy circuit (fig. 57). This amplifier is designed to provide a voltage gain of ~1.4 for a 500-mV peak-to-peak input signal. Measurements at various tensile strains along the red arrow show gains that vary by less than 20%; 1.01 without applied strain (0%, black), 1.14 at 2.5% strain (red), 1.19 at 5% strain (blue), and 1.08 after release (0%, green).

Although the ultrathin and wavy circuit designs described above provide unusually good mechanical properties, two additional optimizations can enable further improvements. Dominant failure modes observed at high applied strains ($\epsilon_{\text{appl}} - \epsilon_{\text{pre}} > -10\%$) or degrees of bending ($r < -0.05 \text{ mm}$) are caused by delamination of the device layers and/or fracture of the metal interconnects. A simple design modification that addresses these failures involves the deposition of an encapsulating layer on top of the completed circuits. Figure 4 illustrates a representative layout that includes a thin (~1.2 μm) layer of PI on top of an ultrathin Si-CMOS/PI circuit. The resulting systems are extremely bendable, which we refer to as foldable, as demonstrated in the PI/Si-CMOS/PI circuit tightly wrapped over the edge of a microscope cover slip (thickness ~100 μm) in Fig. 4A. Even in this configuration, the inverters are operational and exhibit good electrical properties (fig. S8). Such foldability is enabled by the good adhesion of the PI layer and its encapsulation of the underlying layers preventing their delamination. Also, the PI layer shifts the metal interconnects at the neutral mechanical plane in other regions of the circuits (fig. S8). Such designs can also be incorporated in wavy configurations to enable stretchability/compressibility. The stretchable system presents, however, another challenge. As mentioned previously, the bendability of the Si-CMOS/PI/PDMS is influenced strongly by the thickness of the PDMS. Systems that are both stretchable and highly bendable require the use of thin PDMS. Relaxing the prestrain when using a thin PDMS substrate, however, results in an unwanted, overall bowing of the system rather than the formation of wavy circuit structures. This response occurs because of the very low bending stiffness of thin PDMS, which in turn results from the combined effects of its small thickness and extremely low modulus compared with the PI/Si-CMOS/PI. Neutral mechanical plane concepts that involve the addition of a compensating layer of PDMS on top of the PI/Si-CMOS/PI/PDMS system can avoid this problem. Figure 4B illustrates this type of fully optimized, dual neutral mechanical plane layout (i.e., PDMS/PI/Si-CMOS/PI/PDMS) and its ability to be stretched and bent. The optical micrographs at the bottom left and right of Fig. 4B illustrate the various configurations observed under extreme twisting and stretching of this system.

The strategies presented here demonstrate the degree to which extreme mechanical properties (i.e., stretchability and foldability) can be achieved in fully formed, high-performance integrated circuits by the use of optimized structural configurations and multilayer layouts, even with intrinsically brittle but high-performance inorganic electronic materials. In this approach, the desired mechanical properties are enabled by materials (e.g., PDMS, thin PI, and their multilayer assemblies) that do not need to provide any active electronic functionality. Such designs offer the possibility of direct integration of electronics with biological systems, medical prosthetics and monitoring devices, complex machine parts, or with mechanically rugged, lightweight packages for other devices. Further development of the mechanical concepts to provide, for example, expanded ranges of stretchability (30), to extend such electronic systems to other material types, and to exploit them in new classes of devices all appear to represent promising directions for future research.

References and Notes

Near-Field Plates: Subdiffraction Focusing with Patterned Surfaces
Anthony Grbic,1,4 Lei Jiang,2 Roberto Merlin2

Using a patterned, grating-like plate to control the electromagnetic near field, we demonstrate focusing well beyond the diffraction limit at ~ 1 gigahertz. The near-field plate consists of only capacitive elements and focuses microwaves emanating from a cylindrical source to a spot of size $\approx \lambda / 20$ (half-power beamwidth), where λ is the free-space wavelength. These plates will find application in antennas, beam-shaping devices, nonradiative wireless power-transfer systems, microscopy, and lithography.

