Researchers Make New Electronics -- With A Twist

ScienceDaily (Nov. 21, 2008) — They've made electronics that can bend, that've made electronics that can stretch.

See also:
- Health & Medicine
 - Medical Imaging
curved surface
- Human Biology

Yonggang Huang, Joseph Cumings Professor of Civil and Environmental Engineering and Mechanical Engineering at Northwestern University's McCormick School of Engineering and Applied Science, and John Rogers, the Flory-Founder Chair Professor of Materials Science and Engineering at the University of Illinois at Urbana-Champaign, have improved their so-called "pop-up" technology to create circuits that can be twisted. Such electronics could be used in places where flat, unbending electronics would fail, like on the human body.

Their research is published online by the Proceedings of the National Academy of Sciences.

Electronic components historically have been flat and unbendable because silicon, the principal component of all electronics, is brittle and inflexible. Any significant bending or stretching renders an electronic device useless.

Huang and Rogers developed a method to fabricate stretchable electronics that increases the stretching range (as much as 140 percent) and allows the user to subject circuits to extreme twisting. This emerging technology promises new flexible sensors, transmitters, new photovoltaic and microfluidic devices, and other applications for medical and athletic use.

The partnership — where Huang focuses on theory, and Rogers focuses on experiments — has been fruitful for the past several years. Back in 2005, the pair developed a one-dimensional, stretchable form of single-crystal silicon that could be stretched in one direction without altering its electrical properties; the results were published by the journal Science in 2006. Earlier this year they made stretchable integrated circuits, work also published in Science.

Next, the researchers developed a new kind of technology that allowed circuits to be placed on a curved surface. That technology used an array of circuit elements approximately 100 micrometers square that were connected by metal "pop-up bridges."

The circuit elements were so small that when placed on a curved surface, they didn't bend — similar to how buildings don't bend on the curved Earth. The system worked because these elements were connected by metal wires that popped up when bent or stretched. The research was the cover article in Nature in early August.

In the research reported in PNAS, Huang and Rogers took their pop-up bridges and made them into an "S" shape, which, in addition to bending and stretching, have enough give that they can be twisted as well.

"For a lot of applications related to the human body — like placing a sensor on the body — an electronic device needs not only to bend and stretch but also to twist," said Huang. "So we improved our pop-up technology to accommodate this. Now it can accommodate any deformation."

Huang and Rogers now are focusing their research on another important application of this technology: solar panels. The pair published a cover article in Nature Materials earlier this month describing a new process of creating very thin silicon solar cells that can be combined in flexible and transparent arrays.

Related Stories

Penn Thornton To Create Optical Circuit Elements (Sep. 28, 2005) — Engineers at the University of Pennsylvania have theorized a means of shrinking electronics so they could be run using light instead of electricity. Their circuit elements would take a beam of light... > read more

Stable Power Supply Thanks To Wind Turbines (Oct. 10, 2001) — Wind turbines can help keep the voltage in the electricity network at a constant level. The power electronics in the turbines can effectively correct peaks and dips in the mains voltage. This is... > read more

Chemistry Research Could Produce Faster Computers (July 11, 2006) — Chemists at the University of Liverpool are helping to create future electronics based on molecules for faster and smaller... > read more

Future Nanoelectronics May Face Obstacles (Sep. 15, 2008) — Combining ordinary electronics with light has been a potential way to create minimal computer circuits with super fast information transfer. Researchers are now showing that there is a limit. When... > read more

New Technique May Soothe The Development Of

Number of stories in archives: 44,032

versatile electronic components, which are made of single layers of organic ... > read more

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Email Newsletters
RSS Newsfeeds

Feedback
... we want to hear from you!

Tell us what you think of the new ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?

Your Name:
Your Email:
Comments:

Click button to submit feedback:

Free Government Grants
Free Government Grant Money that you never have to pay back
www.LocateGovernmentGrant.com

How To Lose Stomach Fat
Finally, a Diet That Really Works! As Seen On CNN & Fox News...
RealSimpleDiets.com

Acne Cure Exposed
10 Acne Cure Facts The Greedy Acne Industry Doesn't Want You To Know!
AcneCureExposed.com

About This Site | Editorial Staff | Awards & Reviews | Contribute News | Advertise With Us | Privacy Policy | Terms of Use
Copyright © 1995-2008 ScienceDaily LLC — All rights reserved — Contact: editor@sciencedaily.com