nature nanotechnology

PUBLICATIONS A-Z INDEX > BROWSE BY SUBJECT >

SEARCH

Find out more about the perfect tool for your high resolution optical, structural, & chemical imaging tasks!

This iournal

SUBSCRIBE > E-ALERT SIGN UP >

go ADVANCED SEARCH >

MY ACCOUNT >

alpha300 microscope series AFM SNOM Confocal Raman

REGISTER >

Journal home > Archive > Research Highlights > Full Text

Journal home

Advance online publication

Research Highlights Current issue

Archive

For authors

Press releases

Research Highlights

Nature Nanotechnology Published online: 17 November 2006 | doi:10.1038/nnano.2006.153

Subject Category: Nanosensors and other devices

Nanostructures: Making better sense

Ai Lin Chun

Arrays of cylindrical nanowells can now image molecular binding events with high sensitivity over large areas

Subscribe to Nature Nanotechnology

Table of contents

Previous article

→ Next article

☑ Send to a friend

Export citation

Export references

🗟 Rights & permissions

(a) Order commercial reprints

Save this link

References

■Online submission

For referees

About the journal

Pricing

Contact the journal

Subscribe

Help

About this site

NPG services

Advertisina

work@npg Reprints and

permissions

NPG resources

Nature Materials Nature Physics

Nature Biotechnology

chemistry@nature.com

materials@nature.com

Nature Publishing Group Nature Conferences

news@nature.com

NatureJobs

For librarians

Nature

Surface plasmon resonance (SPR) is a popular technique for measuring binding interactions such as those between DNA and proteins based on changes in refractive index near a metal surface. Although metal nanostructured films and nanoparticles can be used for SPR type sensing, fabricating large-area and spatially coherent arrays of uniform nanostructures with good sensitivities is expensive.

Now, researchers at the University of Illinois, Urbana-Champaign and Argonne National Laboratory in the US have developed a low-cost crystal array to make a highly sensitive sensor.

Ralph Nuzzo, John Rogers and co-workers¹ created a periodic three-dimensional array of cylindrical gold-coated wells, known as plasmonic crystals, using soft nanoimprint lithography - a technique that uses a soft polymeric mold to stamp and create structures on a substrate. It was shown experimentally and theoretically that the tiny (20-30 nm) grains of gold along the sidewalls of the nanowell crystals were necessary for increased sensitivities in the SPR measurements.

When tested with proteins, binding events could be detected with sensitivities down to a single layer. The high degree of spatial uniformity of the crystals also allows binding events to be imaged over a large area. The sensor could be integrated into a portable microfluidic device for miniaturized analytical instrumentation of the future.

REFERENCES

1. Stewart, M. E. et al. Quantitative multispectral biosensing and 1D

imaging using quasi-3D plasmonic crystals. Proc. Natl Acad. Sci. USA 103, 17143-17148 (2006).

© 2006 National Academy of Sciences USA

naturejobs

> <u>Dean</u>

Mathematics National Central University Jhongli City, Taiwan

Tenure-Track Position Biological Sciences Northeastern University Boston, MA

More science jobs

top 🛧

search buyers quide

nature physics Celebrating its anniversary Free-to-view

selected highlights from the first

NPG Journals

by Subject Area

Chemistry Drug discovery Biotechnology Materials **Methods & Protocols**

Clinical Practice & Research

Cancer Cardiovascular medicine

Dentistry