Since it was first proposed to use subwavelength apertures to obtain resolutions beyond the diffraction limit (1), the electromagnetic near field has enjoyed continued scientific interest. Much of the current attention stems from the work showing that a negative refractive index slab behaves as a perfect lens by focusing both the near- and far-field components emanating from a source (2). Following this work, negative refractive index and negative permittivity (3–6)

www.sciencemag.org SCIENCE VOL 320 25 APRIL 2008 511

Downloaded from www.sciencemag.org on April 25, 2008
Supporting Online Material for

Stretchable and Foldable Silicon Integrated Circuits

Dae-Hyeong Kim, Jong-Hyun Ahn, Won Mook Choi, Hoon-Sik Kim, Tao-Ho Kim, Jizhou Song, Yonggang Y. Huang,* Zhuangjian Liu, Chun Lu, John A. Rogers*

*To whom correspondence should be addressed. E-mail: jrogers@uiuc.edu (J.A.R.); y-huang@northwestern.edu (Y.Y.H.)

Published 27 March 2008 on *Science* Express
DOI: 10.1126/science.1154367

This PDF file includes:

Materials and Methods
Figs. S1 to S8
SUPPLEMENTARY ONLINE MATERIAL

“Stretchable and Foldable Silicon Integrated Circuits”
Dae-Hyeong Kim et al.

MATERIALS AND METHODS

1. DEVICE FABRICATION

The transistors use doped silicon nanoribbons for the semiconductor. The fabrication involves three steps. First, an n-type silicon-on-insulator (SOI) wafer (Si (260 nm)/SiO₂(1000 nm)/Si with doping of 2.7-5.2×10¹⁵ cm⁻³, SOITEC, France) is lightly doped with boron via a spin-on-dopant (B153, Filmtronics, USA) at a diffusion temperature around 550~600 °C to define p-wells. SiO₂ (~ 300 nm) formed by plasma enhanced chemical vapor deposition (PECVD) was used as a diffusion mask. For this lithography procedure, AZ5214 photoresist (Clariant, USA) was spin coated at 3000 rpm for 30 sec. Next, highly doped p-type source/drain electrodes are formed beside the p-wells using the same boron spin-on-dopant, this time at a temperature of 1000~1050°C. Then, heavily doped n-type source and drain regions are defined inside the p-well with phosphorous spin-on-dopant (P509, Filmtronics, USA) at 950°C by using the same diffusion mask and photolithography procedure. After doping, the desired structure of Si ribbons is defined by lithographic and dry etching steps with a SF₆ plasma (Plasmatherm RIE system, 40 Scem SF₆ flow with a chamber pressure of 50 mTorr, 100 W rf power for 30 s.). The underlying SiO₂ is removed by concentrated (49%) HF to release thin semiconductor ribbons. These released Si ribbons can then
transferred in organized arrays from the SOI wafer to the carrier wafer coated with thin layers of PMMA (MicroChem, USA) (~100 nm, spin coat at 3000 rpm for 30 s) and poly(amic acid), precursor of PI [Poly(amic acid), Sigma Aldrich] (~1.2 μm, spin coat at 4000 rpm for 60 sec) using an elastomeric stamp as the transfer element. After complete curing of PI at 300°C for 1~1.5 h, the active regions of the devices are isolated by SF₆ plasma and a thin gate oxide of SiO₂ (~50 nm) is deposited with PECVD. The PECVD SiO₂ on the source/drain contact regions is then removed by RIE or buffered oxide etchant through openings in a layer of photoresist pattern by photolithography. Cr/Au (~5 nm/~145 nm) for source, drain and gate electrodes and metal interconnects are deposited with e-beam evaporation and then are patterned by photolithography and wet etching. A uniform layer SiO₂ (~50 nm) is deposited by PECVD to form a passivation layer. Etching away this layer for contact windows enables electrical contact with the devices and circuits, to complete the fabrication.

2. REMOVAL OF ULTRATHIN CIRCUIT SHEETS AND INTEGRATION IN WAVY LAYOUTS ON PDMS

After circuit fabrication, an array of holes, whose radius is 30 μm and distance is 800 μm, is defined in nonfunctional areas, to expose the underlying PMMA to acetone. Immersion in acetone removes the sacrificial PMMA layer to free an ultrathin circuit with PI substrate from the carrier substrate. Such a circuit can either be used in a free-standing form, or it can be manipulated and transferred to another substrate by use of transfer printing techniques. For formation of stretchable, wavy layouts, the circuit is transferred to an elastomeric substrate of PDMS, typically prestrained biaxially by thermal expansion. To enhance adhesion between the circuit and PDMS,
thin layers of Cr (~3 nm) and SiO$_2$ (~30 nm) are deposited on the bare PI at the opposite side of active devices. Surface activation can be accelerated by exposure to UV/ozone for 3 min. Strong chemical bonding can then be accomplished by reacting –OH groups on this SiO$_2$ layer with those on the surface of the thermally prestrained PDMS. After transfer printing onto the pre-strained PDMS, the natural cooling can make PDMS and ultrathin devices shrink and wavy structure will be formed.

3. STRETCHING TEST AND MEASUREMENT

Stretching tests are performed with mechanical bending stages that are capable of applying uniaxial tensile or compressive strains in any direction. These stages mount directly in electrical probing stations that are coupled with semiconductor parameter analyzers (Agilent, 5155C).

4. MEASUREMENT OF PROFILE

In order to measure the wavelength and amplitude, a surface profiler (Sloan Dektak 3) was used. A diamond stylus which is in contact with a sample surface moves and follows the profile of sample surface and measures physical surface variation at different positions.

5. FATIGUE TEST

To evaluate the performance of wavy circuit under repetitive stretching and releasing, multiple cycling of heating and cooling test was performed. The wavy circuit was heated 160°C for 5 minutes and then cooled down for 10 minutes before each electrical measurement.
6. NEUTRAL MECHANICAL PLANE OF MULTILAYER STACKS

The neutral mechanical plane defines the position where the strains are zero. Figure S3B shows the multilayer stacks with the 1st layer on top and nth layer at the bottom. Their (plane-strain) moduli and thicknesses are denoted by \(E_1 \), … \(E_n \) and \(h_1, \ldots, h_n \), respectively. The neutral plane is characterized by the distance \(b \) from the top surface, and \(b \) is given by

\[
b = \frac{\sum_{i=1}^n E_i h_i \left(\frac{\sum_{j=1}^n h_j}{2} \right)}{\sum_{i=1}^n E_i h_i}.
\] \(\text{(S.1)} \)

For the p-MOSFET and n-MOSFET regions (n=5, SiO2/metal/SiO2/Si/PI: \(~0.05\mu m/0.15\mu m/0.05\mu m/0.25\mu m/1.2\mu m\), see the center and right figures in Fig. S3A), Fig. S3C shows the position of the neutral plane. Their elastic moduli and Poisson’s ratios are \(E_{SiO2} = 70GPa \), \(\nu_{SiO2} = 0.17 \), \(E_{metal} = 78GPa \), \(\nu_{metal} = 0.44 \), \(E_{Si} = 130GPa \), \(\nu_{Si} = 0.27 \), \(E_{PI} = 2.5GPa \) and \(\nu_{PI} = 0.34 \). Figure S3D shows the position of the neutral plane for the metal interconnect (n=4, SiO2/metal/SiO2/PI: \(~0.05\mu m/0.15\mu m/0.05\mu m/0.25\mu m/1.2\mu m\) corresponding to the left figure in Fig. S3A.

For the Si-CMOS sandwiched by the PI layers shown in Fig. 4A, Fig. S3E shows the position of the neutral plane for the p-MOSFET and n-MOSFET regions (n=5, PI/metal/SiO2/Si/PI: \(~1.2\mu m/0.15\mu m/0.05\mu m/0.25\mu m/1.2\mu m\)). The top PI capping layer moves the neutral mechanical plane towards the SiO2/Si interface, and therefore reduces the device failure of delamination. Figure S3F shows the position of the neutral plane for the metal interconnect (n=4, PI/metal/SiO2/PI: \(~1.2\mu m/0.15\mu m/0.05\mu m/1.2\mu m\)). The top PI capping layer moves the neutral
mechanical plane towards the center of the metal layer, and therefore reduces the failure of metal interconnect. The thickness of the top PI capping layer can be optimized to reduce the delamination of device layers and fracture of metal interconnect.

7. BUCKLING WAVELENGTHS AND AMPLITUDES OF THE WAVY SYSTEMS

7.1 Equivalent tension and bending rigidities

The multilayer stacks are modeled as a beam. Its equivalent tension rigidity is

$$\bar{E}h = \sum_{i=1}^{n} E_i h_i,$$

where the 1st layer is on top and the nth layer is at the bottom as shown in Fig. S8a, and their moduli and thicknesses are denoted by E_i, … E_n and h_1, … h_n, respectively. The equivalent bending rigidity is given by

$$\bar{E}I = \sum_{i=1}^{n} E_i h_i \left(b - \sum_{j=1}^{i} h_j \right)^2 + \sum_{i=1}^{n} E_i h_i^3 \left(b - \sum_{j=1}^{i} h_j \right) + \frac{1}{3} \sum_{i=1}^{n} E_i h_i^3,$$

where b is the distance of the neutral mechanical plane to the top surface given in Eq. (S.1).

7.2 Metal interconnect on PDMS substrate

The equivalent tension rigidity $\bar{E}h$ and bending rigidity $\bar{E}I$ of the metal interconnect are obtained from Eqs. (S.2) and (S.3) for $n=4$ (SiO\textsubscript{2}/metal/SiO\textsubscript{2}/PI). The PDMS substrate is modeled as a semi-infinite solid since its thickness is about 4 orders of magnitude thicker than the metal interconnect. Figure S1 (left figure) shows that the buckling pattern is mainly one dimensional, and therefore the out-of-plane displacement can be represented by $w = A \cos(k x_1)$, where x_1 is the coordinate along the direction of interconnect, and the amplitude A and wave number k are to be determined.
by the minimization of total energy of the system, which consists of the bending and membrane energy of the thin film and the strain energy in the substrate. This gives the analytical expression of wave number and amplitude as

\[k = \frac{E_h}{12EI} 3\bar{E}_s \left(\frac{E_h}{E_h} \right)^{1/3}, \quad A = \frac{12EI}{E_h} \sqrt{\frac{\epsilon_{pre}}{\epsilon_c}} - 1, \]

(S.4)

where \bar{E}_s is the plane-strain modulus of the substrate, ϵ_{pre} is the equi-biaxial prestrain, and $\epsilon_c = \frac{1}{6} \left(\frac{3E_s}{E_h} \right)^{2/3}$ is the critical buckling strain. For the PDMS modulus $E_s = 1.8$ MPa and Poisson’s ratio $\nu_s = 0.48$, the wavelength in Eq. (S.4) is 96\(\mu\)m, which agrees well with experiments (~100\(\mu\)m).

The maximum strain in the metal interconnect is the sum of membrane strain and bending strain induced by the buckled geometry. Figure S4A shows the maximum strains in different device layers versus the prestrain. The material strains in metal and SiO\(_2\) layers are below 1% even for the 10% prestrain.

7.3 p-MOSFET and n-MOSFET on PDMS substrate

The p-MOSFET and n-MOSFET regions (SiO\(_2\)/metal/SiO\(_2\)/Si/PI, n=5) are next to the non-metal regions (SiO\(_2\)/SiO\(_2\)/PI, n=3) as illustrated in Fig. S4. Their buckling is coupled and therefore rather complex. Within each region the out-of-plane displacement has its own wavelength and amplitude, and across the regions the displacement and rotation are continuous. The minimization of total energy, which consists of the bending and membrane energy of the thin film and the strain energy in the substrate, gives the wavelengths and amplitudes in all regions. The wavelength in the p-MOSFET and n-MOSFET regions is about 140\(\mu\)m, which agrees reasonably well
with experiments (~180μm).

Figure S4b shows the maximum strains in different device layers versus the prestrain. The material strains in metal, SiO₂ and Si layers are below 0.5% even for 10% prestrain such that the circuits are stretchable.
Figure S1. Schematic diagram for circuit preparation procedures.
Figure S2. Voltage transfer curve for ultrathin device attached on thin rod.
Figure S3. (A) Wavelength and amplitude measurement of wavy ultrathin devices using surface profilometry (Sloan Dektak®); thin metal electrode part (left), thick device part for pmos (center) and nmos (right). (B) Schematic diagram of multilayer stacks. (C) and (D) Positions of the neutral plane for p-MOSFET and n-MOSFET regions and the metal interconnect. (E) and (F) Positions of the neutral plane for p-MOSFET and n-MOSFET regions and the metal interconnect with PI capping layer.
Figure S4. Maximum strains versus the prestrain in various layers of the circuits (A) Metal interconnect (B) p-MOSFET and n-MOSFET regions
Figure S5. (A) Optical images for stretching tests in the y direction. (B) Optical images for stretching tests in the x direction. (C) Transfer curves and mobility changes for NMOS (left) and PMOS (right) devices at different applied strain values. (D) IV curves for NMOS (left) and PMOS (right) at 0% strain; solid lines are for measurement and dot lines are for simulation.
Figure S6. (A) Optical images of fatigue tests. (B) Voltage transfer curves (left) and variation of gain values during the fatigue test.
Figure S7. Image of ultrathin wavy differential amplifiers; Magnified image of differential amplifier before applying strain (inset).
Figure S8. (A) Magnified view of inverter before and after folding. (B) Voltage transfer characteristics of folded inverter. (C) Cross-sectional view of folded metal interconnect region. (D) Schematic wavy structure with neutral mechanical plane.